STUDIES IN LOGIC

AND

THE FOUNDATIONS OF MATHEMATICS

VOLUME 80

Editors

H. J. KEISLER, Madison
A. MOSTOWSKI, Warszawa
A. ROBINSON, New Haven

P. SUPPES, Stanford
A. S. TROELSTRA, Amsterdam

Advisory Editorial Board

Y. BAR-HILLEL, Jerusalem
K. L. DE BOUVERE, Santa Clara
H. HERMES, Freiburg i. Br.
J. HINTIKKA, Helsinki
J. C. SHEPHERDSON. Bristol
E. P. SPECKER, Ziirich

e ———— e

NORTH-HOLLAND PUBLISHING COMPANY-AMSTERDAM - OXFORD
AMERICAN ELSEVIER PUBLISHING COMPANY, INC.-NEW YORK

LOGIC COLLOQUIUM °73

PROCEEDINGS OF THE LOGIC COLLOQUIUM
BRISTOL, JULY 1973

Edited by
H. E. ROSE
Lecturer in Mathematics, Bristol
and

J. C. SHEPHERDSON

Professor of Pure Mathematics, Bristol

NORTH-HOLLAND PUBLISHING COMPANY-AMSTERDAM - OXFORD
AMERICAN ELSEVIER PUBLISHING COMPANY, INC.-NEW YORK

CONTENTS

Contents e e e e e e e e e e e e e A
Preface e e e e e e e e e e e vii

INVITED PAPERS

Mathematics as a domain of theoretical science and of mental

experience, Paul Bernays o . 0. 1
The philosophical basis of intuitionistic logic, Michael Dummett . . 5
Concerning progress in the philosophy of mathematics,

AbrahamRobinsono o 41
An algebraic characterisation of groups with soluble order problem,

William W. Boone and Graham Higman 53
A hierarchy of languages with infinitely long expressions, A. Kino

andJ. Myhillo e e e e e e e 55
An intuitionistic theory of types: predicative part,

PerMartin-L6f o o000 e e e 73

Sets, topoi, and internal logic in categories, Saunders Maclane . . . 119
Continuously variable sets: algebraic geometry =geometric logic,

F. WilliamLawvere« .« ... 135
A mathematical model of computing agents, Robin Milner 157
Monadic computation and iterative algebraic theories,

CalvinC.Elgot« o o 0o 175
On the solvability of algorithmic problems, Erwin Engeler 231

CONTRIBUTED PAPERS

Combinatorial systems II, non-cylindrical problems, J. P. Cleave . . 253
Embedding algebras with solvable word problems in simple

algebras. Some Boone-Higman type theorems,

T. Evans,K.I. Mandelbergand M.F.Neff 259

vi CONTENTS

Elimination of higher type levels in definitions of primitive
recursive functionals by means of transfinite recursion,
Helmut Schwichtenberg

Some Hierarchies based on higher type quantification,

S. S. Wainer

Analytical wellorderings in R, David Guaspari . e e e

Set mappings, partitions and chromatic numbers, Andrds Hajnal
and Attila Mdté e e e e e e e e

Interpolation theorem for some modal logics, J. Czermak

Weak elimination of quantifiers and cotheories, Paul Henrard

Independence versus logical independence in the countable case,
C.F.Kent

Securable quantifiers, k-unions and admissible sets,

Johann A. Makowsky e e e e

Parentheses in combinatory logic, Mohamed A. Amer

Equality in %,,, Jonathan P. Seldin

Computation over abstract structures: serial and parallel procedures
and Friedman’s effective definitional schemes, J. C. Shepherdson .

279

305
317

347
381
395
399
409
429
433

445

ELIMINATION OF HIGHER TYPE LEVELS IN
DEFINITIONS OF PRIMITIVE RECURSIVE FUNCTIONALS
BY MEANS OF TRANSFINITE RECURSION

Helmut SCHWICHTENBERG'
Miinster, Westfalen, W. Germany

0. Introduction

Hilbert’s program asks for finitary consistency proofs for formalized
mathematical theories. This program appears to be even more natural, if
one extends it a little (Kreisel[9]): Given a formalized version of an
abstract proof for a finitary assertion (example: proof of x +y =y +x,
X, y variables for natural numbers, in an axiomatic set theory), can one
always construct from this a finitary proof of the same assertion? By a
well-known result of Godel, this is impossible if it is required that the
finitary methods used should be formalizable in the abstract theory.
However, a way to overcome this difficulty was already proposed by
Hilbert (in the Introduction to [6, Volume 1]): ‘Jenes Ergebnis zeigt ... nur,
daB man fiir die weitergehenden Widerspruchsfreiheitsbeweise den fini-
ten Standpunkt in einer schiarferen Weise ausnutzen muf als dies bei der
Betrachtung der elementaren Formalismen erforderlich ist’. The develop-
ment and investigation of strong, but still finitary methods is therefore a
central theme in proof theory.

For first order number theory Z, Hilbert’s program was carried out first
by Gentzen[3] (see also Gentzen[4]). Gentzen assigns to every formal
proof p in Z an ordinal o, <€, and defines a reduction procedure for
proofs in Z such that any reduction step preserves the end formula, but
lowers the assigned ordinal. Since proofs in Z with assigned ordinal o

' I want to thank Professor S. Feferman, Professor W. Howard and Professor G. Kreisel
for their advice and valuable suggestions.

280 HELMUT SCHWICHTENBERG

certainly do not prove a contradiction, one can conclude by transfinite
induction up to «, that p does not prove a contradiction. All this can be
formalized in the quantifier-free primitive recursive (pr rec) arithmetic
PRA extended by transfinite induction up to arbitrary ordinals < €., and
also (Kreisel[10]) in PRA extended by definition schemata for «-
recursion, a < €,. Hence the consistency of the latter theory, PRA._ say,
implies the consistency of Z. Conversely, the consistency of Z implies the
consistency of PRA.., for PRA__ is a subtheory of the conservative (by
Hilbert-Bernays [6]) extension of Z by a-recursion, a < €.

Another consistency proof for Z is due to Godel[5], in a paper entitled
“Uber eine bisher noch nicht beniitzte Erweiterung des finiten Stand-
punkts’: Godel shows, that Z can be interpreted in a quantifier-free
extension T of PRA to functionals of finite types. Hence the consistency
of T implies the consistency of Z. Again the converse holds (Kreisel[11]).

So the proof-theoretic strength of Z is expressed in the quantifier-free
theories PRA.., and T in different ways by definition schemata: In
PRA.., by allowing a-recursion, a < €,, for defining functions, and in T
by extending the schemata of explicit definition and primitive recursion
available in PRA to functionals of finite types. Hence there is an obvious
question how to compare more directly and in a general form these two
methods of extending simple definition schemata.

That any function, definable in PRA.., is definable in T was proved
first by Kreisel[12, §3.4], using G6del[5]. More generally, Tait[21] shows
that any 2*-recursion can be reduced to an a-recursion with a type level
greater by one. In the other direction only a special case is treated in the
literature, namely that any function definable in T is definable in PRA..,
too. In Tait[19] it is mentioned that this follows from Kreisel[11] (with
Gentzen[4)]). In the same paper, Tait sketches a more direct proof’. Here
we show in a general form (e.g. for functionals instead of functions) that
‘detours’ through higher type levels can be eliminated by means of
transfinite recursion.

We obtain the following result (for a precise formulation, see Section
3.8): Let a functional F of type level n+1 be defined by explicit
definitions and «-recursions. All auxiliary functionals introduced by
recursion shall have type levels =n +m + 1 (m = 1). Then one can find a
new definition of F, containing auxiliary functionals of type level =n + 1

% For other proofs, see Howard[7} and Parsons[15].

ELIMINATION OF HIGHER TYPE LEVELS 281

only, but using a B-recursion with 8 < 2,, (aw) instead of the « -recursions
(where 24(§) i= & 2i(§) 1= 2%49),

In fact, we obtain a stronger formal version of this result: Let T. be the
theory obtained from Godel’s T (with weak extensionality, see
Spector[18])’ by adding «-recursion. Let T, be the subtheory of T.
obtained by restricting all constants to those of type level =n + 1. Then
for every constant F in T.™™ (m = 1) of type level n + 1 one can find a
constant F' of Tj with B8 <2, (aw) such that Fx,...xx = F'x, ... xx is
provable in T3™™

The proof runs as follows. First, Tait has observed (in [19]) that any
a-recursive functional F can be represented by an infinite term t, i.e., a
term built up from typed variables and numerals by application, abstrac-
tion and the formation of sequences (ti)ien Of type 0 — 0 with terms t; of
type 0. For instance, if F of type 0 — 7 is defined by a <-recursion

F(x)=G([Fl<s X)

(< well-ordering of N, [F]«. course of values of F below x, i.e.,
[Fl<x(y):= F(y) if y <x, and := 0 otherwise), and G is already rep-
resented by an infinite term ts, then one can represent F(x) by

te = to{tuiienX,

with
ti lf i < X,
Li ‘=

0 otherwise,

where 0:=Ax,..x:.0. So F can be represented by (t.).en. Here a
sequence (si)ien Of terms s; of type o#0 is an abbreviation for
AXXy .o X (Si X1 ... Xadienx . One can see easily that for any a-recursive
functional F the depth |t-| (defined as usual) of the representing term ¢ is
< aw.

Let the rank R(t) of an infinite term ¢ be the supremum of the type
levels of all subterms Axs in a context (Axs)r. Now let F be an
a-recursive functional of type level n + 1. In the definition of F, all the
auxiliary functionals shall have type levels =n + m + 1. Clearly one can
assume that the infinite term tr representing F has a rank R(tr) =<

*1 do not know whether a similar result holds without extensionality.
*1 am grateful to Mr. R. Statman for telling me this possibility of eliminating sequences of
terms of a type # 0 in an extensional context.

282 HELMUT SCHWICHTENBERG

n +m + 1. We will define a reduction relation (essentially as in Tait[19],
but using A-conversions (Axs)r — s.[r] only) such that every infinite
term ¢t of rank R(t)=<k +1 can be reduced to a t' with R(t') <k and
[t'|=2". Hence, the above functional F of type level n+1 can be
represented by an infinite term t# with rank R(t¥)=<n +1 and depth
|tE < 2m(aw).

We consider now finite notations or numbers for infinite terms. To
construct them, there is no problem for variables, numerals, application
and abstraction. In the case of a sequence (f;).en, the number contains
(among other things)

(i) an index e of a pr rec function that gives, when applied to i, a number
for ¢,

(ii) a bound for the depth of (t).

Next we define valuation functionals Va with the following property.
Let" t "be a number of a closed infinite term ¢t of type 7 and depth |t| < a,
all of whose subterms have types from a finite set M. Then Val=™ ¢!
represents the same set theoretic functional as t. The definition of the
Val*™ r & M, is by simultaneous a-recursion®.

Now let F be as before. We first obtain a number " tr | of an infinite
term tr representing F, such that F = Val®*™ ¢: for suitable k, M.
Corresponding to the reduction of the term tr with R(ts)=<n +m + 1 and
|tr] < aw to aterm t% with R(t¥)=<n +1and |t¥ < 2. (aw) we construct a
function Red* such that

M
17

F =Val*™M . 1= Val® ™ (Red*" tr)

with a B8 <2,(aw) and a set M,., of types with level <n + 1. The
function Red* turns out to be primitive recursive®. Since Val®™+ is
obtained using B-recursion but without auxiliary functionals of type level
>n + 1, we have the desired result.

To get the formal version mentioned above, one has to formalize this
proof ina T3™™, B < 2,.(aw). The necessary modifications in the informal
proof are discussed in Section 4. Specifically, the predicate ‘u is a number
of a term’ is II}. Hence, a theorem with this predicate in the premiss and

proved by induction cannot immediately be formalized in a Tg"™. To

* With some more work one can define analogous valuation functionals, where instead of a
finite set M of types the infinite set of all types of level =n occurs.

¢ A similar situation occurs in the theory of Kleene's 0, where +, can be chosen pr rec; cf.
Kleene[8).

ELIMINATION OF HIGHER TYPE LEVELS 283

overcome this difficulty we use Herbrand’s Theorem (cf. Kreisel[9] and
Shepherdson[17]).

1. Functionals defined by transfinite recursion

1.1. Types are 0 and with o, 7 also (o — 7). The classes &, of all (set
theoretic) functionals of type + are defined by %,:=N,
Foori=Feie:={F°"F°"": %, —» %.}. Many-place functions can be re-
duced as usual to l-place functions; e.g., a 2-place function can be
considered as a functional of type 0— (0— 0). We write
Ti—> T3 = =" Tpmy = 7 for 11 = (12 = -+ (Tam1 = 7) -+7). Any type 7 can
be written uniquely in the form + = 7, — 7, = --- 7, — 0, as one proves
easily by induction on 7; we call 7, ..., 7. the argument types of 7. We
write F~""(G7, ..., G for F777 (G ... (G7). Type indices clear
from the context will be omitted frequently. The type level L(7) of a type
7 is defined by L(0):=0, L(o = 7) := max(L(co)+ 1, L(7)).

1.2. DEFINITION. The class of primitive recursive functionals is the
smallest class

(i) containing the number 0° and the successor function S°°,

(ii) closed under explicit definitions

F‘rl—>mf"—>0(x ‘;I, - x:;") - A

with A built up from the variables x, ..., x, and already defined function-
als Gy, ..., G, by application, and
(iii) closed under primitive recursion
F(0)=G"
F(x +1)= H(F(x), x).

1.3. We want to consider transfinite recursion too. Let < be an arbitrary
well-ordering of N.

DEFINITION. The class of < -recursive functionals is the smallest class
with the properties (i)-(iii) and
(iv) closed under < -recursion

F(x) = G([Fl<x x),

where [F]<, is the course-of-values of F below x, i.e., [Fl«.(y) := F(y)if
y <x and := 0 otherwise.

284 HELMUT SCHWICHTENBERG

1.4. REMARK. It is well known that within the class of recursive func-
tions, the strength of the schema of <-recursion is determined neither by
the order type nor by the recursion theoretic complexity of the relation <.
Myhill[14] and Routledge[16] prove that any recursive function can be
defined by pr rec operations and just one <-recursion with a pr rec
well-ordering < of order type w. A dependence of the strength of
<-recursion on (and only on) the order type of < can be obtained, if one
restricts oneself to standard well-orderings <. However, this notion is
available only for concrete order types such as e,, I',. If < is a standard
well-ordering of order type a, <-recursion is also called «-recursion.

1.5. REMARK. For simplicity, we consider only functionals with defini-
tion trees containing transfinite recursion with respect to only one
well-ordering <. The general case can be handled correspondingly.

1.6. We want to simplify a little the definition of <-recursive functionals.
For this we show that under simple assumptions on < the schema of
primitive recursion

F0) =G,

F(x+1)= H(F(x), x)
can be reduced to the schema of <-recursion. So let G, H be given. We

want to define a solution F to the above equations by means of
<-recursion. Assume that there exist pr rec functions h, h' such that

Q)] x <y — h(x)<h(y),
2) h'(h(x)) = x.
Let

F(x) = F.(h(x)),
Fi(y) = G([Fil< y),
G if y =h(0),
Gz, y)=
H(z(h(x)), x) with x := h'(y)—1 otherwise.
One can check easily that F has the required properties.
Hence, under the assumptions (1), (2) (which we will presuppose
whenever dealing with <-recursive functionals) the definition of <-

recursive functionals given above is equivalent to the following: The class
of <-recursive functionals is the smallest class containing the number 0

ELIMINATION OF HIGHER TYPE LEVELS 285

and all pr rec functions and closed under explicit definition (ii) and
<-recursion (iv).

2. Infinite terms

We define infinite terms and construct in a canonical way for any
definition of a <-recursive functional F an infinite term ¢r representing F.
Furthermore, we define a procedure by means of which tr can be reduced
to a term t % all of whose subterms have type levels not greater than the
type level of the whole term.

The proofs are to a large extent parallel to Tait[19]. We carry them out,
since on the one hand some changes are useful, and on the other hand
some details of the construction will be referred to later.

2.1. For any type 7, let countably many r-variables (i.e., variables of type
T)x%,y7, z7,... be given.

Definition of (infinite) T-terms

(i) Any r-variable x" is a 7-term.

(ii) For any natural number n =0, 7 is a O-term.

(iii) If t is a (0 — 7)-term and s is a o-term, then (ts) is a 7-term.

@iv) If ¢t is a 7-term, then Ax°.t is a (o = 7)-term.

(v) If for each i EN, t; is a O-term, then the sequence (f)ie~ is a
(0 — 0)-term.

(vi) t is a 7-term only as required by (i)-(v).

Infinite terms are denoted by t, s, r. The type level L(7) of a r-term ¢ is
denoted by L(t). For (ts) we also write t(s) and for t(s:)...(s.) also
t(Siy..., Su) OF Sy ... Su. FOr AX,.AX2....AX,.t We write AX,...X,.t. The
terms n are called numerals.

Ultimately we are interested in closed terms only, but we have to
consider subterms of them. Now, as one can see easily from the
definition, subterms of closed infinite terms have only a finite number of
free variables. So it is sufficient to consider infinite terms with only a finite
number of free variables, and we will do that from now on.

2.2. For any infinite term ¢t one can define its value Valit under an
assignment of the functionals a = a,, ..., a, to the variables £ = x,, ..., x,, if
all the free variables of t occur among t. Val;t is a functional of type , if
t is a 7-term.

286 HELMUT SCHWICHTENBERG

DEFINITION. Val; t is defined by
(1) Val;xl' = a
(i) Valia =n,
(iii) Valg(ts) = (Valgt)(Valgs),
(iv) (Valz(Axt))a = Valzit,
(v) (Valgt:)i)n = Val;t,.

2.3. DEFINITION. |t| (the depth of t) is defined by
M Ix|=1,
G |al=1,
(i) |ts| = max(|t], |s]) + 1,
G(v) |Axt|=|t]+1,
() Kt)i| = sup(t:] + 1)

2.4. For any < -recursive functional F we construct a closed infinite term
t representing F (i.e., F = Val(t)) with depth |t| < aw, o order type of <.
0 is represented by 0 and a say 2-place pr rec function f by
AXYy ((f—(i,—j)),-y).-x. Let F be defined explicitly from functionals Gy, ..., G,
in the form F(xi,..., x.) = A. Assume that terms s, ..., S» representing
G, ...,G, and with |si| < aw are already constructed. Let ¢ be built up
from s, ..., sm by applications in the same way A is built up from
Gi...,Gn. Then F is represented by Ax:;..x..t and we have
|Ax1 ... Xa. t| < aw. Let finally F be introduced by a <-recursion from G:

F(x)= G([Fl<x x).

Assume that a term s representing G with |s|< aw is already con-
structed. Then one can define recursively representations t, of F(n) by

tn = s<tni>iﬁy
with
ti if i <n,

ti =

0 otherwise

and represent F by t :=(t.).. |t|<aw can be seen as follows. Let
|s| < ak. By <-induction on n one shows easily |t.|=< ak +1(0o«(n)+1)
with | < w, 0<(n) order type of {m:m <n}. From this one obtains
immediately |t| < aw (if @ is a limit number, one has [t| < a(k + 1)).

" For terms (s{); with ¢# 0, cf. the introduction and footnote 3.

ELIMINATION OF HIGHER TYPE LEVELS 287

2.5. For a given <-recursive functional F of type level n + 1, the term ¢
representing F constructed above contains in general subterms of a type
level >n + 1; clearly the supremum of all type levels of subterms equals
the maximum type level of an auxiliary functional in the definition of F.
We show now that one can also choose a term representing F, whose
‘inner type level’ depends only on the auxiliary functionals introduced by
recursion.

LEMMA. Let a definition of a <-recursive functional F of type level n + 1
be given. All auxiliary functionals introduced by recursion shall have type
levels =n +m + 1. Then one can construct a closed infinite term tr with
F = Val(tr) and |tr| < aw (a order type of <), such that all subterms of tr
have type levels =n +m + 1.

PRrROOF. The proof is obtained by a simple modification of the construction
in Section 2.4. We use the normal form theorem for finite terms (i.e.,
terms built up without using sequences (t;);): Any finite term A can be
reduced by A-conversions (AxB)C — B.[C] of subterms to a finite term
A* of rank RA* =0 (a proof of this can be obtained e.g. by specializing
Section 2.10). The cases F =0 and F pr rec function are trivial. Let F be
defined explicitly in the form F(x, ..., x.) = A[x1, ..., Xo, G1, ..., G]. We
can assume that Gy, ..., G are introduced by <-recursion, if we allow A
to contain abstractions. If A* is the normal form of A, then
tr 1= AX) oo Xuo A¥[X1, ooty Xn, Gy ..., tG,] has the required properties. Let
finally F be defined by a <-recursion F(x) = A[[F}<., x, G, ..., G,] witha
finite term A and G, ..., G, introduced by <-recursion. Let A* be the
normal form of A. We define terms ¢, representing F(n) by

tn = A*[(tni>i’ ﬁ, th ceey tG,,]’
with
;i ifi<n,
tui =
0 otherwise
and let again tr := (t.).. Clearly tr has the required properties (|t-] < aw is
proved just as in Section 2.4; cf. also Section 3.3).

2.6. As usual one can define substitution f.[s]. By induction on t one
proves easily

Valit,[s] = Val? vi.z;x ‘
|t LsTl=1s] +1t].

288 HELMUT SCHWICHTENBERG

2.7. DEFINITION. t = s (t reduces to s) is defined by

() (Axt)s= t.[s]

(i) = is reflexive and transitive.

@ii) If t 54t and s s’, then ts= t's".

(iv) If t=t’, then Axt = Axt’.

(v) If t;= t} for each i, then (t:): = (t)).

(vi) t={s only as required by (i)-(v).

Obviously, reducing a term does not change its value, i.e., if ¢ 55, then
Val;t = Val;s.

2.8. The rank Rt of a term ¢t is defined as the supremum of the type levels
of all subterms of the form Axs in a context (Axs)r.

2.9. LEMMA. Rt.[s]=<max(Rt, Rs, Ls).
PRrOOF. The proof by induction on ¢t is straightforward.

2.10. LEMMA. IfRt =k + 1, then thereis at’ suchthatt=t', Rt' <k and
ItII <l

PROOF. The proof is by induction on ¢.

Case 1: t =(t;).. Take t’' =(t}); with t} chosen by ind. hyp.

Case 2: t = Axs. Take t'= Axs'.

Case 3: t =rs. Choose r', s' by ind.hyp. If r’ has the form Axr, and
Lr=k+1,take t' = (r)[s']; it follows t = t', Rt' = max(Rr,, Rs', Ls') <
k and

[t =Is'[+]r|
=2ty o

- 2max(ls|v lrh+1
— 2|!I

Otherwise, take t' = r's’; it follows t = t', |t'| = max(2", 2" + 1 = 2" and
with a simple argument Rt’' = k.

2.11. REMARK. This construction of ¢’ from t contains substitutions and
hence some changes of bound variables may be necessary. I do not know
whether one can arrange matters in such a way that the number of bound
variables in t' will be finite if it was finite in ¢. If this is the case, then we
could use in Section 3 a simpler version of the valuation functionals.

ELIMINATION OF HIGHER TYPE LEVELS 289

2.12. Consider now a definition of a <-recursive functional F of type
level n + 1. All auxiliary functionals introduced by recursion shall have
type levels =n +m + 1. By Section 2.5 we can write F in the form
F = Val(tr) with a tr of depth |tr| <|<|w and of rank Rtr =n +m + 1.
From tr, by m-fold application of Section 2.10 we obtain a t ¥ with t = t ¥,
Rtt=n+1and|t¥ <2.(<|w), and we also have F = Val(t#}). Our aim in
the next section will be to find corresponding to the representation Val(t¥)
of F a definition of F, which does not make ‘detours’ through higher type
levels, but uses instead a recursion with a well-ordering of order type
B <2.(<|w), constructed canonically from <.

3. Term numbers and valuation functionals

3.1. We define numbers or notations for certain infinite terms, similar to
the ordinal notations of Church and Kleene. The definition is trivial in the
case of variables, numerals, application or abstraction. In the case of a
sequence we use a pr rec function for enumerating the members of the
sequence; hence for evaluating a term number we need only recursive
functions of a bounded complexity. Our definition of term numbers
contains the following parameters:

(1) arelation < to be used for giving bounds of the depth of the denoted
terms. The evaluation of a term number can then be done by <-recursion.

(2) a set M of types.

We assume that an indexing of the pr rec functions is given, as in
Kleene[8] say. The pr rec function with index e is denoted by [e]. Let <
be a 2-place relation and a, € Field(<) (in a well-ordering <, a, is to be the
element corresponding to the ordinal 1). Let M be a set of types. All types
occurring in the following definition shall be from M.

DEFINITION. # € Num = Num™" (u is term number) is defined by

i (1,77 a,iy=:"x7 '€ Num.

(i) (2,70 a,i)=:"7 '€ Num.

(iii) If u, v € Num, Type(u)="0o — 7 |, Type(v) =" o 'and |u|, |v| <
a, then 3," 7\, a, u, v) € Num.

{iv) If u € Num, Type(u)="7"and |u| < a,then4," ¢ —» 7, a," x7,
u) € Num.

(v) If for each i [e](i) =: u; € Num, Type(u;)="0", ju;|<a, R(u) =k
and FV(u;) C* b, then (5,"0— 0", a, k, b, ¢) € Num.

(vi) u € Num only as required by (i)—(v).

290 HEI.MUT SCHWICHTENBERG

Here Type(u) := (u), |u]| := (u). and R, FV (the notations for rank and
free variables) are defined by

0 if (u)=1,2,
max(R((u)s), R((u)s)) if (u)o=23,(u).0#4,
R(u)={max(R((u):), R((u)a), L((u)s)) if (u)o=3, (u)o=4,
R((u)a) if (u)o=4,
(1)s otherwise.
{ut* if (W)o=1,
0 if (u)=2,
FV(u) =13 FV((u)) v FV((1)s) if (u)o=3,
FV((u)s) =" {(1)s}" if (u)o=4,
(U)as otherwise,

where the set-theoretic symbols augmented by # shall correspond under
a (trivial) coding of finite sets of variables to the set theoretic operations
denoted by the same symbol. " 7 ! denotes as usual a Gédel number of T,
and L (u) reads off from u the level of the type = with (u),="7 .

3.2. Any term number u determines uniquely an infinite term ¢, as
follows.

() If u=(1,"1"a,i)ENum, then t, =x".

Gi) fu=(,"0" a,i)ENum, then t, =T.

Gi)) If u =3, 7 a, v, w) €E Num, then t., = t.t..

(iv) If u={4"0 - 7,a" x7,v)€Num, then t, = Ax7t.

v) fu=(,"0-0" a, k, b, e) € Num, then t, =(t,,); with u; :=
[e](i).

Conversely, a number of an infinite term does not always exist, and if it
exists, it is in general not uniquely determined. We use " t ' as a variable
for numbers of t, and by using” t 'in a given context we presuppose that
a number of t exists.

3.3. For any <-recursive functional F, an infinite term ¢ representing F
was constructed in Section 2.5. Now we define a number " ¢+ ' for t- in a
canonical way.

Let < be the well-ordering of N used in the definition of the <-recursive
functional F. Let a be the order type of <. From < one obtains
canonically a well-ordering <, of order type aw (for instance by
n<em:=>(mn<mmAmTn="mM)V mh < T2M T, T are pr rec

ELIMINATION OF HIGHER TYPE LEVELS 291

inverse functions for a pr rec surjective pairing function 7). We assume
that < and the number theoretic functions corresponding via < to the
ordinal functions A£. &+ 1, Aé.n - € are pr rec. Let M be the set of all
those types occurring in the definition of F that have a level = the
maximum type level | of an auxiliary functional introduced by <-
recursion.

We define " t- ' € Num™ ™ by induction on F, confining ourselves to the
case of an F introduced by <-recursion. The other cases are simpler or
trivial.

So let F be defined in the form F(x)= A[[F]x., x, Gy, ..., G,] with
Gy, ..., G, introduced by <-recursion. Let A* be the normal form of A. tr
was defined from terms

te = A*[(tu)i, i, Loy oos Lo,]

with

t, ifi<n,

ty =

0 otherwise
by tr =(t,). |tr| < aw was obtained as follows: Assume |tg,|, ..., |ts,| = ak
and |[0|+ 1 = k. Then |t,| = ak + (|A*|+ 1)(0<(n) + 1) (one proves this and
Ktui)i| = ak + (|A*| + 1)o«(n) + 1 together by induction on n ; 0<(n) is the
ordinal corresponding in < to the number #n).

Assume that term numbers "t |,...," t, | for G,,..., G, with depth
bounds [tg, | <o ak 'are already constructed. By means of the recur-
sion theorem for the class 8 of pr rec functions (Kleene[8, p. 75]) we
define a pr rec function with index e such that [e](n) =: u, is a term
number for t, with a depth bound |u.|<o" ak + (JA*|+ 1)(o<(n)+1)"
(because of the assumptions on <, ...n... 'is a pr rec function of n;
T ...n.. "means of course the number corresponding in <, to the ordinal
... n...). Assume that such an e is already constructed. Then one obtains a
number u/, for (t.;): in the form (5,70 = 0", a, 1, 0%, ¢') with e’ = e'(e, n)
such that

f]e](i) if i <n,
fe')(i)=

70" otherwise,
and a = a(n)="ak +(|A*|+ 1)o-(n)+ 1. e'(e,n) and a(n) are pr rec.
Corresponding to the way t, is built up from (t.), ts,, ..., tc, one can
construct from u}," ts, \,...," tg, | orimitive recursively a number for t.,

292 HELMUT SCHWICHTENBERG

with a depth bound <," ak + (JA*|+ I)(0o<(n) + 1)"". An application of the
recursion theorem for & now gives the required e. From e one obtains
immediately a number "t ' for tr.

3.4. We want to define now valuation functionals Val, = Val=", r € M.
Let u be a term number € Num™" with Type(u) =" 7 'and FV(u) = ¢*.
We would like to have Val, (u) giving the value of the closed term denoted
by u. However, for the recursive definition of the Val, it is necessary to
allow free variables in t,. Therefore, we introduce an additional argument
which is supposed to code an assignment ¢ — a for these variables. So we
want to have (type indices are omitted)

Valx, "t - a '=a,

Val T 7y > a'=i,

Vall'ts "t —»a'=(Vall t "z > ahVall's "t —al),
Val axt "r—>ala=vallt ", x > a,a |,

Val™ () "t — a 'n=Val(e]n)) £t — a |,

where e is the pr rec index of the sequence of the "t ' read off from
r<ti>i-|.

For the definition of Val., + € M, by simultaneous <-recursion, we
assume that M is a finite set of types and < is a well-ordering of N.

Before we can give a precise definition of the Val,, we have to introduce
codes of assignments. Let n +1:= max.emL7. Since we are interested
ultimately in closed terms only and have to consider free variables only
for their inductive construction, it is sufficient to restrict ourselves to
terms with free variables of type level =n. So let an assignment of
functionals a,, ..., a, to variables x,,...,x» be given, both of types
Ti, ..., Tm, Fespectively, with levels Lt < n. First, transform all the a; to a
common standard type n of level n; for this, we use transformation
functionals® Tr? with inverses Trj, such that Tri(Trla:) = a.. With these
Trla, build a tupel ¢" = (..., Tria;, ..., 0", ...) of length max(" x, ',...," x.,)
that has on the " x; "™ place just Tria; (for i =1, ..., m) and on all other
places 0". This tupel ¢" =:"t — a 'is the code of the given assignment.
From c, one can read off the functional a; assigned to x; by a; = Tri(¢c).
To an extension (or change) of the given assignment by a requirement that
the functional a should be assigned to the variable x there corresponds a

Such transformation functionals can easily be defined explicitly; cf. Gandy[2].

ELIMINATION OF HIGHER TYPE LEVELS 293
change of the code ¢ to Ext(c,” x ', Tr"a) with a functional Ext = Ext,
that can easily be defined from pr rec functions.

DEFINITION. Val, = Val®'™ 7 &€ M is defined by:
() if (u)o=1:Val,u’c” = Tri(¢).,
(i) if (u)o=2, 7 =0: Val.uc = (u),,
(ii) if (u)o=3, Type((u))="o — 7 ' with ¢ = 7, c E M:

Val.uc = (Val, . (u);c)(Val,(u)ic),
(iv) if (u)o=4, 7 of the form p — o with p,oc € M:
Val.uc = Aa”. Val, (u)(Ext(c, (u)s, Trya)),
W) if (u)=35, 1=0—0):
Val. uc = Aa°. Valo([(u)s)(a))c,

(vi) otherwise: Val, uc =0".

Here all the occurrences of Val in the right hand side of the defining
equations are to be replaced by [Val]j <., i.e., by a functional with the
value Val(v) at the argument v if |v| <|u|, and 0 otherwise.

That this definition is reducible to a <-recursion can be seen as follows.
First it can be reduced to a simultaneous <-recursion

(*) Fov = Gi[F|]-<L~ v [Fk]<vl), i= 1, veey k,

by setting Val.uc = Val.|u|uc and defining the Val,vuc in the obvious
way by simultaneous <-recursion, for instance in case (iii) by

Val, vuc = ([Vali, 1<, |(u)3 (1)sc)([Vali) <. |(1)a] (1)ac).
Then (*) can be reduced as usual to an ordinary <-recursion by’
F(D) = (TI‘:,H(ED)).'»_-LA.A.k-

Hence, valuation functionals Val, = Val;*", + € M, with the properties
(i)-(vi) listed above can be defined by explicit definitions and a <-
recursion, where all the auxiliary functionals are defined explicitly from
pr rec functions.

* Even without assuming extensionality a reduction of simultaneous recursion to ordinary
recursion is possible, as was shown by Diller and Schiitte[1]. However, they use auxiliary
functionals of higher type levels and defined by recursion.

294 HELMUT SCHWICHTENBERG

3.5. From the definitions of the Val, it is clear that Val t" "t — a '
always represents the same set theoretic functional as t” under the
assignment £ — a, namely Valgt"

3.6. Let < be a well-ordering of N with least element 0. From < one
obtains a well-ordering <’ with order type |<'| =2"! as follows (after
Tait[21]): Consider a (easy to define) bijective correspondence

a = <ao, ceey a,.,l_.)
between numbers and finite sequences of numbers with
o> a)> *** > QAjaj-1-

Assume that |a| =0 iff a =0. Let 2+ ---+ 2™ be an ordinal <2 with
a>ao>+>a, and a,,...,a, be the numbers corresponding in < to
ay, ..., a,. Then we let {ao, ..., a,) be the number corresponding in <’ to the
ordinal 2%+ --- + 2%, Hence we have

a <'be ki p(Vii<ka: = bi A ax < by)

\ (|a| < |bl A Vi;<|a|ai = b,)
If < is pr rec, then clearly so is <'.

3.7. Now we show that to the operations on terms given in Section 2-e.g.
substitution t.[s] or reduction t=t' of the rank of t by 1-there
correspond pr rec functions between term numbers. So in particular, for
the term t% constructed in Section 2.12 from tr by a sequence of
reductions there exists a term number " t¥ .

Let < be a pr rec well-ordering of N with least element 0 and <’ be the
well-ordering of order type |<'| =2'"! constructed in Section 3.6. The
functions corresponding in < to the ordinal functions max, + are denoted
by omax, @; we assume that they are pr rec. Let M be a set of types.

First we construct a pr rec function Red = Red™ such that for any
Tt 7e Num™™ with R"t '<k + 1 the following holds.

(1) Red("t 7, k) =:Redc(t hENum~"" is a number of the reduced
term t' constructed in Section 2.10 from t and k,

(2) o-|Red,"t =21,

(3) R(Red," t h =k,

(4) FV(Red t Y C*FV 1.

For this we assume that a pr rec function Sub=Sub™ is already

ELIMINATION OF HIGHER TYPE L.EVELS 295

constructed, such that for any "t . " x , " s '€ Num™" we have

(M Sub(t " x 7, Ts HheENum™™ is a number of the term t.[s],

@) ISub(¢, "x LT < Ts @ ¢,

3) RSub(t ,"x " s Y)y=max(R"t ,R s ,L s,

@ FVSub(t ,x s FV e =*x V) v*FV s\

By the recursion theorem for ¢ there exists a pr rec function Red, with
index e, such that for all u the following holds'. If (u).=5:

Red, (1) = (5. Type(u),” 2"k, FV(u), e’),

where e’ = e’(e, u) is a pr rec index of Red« ([(u)s](n)) as a function of n;
e’ as a function of e and u is pr rec. If (u),=4: Redi(u)=(4, Type(u),
[0|@ 17, (u)s, v) with v =Redi((u)s). If (1)o=3: Let Redi((u):)=0v
and Red.((u).) = w. If the type level L(v)=k +1 and (v), =4, define
Redi(u) =Sub™((v)s, (v)s, w). If L(v)#k+1 or (v)e#4, define
Red, (1) = (3, Type(u), omax(|v|,|w)) @ 1, v, w). Otherwise: Red,(u)
= u. Comparing this definition with Section 2.10 one can see easily that
Red, has the required properties.

Next we construct a function Sub = Sub™ with the properties listed
above. For this we assume this time that a pr rec function C (C refers to
change of bound variables) is already constructed such that for any "t ",
Tx e Num™™ we have (1) C("t 7,7 x Y€ Num™™ is a number of a term
t, obtained from t by a change of bound variables such that ¢, does not
contain a bound occurrence of x, (2) |CCt ,"x D=t and (3)
FVC(t " x)y=Fv ¢

We define Sub(u, v, w) in the form Sub,(C*(u, FV(w)), v, w), where C*
is a simple variant of C working with a finite set of variables instead of a
single variable (hence C*Gu,{ x, ... x, })=C(..C(u," x. ', ...,
Tx. D). A pr rec function Sub, with index e is constructed again by the
recursion theorem for %3, as a solution of the following equations. If
(1)o=5:

Subi(u, v, w) = (5, Type(u), |w| @ lu|, max(R (u), R(w). L{w)),
(FV(u)="{v}*) " FV(w), e"),

where e’ =e'(e, u, v, w) is a pr rec index of Sub([(#)s](n), v, w) as a
function of n. If (1) = 4: Subi(u, v, w)=(4, Type(u), |u D" 1, (u)s, us)
with us=Sub,((#)s, v, w). If (u)e=3: Subi(u, v, w)=3,Type(u),

' Cf. the definition of +; in Kleene[8, p. 75].

296 HELMUT SCHWICHTENBERG

omax(|us|, [uN@ 1Y, wus, us) with w; = Sub,((u), v, w) for i =3,4. If
(u)o=1, v =u: Sub,(u, v, w)=w. Otherwise: Sub,(u, v, w) = u.— Again
one can see easily that Sub, has the required properties.

For the construction of C we make use of a pr rec function Repl (for
replacement) with the following properties: Forany "t " x° ,Ty" e
Num™",

(D Replt 7,7 x 7,7y € Num™™is a number of a term obtained from
t by replacing all (free and bound) occurrences of x by vy,

(2) |Repl('-t_‘, '_X—I, I—y_I)l —= Ir_tﬁl,

() FVRepl(¢ L7 x LTy Y =FV 1 =" x YHu{y "

The definition of C from Repl and the definition of Repl can be carried out
as before by the recursion theorem for R; we omit the details.

3.8. Let < be a pr rec well-ordering of N with least element 0, such that to
the ordinal functions +, - there correspond pr rec functions. For simplic-
ity (i.e., for to be able to reduce primitive recursion to <-recursion) we
again assume (1), (2) of Section 1.6.

THEOREM 1. Let a functional F of type level n + 1 be defined by explicit
definitions and <-recursions. Assume that the type level of any auxiliary
functional introduced by recursion is =n +m + 1(m =1). Then one can
find a new definition of F, containing auxiliary functionals of type level
=n + 1 only, but using instead of the <-recursion a <*-recursion with a
well-ordering <* constructed canonically from < and of an order type
|<*| <2.(<|w) (where 2u(&) :=§ 2ini(£) =227,

ProoF. By M, we denote the set of all types used in the definition of F
and with levels <k. In Section 3.3 we have defined a number " tr '€
Num™*+»-1 of an infinite term tr representing F. <, was a well-ordering
constructed canonically from < and of order type |<,| = |<|w. For fixed F,
one clearly can use instead of <, a well-ordering <, constructed canoni-
cally from < and of order type |<,|=|<|! (with suitable !). Hence
Tte '€ Num™Mmo1, Furthermore, we had Rtz '=sn+m+1 and
FV' t- '=@*. By applying m times the reduction function constructed in
Section 3.7, we now obtain a number

Redll+l(Redll+2 X (Redn+m,_tF_1) --)) = Red*,_tF_I
= l—t a’f_—l

»

e Num™ My

ELIMINATION OF HIGHER TYPE LEVELS 297

of the t¥ constructed in Section 2.12. Here <* is the well-ordering
obtained from <, by applying m times the '-operation of Section 3.6 and
hence of an order type |<* <2,(|<|w). From the properties of the
reduction function we conclude R" t¥ '=n +1and FV" t¥ '=@*. So we
have " t¥ '€ Num™" " too. As a new definition of F we choose

F™ = Val[Mg

this is possible since (cf. Section 3.5) Val=" ™" ¢t¥7 denotes the same

set theoretic functional as t¥, namely F. The required properties of this
new definition follow immediately from the definition of the valuation
functionals in Section 3.4.

REMARK. It is possible to have all the auxiliary functionals in the new
definition of F (i.e., not only those introduced by recursion) of type level
=n + 1, if one modifies a little the notion of < -recursion, namely to
F(x)= A[[Fl<w x] with a finite term A. The proof is obtained im-
mediately from the normal form theorem for finite terms. A modification
of the recursion schema is needed, since in F(x) = G([F]l«, x) G has
necessarily a higher type level than F.

4. Formalization in extensions of Godel’s T

We want to extend Theorem 1 to more general type structures instead
of the set theoretic functionals. So we consider arbitrary models of the
theory T of pr rec functionals of Godel[5] in the extensional version of
Spector[18], extended by adding <-recursion and <-induction. We show
that Theorem 1 is true in this general context too, and that the proof can
be carried out quantifier-free, more precisely within the considered
extension of T.

4.1. So let T be as above and for a well-ordering < of N let T« be the
extension of T by <-recursion F(x)= G([F]« x) and <-induction

Fi(x)=G(Flwx) i=12
Fi(x) = Fy(x). '

Here [F]<x stands for Ay,<.Fy, i.e., for AyD(Fy,0,c(y, x)) with
D(x",y",z%:=x if z=0, and := y otherwise. From the chosen form of

298 HELMUT SCHWICHTENBERG

<-induction one obtains easily other forms, e.g. the following

P@©,y)
-’5\, P([gixyl<s, hxy) = P(x, y)

P(x,y)

Here [gixyl<. stands for D(gixy,0, c<(gixy, x)), and it is assumed that
0<x for all x#0.

On < we again make the assumptions (1), (2) of Section 1.6. The
reduction of primitive recursion to <-recursion given there can be carried
out in T« too. Hence we do not need an extra schema of primitive
recursion in T-.

By T% we denote the subtheory of T- obtained by restricting all
constants introduced by recursion to those of type level =n + 1. Let
TZ+PL[HAZ] be the extension of TX by many sorted intuitionistic
predicate logic without [with] the (ordinary) induction rule for the
extended language. T + PL is a conservative extension of TZ, as one can
prove easily by means of the Godel interpretation (see e.g. Spector[18]).
Note that in this proof auxiliary functionals of type level >n + 1 may
occur, but all of them are explicitly defined (this is not the case for HAZ).

4.2. Under the same assumptions on < as in Section 3.8 we have

THEOREM 2. For any constant F in T (m = 1) of type level n +1 one
can find a constant F' in Ti. with a well-ordering <* of order type
|[<*| <2.(<|w) constructed canonically from <, such that Fx, ... x. =
F'X\ ... xc is provable in T2,

PROOF. Let <,, <* the M, and a " tr '€ Num™ ™= with R" t; '=
n+m+1, FV't: '=0” be chosen as in Section 3.8. We will show in
Section 4.3,

TL"F F = Val™ T

and in Section 4.4 the following Reduction Lemma: Let M be a finite set
of types with levels =i + 1, and 7 € M. Then one can derive in T. + PL

u € Num™™ A R(u)<k +1 Type(u) =" 7"
— Red(u) € Num~""
A |Red(u)] <" 20<0"

ELIMINATION OF HIGHER TYPE LEVELS 299

(Red) A R(Redi(u)) <k
A FV(Redw(u)) C*FV(u)
A Type(Redy(u))="7"
A Vali™u = ValZ ™Red, u).
Furthermore we show in Section 4.4, that under the same assumptions on
M one can derive in T< + PL,
ueNum™~™aARu)=k AV v E*FV(u): Type(v) € My
A Type(w)="7"— Val:™u = Val> ™y

(%)

with an arbitrary set M, C M of types of level < k.—From this, Theorem 2

n+m

follows, since one has in Txx

F=Val*Me-T g
=Val="™-(Red,. (Red, .2 ... Red,am' tr 1) ...))0

and hence a representation of F by a constant of TZ«.

4.3. PROOF OF TZ™+ F =Val*™-»2T1.70. We make use of some
simple properties of the valuation functionals which we list first. A
denotes a finite term (i.e., built up from variables and numerals by
application and abstraction), and Val; u stands for
Val(u, Ext(... Ext(0," x, , Tr!," a)) ...," x, , Tt a,))

(the parameters <;,, M, ..., of Val are omitted).

(1) Valieem A = Valpam AT,

() ValiiiT A = ValgiT AT

(3) Val™m A 7=vall" A if x is not free in A,

(@) Vali” A [t] = Valg" T AT

(5) Vali" A= A,[a] if £ contains all the free variables in A.

(1)—(5) are obtained easily by induction on A.

For the proof of F =Val™ tr 'in T2 we restrict ourselves to the case

of an F introduced by <=tecursion, the other cases being easier or trivial.
Then F fulfills a recursion equation (cf. Section 3.3)

F(x)=A*[[Fl<s x, G\, ..., G,]
It suffices to show that Val™ tr ! fulfills the same recursion equation

Val tr x = A*[[Val tr -, x, Gy, ..., G,],

300 HELMUT SCHWICHTENBERG

for then by <-induction we can conclude F = Val" t- . One obtains first
Val” tr 'x = Val([e](x)) with an e (as in Section 3.3) such that [e](x) is a
term number of A*[{tu), %, tc,, ..., tc,] built up from term numbers
“t, ..., tg, for Gy, ...,G, and e’ = e'(e, x) (cf. Section 3.3) for (t.).
Hence by (4) and (5),

Val tr 'x = A*[Val(e'(e, x)), x, Val' tg, ', ..., Val" tg, '].

By hyp. of the induction on F we already have Val" t;, '= G. Hence it
suffices to show

Val(e'(e, x))y = [Val tr].y.
This is proved immediately by distinguishing the cases y < x and y ¥ x.

4.4. First we need a representation of Num™" in IT{-form, which can be
obtained as follows. Infinite terms may be considered as well-founded
trees, where at each node there is either no branching at all (i.e., it is a
bottommost node) and a variable or a numeral is affixed, or there is a
2-fold branching (this corresponds to application), or a 1-fold branching
with a variable affixed (this corresponds to A-abstraction with this
variable), or an w-fold branching (this corresponds to the formation of
sequences). Then any term number " ¢t ' can be thought of as obtained
inductively by affixing to each node of the tree corresponding to t a term
number of the corresponding subterm. Hence the property u € Num™" is
equivalent to u having such a well-founded genealogic tree. But the latter
fact can be written easily in I1)-form: One has to express that at any node
(= sequence number) n the tree is locally correct, i.e., that the term
number u, affixed there (u, can be defined easily by induction on n) and
all its predecessors u.«y, i =0,1,2, ..., fulfill a relation as given in the
definition of term numbers. The well-foundedness is then obtained
automatically, since in particular |u .| <|u.| is required and < is a
well-ordering.- The representation of u € Num™" gotten this way has the
form Vx P(x, u) with a predicate P pr rec in the enumeration function
Aab.[al(b) of .

Now we obtain that the formula (Red) occurring in the Reduction
Lemma and the formula (+) can be derived in HA%, under the assumptions
formulated in Section 4.2. In both cases the derivation is obtained easily
by <-induction on |u|, if (in the case (Red)) one assumes (cf. Section 3.7)

u, v, w € Num™™ A Var(v) A FV(u) n*FV(w) = ¢*

ELIMINATION OF HIGHER TYPE LEVELS 301
A Type(u)="7""A Type(v) = Type(w)="0o '
— Sub,(u, v, w) € Num™~™
A |Subi(u, v, w)| <|w|® |u]
(Sub) A R(Sub,(u, v, w)) = max(Ru, Rw, Lw)
A FV(Sub,(u, v, w) C* (FV(u) =*{v}*) u* FV(w)
A Type(Sub,(u, v, w)) =" 7!

A ValT™(Sub, uvw) = Val7 M(u, Ext(c, v, Val; ™ wc)).

This too is proved easily by <-induction on |u|, if a corresponding
formula (C) for the function C is available (cf. Section 3.7), and (C) in turn
is obtained by <-induction on |u| from a corresponding formula (Repl) for
the function Repl (cf. Section 3.7), which finally can be proved directly by
<-induction on |u].

From these particular derivations of (Red) and () in HAL we now
construct by means of Herbrand’s Theorem the required derivations in
TL +PL (cf. Kreisel[9] and Shepherdson[17]). For this, note first that all
the quantified formulas derived by <-induction, namely (*), (Red), (Sub),
(C) and (Repl), have the form

VxP(x,u)— Q(u,n)

with quantifier-free P, Q. In every case, this is derived by means of
intuitionistic predicate logic from

VY Vo <u[Vx P(x,) = Q(v,)],

from closures of quantifier-free formulas and from already derived
formulas of the form (Sub), (C), (Repl). We want to construct each time a
function f, such that P(f(u,9), u) — Q(u,v) is derivable in T.. For this
we can start from a derivation in intuitionistic predicate logic of the
formula

V3 R(3) A Vy, v 3Ax [|v]| <|u| A P(x,v) = Q(v,1)]
A Vx P(x,u) — Q(u,n)

in the language of TX + PL, with quantifier-free R. For simplicity, we omit
the parameters 1) and assume 3 =z By Herbrand’s Theorem there are

302 HELMUT SCHWICHTENBERG

terms
i = S8i(Uy, X1y .0y Xicy) for i=1,...,n,
L= (U, xi, ..., Xxn) for j=1,...,m,
re = n(U, X1, ..., Xn) fork=1,..,1,

of type 0, such that

M R(r) n M(s| <[ula P(xi,) — Q(s)]
A M PG, u) = Qu)

is derivable in propositional logic. Hence in T. we can derive
(M M (]si| <|u| A P(xi 5:) = Q(s)] = W [P(t;, u) = Q).
J

Now we define a function f by the following <-recursion on |u|
fu) = min{t;(u, x1, ..., xa): P(t;(u, X1, ..., Xa), u) = Q(u)}
with

Y = {f(s.‘(u, Xi, ...,X.‘-])) if |Si(u, Xy aeny X,'__|)| < |u|,

0 otherwise.

Then from (1) one obtains in T.
M ([si] <|ul A P(f(s:), s:) = Q(s)] = [P(f(u), u) = Q(u)],

i.e., the premiss of a <-induction on |u|, which can be brought easily in the
form mentioned in Section 4.1. Hence P(f(u), u) — Q(u) is derivable in
TL.

References

[1] J. Diller and K. Schiitte, Simultane Rekursionen in der Theorie der Funktionale endlicher
Typen, Archiv fiir mathematischen Logik 14 (1971) 69-74.

[2] R. O. Gandy, Computable functionals of finite type I, in: J. N. Crossley, ed., Sets,
Models and Recursion Theory (North-Holland, Amsterdam, 1967) pp. 202-242.

[3] G. Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie, Mathematische Anna-
len 112 (1936) 493-565.

[4) G. Gentzen, Neue Fassung des Widerspruchsfreiheitsbeweises fiir die reine Zahlen-
theorie, in: Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften,
Neue Folge 4 (Hirzel, Leipzig, 1938) pp. 19-44.

ELIMINATION OF HIGHER TYPE LEVELS 303

[5] K. Gédel, Uber eine bisher noch nicht beniitzte Erweiterung des finiten Standpunkts,
Dialectica 12 (1958) 280-287.

[6] O. Hilbert and P. Bernays, Grundlagen der Mathematik, Vols. I and II (Springer, Berlin,
1934 and 1939).

[71 W. A. Howard, Assignment of ordinals to terms for primitive recursive functionals of
finite type, in: J. Myhill, A. Kino, R. E. Vesley, eds., Intuitionism and Proof Theory
(North-Holland, Amsterdam, 1970) pp. 443-458.

[8] S. C. Kleene, Extension of an effectively generated class of functions by enumeration,
Collogquium Mathematicum 7 (1958) 67-78.

[9] G. Kreisel, Mathematical significance of consistency proofs, Journal of Symbolic Logic
23 (1958) 155-182.

[10] G. Kreisel, Proof by transfinite induction and definition by transfinite induction in
quantifier-free systems (abstract), Journal of Symbolic Logic 24 (1959) 322.

[11] G. Kreisel, Inessential extensions of Heyting’s arithmetic by means of functionals of
finite type (abstract), Journal of Symbolic Logic 24 (1959) 284.

[12] G. Kreisel, Interpretation of analysis by means of constructive functionals of finite
types. in: A. Heyting, ed., Constructivity in Mathematics, Proc. Colloquium Amster-
dam, 1957 (Amsterdam, 1959) pp. 101-128.

[13] G. Kreisel, Mathematical logic, in: T. L. Saaty, ed., Lectures on Modern Mathematics,
Vol. IIT (Wiley, New York, 1965) pp. 95-195.

[14] J. Myhill, A stumblingblock in constructive mathematics (abstract), Journal of Sym-
bolic Logic 18 (1953) 190.

[15] C. Parsons, Proof theoretic analysis of restricted induction schemata (abstract), Journal
of Symbolic Logic 36 (1971) 361.

[16] Routledge, Ordinal recursion, Proceedings of the Cambridge Philosoph. Society 49
(1953) 175-182.

[17] J. C. Shepherdson. Non-standard models for fragments of number theory, in: J. W.
Addison, L. Henkin, A. Tarski, eds., The Theory of Models (North-Holland, Amsterdam,
1965) pp. 342-358.

[18] C. Spector, Provably recursive functionals of analysis: a consistency proof of analysis
by an extension of principles formulated in current intuitionistic mathematics, in: J.
Dekker, ed., Recursive Function Theory, Proceedings of the 5th Symposium in Pure
Mathematics, New York, 1961 (Am. Math., Soc. Providence, R. 1., 1962) pp. 1-27.

[19] W. W. Tait, Infinitely long terms of transfinite type, in: J. N. Crossley and M. A. E.
Dummet, eds., Formal Systems and Recursive Functions (North-Holland, Amsterdam,
1965) pp. 176-185.

[20] W. W. Tait, Functionals defined by transfinite recursion, Journal of Symbolic Logic 31
(1965) 155-174.

[21] W. W. Tait, Constructive reasoning, in: B. van Rootselaar and J. F. Staal, eds., Logic,
Methodology and the Philosophy of Science 111 (North-Holland, Amsterdam, 1967) pp.
185-199.

