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1. Introduction

1.1. Proof theory began with Hilbert’s Program, which called for elemen-
tary consistency proofs for formalized mathematical theories S. Equiva-
lently (under quite general conditions discussed in Chapter D.1) this
program can be formulated as follows. Given a formalization in S of an
abstract proof of an elementary assertion ¢ (example: proof of n + m =
m + n, n, m variables for natural numbers, in an axiomatic set theory), can
one always conclude from this by elementary means that ¢ is true? Or
more precisely, can one give an elementary proof of the schema

(*) 3x Ders(x,'o')— ¢,

where Ders( -, +) is a canonical representation of the derivation predicate
for S and ¢ ranges over formulas corresponding to elementary assertions?
By the well-known second incompleteness theorem of Godel, discussed in
Chapter D.1, (%) is underivable in S, provided S is sufficiently strong. Now
since one would expect that a strong theory S contains at least formaliza-
tions of all “‘elementary” proofs, one may fairly say that this refutes
Hilbert’s Program in its original form. However, one can also try to extend
the (originally quite vague) conception of an elementary proof and then
look for such a proof of (*) not formalizable in S; in fact, this was Hilbert’s
reaction to Godel’s result (cf. the introduction to HiLBERT and BERNAYS
[1934]). We shall not deal here with contributions to Hilbert’s Program
along these lines (for this, cf. e.g. SCHUTTE [1960]), but rather concentrate
on some less delicate questions which are derived from and closely related
to Hilbert’s Program.

1.1.1. A theory S is called conservative over a theory T if any formula of
L(T) (the language of T) derivable in S is already derivable in T. Note that
this would be a corollary of the derivability of (*) in T (under quite general
conditions). There are numerous important and nontrivial examples of
theories S conservative over a subtheory T. Some of these are discussed in
Chapters D.4 and D.5. We shall give here a very simple example and show
that first-order logic is conservative over its part which uses formulas of a
restricted complexity only (cf. Section 2.8).

1.1.2. The schema (*) (now taken with arbitrary ¢) provides, generally, a
proper extension of S. However, (*) has a metamathematical character and
its mathematical strength is difficult to judge. So one might ask for an
equivalent formulation of (*) having a clear mathematical meaning. This
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question has been answered for a wide variety of theories S. We shall
confine ourselves here to a basic example, namely (classical) arithmetic Z,
and prove that in this case (a version of) (*) is equivalent to the schema of
transfinite induction up to €.

1.2. Our second starting point is a question which only more recently came
to the attention of proof theorists (cf. KREiseL [1958]): *“ What more do we
know if we have proved a theorem by restricted means than if we merely
know that it is true?”’ Again we shall confine ourselves to the discussion of a
basic example, where the “‘restricted means’” are those formalized in
arithmetic Z. We shall obtain a complete answer to the above question, due
to Kreiser [1952]. For some subsystems of analysis one can also get
satisfactory answers to questions of the type above; for this we refer the
reader to Chapter D 4.

1.3. From a more technical point of view, we survey some elementary
applications of a basic technique in proof theory: the method of cut-
elimination. This method is due to Gentzen and was later developed
particularly by Schiitte and Tait (cf. ScHUTTE [1960] and TarT [1968]). Other
techniques frequently used in proof theory are adequately covered in other
chapters in this volume. Especially important is the method of functional
interpretation due to GOpEeL [1958], which is treated in Chapter D.5.

1.4. We now give a more detailed account of the content of the present
chapter.

In Section 2 we prove the Cut-Elimination Theorem for first-order logic;
as a corollary we obtain the conservative extension result mentioned
above. The proof of this basic Cut-Elimination Theorem is set up in such a
way that it can be easily generalized to many other cases where a
cut-elimination argument is applied, in particular to those treated here.

In Section 3 we discuss for arithmetic Z the provability and unprovability
of initial cases of transfinite induction. The result (due to GENTZEN [1943])
is well known: Given a natural well-ordering < of order type &,, then with
respect to < transfinite induction is provable up to any ordinal < g,, but
not up to g, itself.

The underivability in Z of transfinite induction up to &, will also follow
from Godel’s second incompleteness theorem together with the fact that
transfinite induction up to ¢, suffices to prove the reflection princiffle for Z
and hence the consistency of Z (cf. Section 5). Here we give a direct proof
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of this underivability result, using a cut-elimination argument. Technically,
this provides an easy and convincing example of the usefulness of infinite
derivations and the strength of the cut-elimination method when applied to
infinite derivations.

In Section 4 we take up the question of Section 1.2. We first consider the
special case of V3-formulas. Suppose Vn3Ime(n,m) with ¢(n,m)
quantifier-free is derivable in Z. We shall show that then we can find a
function F satisfying Vne (n, F(n)) which has a somewhat limited rate of
growth: F can be defined by primitive recursive operations and «a-
recursions for a < g,.

We then turn to the general case of arbitrary Z-formulas. At first sight a
generalization of the result for V3-formulas seems to be impossible, since
Vn3Im Vk (T(n,n k)— T(n,n,m)) is derivable (in classical logic and
hence) in Z, but there is no recursive function F satisfying
VnVk (T(n, n k)— T(n,n F(n))) (this would contradict the recursive
undecidability of 3k T(n,n,k); T is Kleene’s T-predicate). However,
there is such a generalization, the so-called No-Counterexample-
Interpretation due to KreiseL [1952]. To explain it let us first consider a
formula of the above form, i.e. ¢:=Vn 3Im Vko(n,m, k) with ¢(n,m, k)
quantifier-free. Its negation is equivalent to 3n Vm 3k — ¢ (n, m, k) and
hence (using the axiom of choice) also to An, f¥Ym — ¢ (n, m, f(m)); such
n, f can be considered as providing a counterexample to the given formula
¢. So a way to express the content of ¢ is to say that there is no such
counterexample, i.e. that for any n,f we have Imo(n, m, f(m)) (this
formula is the Herbrand normal form of ¢), i.e. that there is a functional F
such that Vn, fo(n, F(n, f), f(F(n, f))) holds. Now the additional informa-
tion we obtain from the fact that ¢ is derivable in Z is that such a functional
F can be found which again has a somewhat limited complexity: F can be
defined by primitive recursive operations (in the sense of KLEENE [1959])
and a-recursions for some a < g, or — as we shall say — F is < g,
recursive.

Generally, let ¢ be an arbitrary Z-formula and let Yu=Imy"(n, m, f) be
its Herbrand normal form which is derivable in Z iff ¢ is. (We use f for
finite sequences of function variables and n,m for finite sequences of
number variables.) The result then is that from the derivability of ¢ in Z we
can conclude that there are < ég,-recursive functionals F satisfying
Vn, fy(n, F(n, f), f). We also prove that this result is the best possible in
the sense that no smaller class of functionals suffices.

The proof involves a new point: it makes use of the fact that the
cut-elimination procedure for infinite derivations is an effective operation.
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More precisely, we show that for a natural coding of infinite derivations the
cut-elimination procedure is given by a primitive recursive function.

In Section 5 we come back to the question asked in Section 1.1.2 and
prove the result stated there (which is due to KRreiseL and LEvy [1968]).
The proof is a formalization of the argument in Section 4, i.e. cut-
elimination for codes of infinite derivations.

Acknowledgements: Parts of the present chapter are based on other
sources, in particular Tarr [1968] (for the proof of the Cut-Elimination
Theorem in Section 2) and ScHUTTE [1960] (for the proof in Section 3 of the
underivability of transfinite induction up to &, in Z). Also I want to thank S.
Feferman, G. Kreisel, R. Statman and A.S. Troelstra for many helpful
comments and suggestions; in particular, the idea to prove the No-
Counterexample-Interpretation by means of a cut-elimination argument is
due to Kreisel.

2. Cut-elimination for first-order logic

We prove this basic Cut-Elimination Theorem by a method due to
Gentzen which is central for our later work: nearly all the results
mentioned in the introduction will be obtained by generalizations of this
method. Technically we shall follow TarT [1968] quite closely, but with one
exeption: we shall avoid infinite formulas throughout (and later use infinite
derivations only where they seem to be essential).

2.1. We use the ordinary language of first-order logic, for simplicity in the
following version: formulas are built up from atomic and negated atomic
formulas by means of A, v, Vx, 3x. The negation —¢ of a formula ¢ is
defined to be the formula obtained from ¢ by
(i) putting a — in front of any atomic formula,
(ii) replacing A, v, Vx, 3x by v, A, 3x, Vx, respectively, and
(iii) dropping double negations.
This treatment of negation is possible since we assume classical logic
throughout. Note that 1 —1¢ is identical with ¢, 71 ¢ = ¢. As usual, we
define ¢ > Y tobe m1p v ¢ and ¢ <> ¢ to be (¢ > Y) A (Y > ¢). Let ||
(the length of ¢) be defined as follows.
() |l¢|=]¢|=0, for ¢ atomic.
(i) le aw|=le vil=sup(le|,|v])+1.
(i) [Vxo(x)|=[Fxe(x)| =@ (x)[+ 1.
Note that |J¢|=|¢]|.
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2.2. Logical rules

We shall derive finite sets of formulas, denoted by I', A, A, I"(a),... . The
intended meaning of I is the disjunction of all formulas in I. We use the
notation

Ie for I'U{e}
r,A forI'UA.
(i) Normal rules:

A I'p,— ¢ if ¢ is atomic.

Le Ly
Foany
V F’E V r"p
0 r,(PVQI/’ 1 r,(pV!/I.
v L) i ot free in T
LVxe(x) ) ) )
(x is called eigenvariable of V).
I e(s)
axe(x)’

(ii) Cut-rule:

The principal formulas (p.f.) in A are ¢ and = ¢. In A, v, V and 3 the p.f.
is oA, @ vih, Vx(x) and 3x¢(x), respectively. Cut has no p.f. The
minor formula (m.f.) in the premiss I', ¢ of A is ¢, and in the premiss I,
of A itis . In the premiss of v, v,, V and 3 the m.f. is ¢, ¢, ¢(x) and ¢ (s),
respectively. The m.f. in the premiss I', ¢ of Cutis ¢, and in the premiss I',
—1¢ of Cut it is 71 ¢. So any inference has the form

I, foralli<k
(*) ra

(0=k =2), where A consists of the p.f. and ¢; is the m.f. in the i-th
premiss. The formulas in I' are called side formulas (s.f.) of (*).
Derivations are built up in tree form, as usual. More precisely, they are
defined by the following induction. Consider an inference (*) as above and
assume that derivations d; of its premisses I, ¢; are given. Then d =
((d)i<ks (@i )i<is 4, T) is a derivation of the conclusion I 4 of (*). The
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inference considered is called the last inference of d. The d; are called direct
subderivations of d. We write d + I' if d is a derivation of I, and + I' if there
is a derivation of I

The length |d| of a derivation d is inductively defined to be
supi<« (| di| + 1) if the d,, i <k, are the direct subderivations of d. Hence
|d| =0 if d has no direct subderivations. The cut-rank p(d) of a derivation
d is also defined by induction: Let d,, i < k, be the direct subderivations of
d. If the last inference of d is a cut with mf. ¢ and —¢ let
p(d):=sup(Je |+ 1, supi-x p(d))). Otherwise, let p(d) := sup;-« p(d;). Note
that p(d)=0 iff d is cut-free.

It is convenient to use the notions of free and bound occurrences of
variables in derivations. A free occurrence of a variable x inside an
occurrence of a formula in a derivation d is called bound in d if “‘below”
that occurrence x is used as an eigenvariable of an inference V; otherwise
this occurrence of x is called free in d. We use the notation d, d(x),... for
derivations where it is understood that there may be other free variables
different from those actually shown.

2.3. Let d, I" be obtained from a derivation d by adding I" to the side
formulas of all inferences in d. It is trivial to see that d, I" is again a
derivation provided no variable free in I' is bound in d. The latter
condition can always be assumed to hold if we identify derivations which
differ only by a change of bound variables. Hence we have:

2.3.1. WEAKENING LEMMA. Ifd VA, thend, T'+T, A with |d, T"'|=|d| and
p(d, I') = p(d).

2.4. Let d(s) denote the result of substituting s for all free occurrences of x
in d(x) (note that some changes of bound variables in d(x) may be
necessary). Then we obviously have

2.4.1. SussTITUTION LEMMA. If d(x)F I'(x), then d(s)F I'(s) with |d(s)|=
|d(x)| and p(d(s)) = p(d(x)).

2.5. INVERsION LEMMA. (i) If d+ T, oo A @i, then we can find d v T, ¢
(i=0,1) with |d:|<|d| and p(d)) = p(d).

(i) IfdV T, ¥Yxd¢(x), then we can find do+ T, Y(x) with |do|<|d| and
p(do) = p(d).

Proor. The proofs of (i) and (ii) are almost identical, both by induction on
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|d|. We restrict ourselves to (ii). Let ¢ be Vx ¢(x). We can assume ¢ & I,
for otherwise the result follows by weakening, taking d, ¢(x).
Case 1: ¢ isnot a p.f. in the last inference of d. Then this inference has
the form
Ao forallj<k
A, A

with m.f. ¢, p.f. 4 ands.f. A, ¢, and I = A, A. By the induction hypothesis
FA, ¢(x), ¢ for all j <k, with length <|d| and cut-rank =< p(d). The
result follows by the inference

A P(x), ¢ forall j<k
A d(x), 4

Case 2: ¢ is a p.f. in the last inference of d. We can assume that ¢ is a
s.f. in the last inference of d, replacing d by d, ¢ if necessary. So that
inference is of the form

I ¢(x)
I e

with m.f. ¢(x), p.f. ¢ and s.f. I, ¢. By the inductive hypothesis + I', ¢(x),
with length <|d| and cut-rank = p(d). This completes the proof. [J

2.6. REpuUCTION LEMMA. Let dy+ T, ¢ and d,+ A, — ¢, both with cut-rank
p(d)=<|¢|. Then we can find d+T, A with |d|<|ds|+]|d,| and p(d) =<
lel.

Of course we could derive I', 4 by an application of the cut-rule, but the
resulting derivation would then have cut-rank [¢|+ 1.

Proor. The proof is by induction on |da|+|d,|. Since |¢|=|—1¢| and
— ¢ =¢, the lemma is symmetric with respect to the two given
derivations.

Case 1: Either ¢ is not a p.f. in the last inference of d, or else ¢ is
not a p.f. in the last inference of d,. By symmetry we can assume the
former. Then the last inference of d, is of the form

Ao, foralli<k
A, ¢, O

with m.f. ¢, p.f. @ ands.f. A, ¢, and I' = A, ©. By the induction hypothesis
F A, 4, ¢ for all i <k with length <|d,|+|d,| and cut-rank <|¢|. The
result then follows by the inference
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A A, ¢ foralli<k
A4, 0

Case 2: ¢ isap.f.in the last inference of do, and 1 ¢ is a p.f. in the last
inference of d,.

Case 2.1.: ¢ or —1¢ is atomic. Then the last (and only) inferences of d,
and d, are instances of the rule A and hence I, 4 is also an instance of the
rule A.

Case 2.2.: ¢ or —¢ is a disjunction ¢,V ¢,. By symmetry we can
assume the former, so =1 ¢ is 71 @o A 71 @,. We can assume that ¢ is a s.f. of
the last inference of d,, replacing d, by d,, ¢ if necessary. So that inference
is of the form

[‘9’5
e -

By the induction hypothesis F I, A, ¢; with length <|d,|+]|d,| and cut-
rank =|¢|. By the Inversion Lemma F4, —¢; with length =<|d,|<
|do| +|d,| and cut-rank =|¢|. The result follows by an application of the
cut rule.

Case 2.3.: ¢ or m¢ is of the form Ix ¢ (x). Again we can assume the
former (so ¢ is Vx T ¢ (x)), and also that ¢ is a s.f. of the last inference
of dy. So that inference is of the form

Lo ¢(s)
e -

By the induction hypothesis T, 4, ¢(s) with length <|d,|+]|d,| and
cut-rank =|¢|. By the Inversion Lemma + A, — ¢(a) with length =|d,|
and cut-rank =|¢|. By the Substitution Lemma F A, —1¢(s) also with
length =|d,| and cut-rank <|¢|. The result follows by an application of
the cut rule. O

2.7. Cut-ELiMINATION THEOREM. If d + T and p(d)>0, then we can find
d'+ T with p(d')<p(d) and |d'| <2

Proor. The proof is by induction on |d|. We may assume that the last
inference of d is a cut

) ITe
r

with |¢ |+ 1= p(d), for otherwise the result follows by the induction
hypothesis (making use of the fact that our rules all have finitely many
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premisses). So assume this. Let dot T, ¢ and d,F I, ¢ be the direct
subderivations of d. By the induction hypothesis we have dot+ T, ¢ and
di+ T, @, both with cut-rank p(d’) <|¢ | and length | d}| = 2'“'. The result
then follows by the Reduction Lemma, since |dg|+ |d}|=2%P0%H1d0*t =
24 O

Let 2= ¢ 2f., = 2%

2.7.1. CoroLLARY. If d+TI, then we can find a cut-free d*+T with
|d*] =25,

2.8. In this and the next subsection we prove two important consequences
of the Cut-Elimination Theorem.

Define the relation “¢ is a subformula of ¢’ to be the smallest transitive
and reflexive relation with the properties

(i) @0, @i are subformulas of ¢o A @i, @0V ¢, and

(ii) ¢(s) is a subformula of Vx¢(x), Ix¢(x).
The following is obvious.

2.8.1. SuBFORMULA PROPERTY. Let d be a cut-free derivation of I'. Then any
formula occurring in d is a subformula of one of the formulas in I.

Hence from the Cut-Elimination Theorem we can conclude that for any
d+T we can find d*+ I' containing only subformulas of formulas in I

2.9. HErRBRAND'Ss THEOREM. Letd + 3x ¢ (x) with ¢ (x) quantifier-free. Then
we can find terms sy, ..., S.-, and a derivation dot ¢ (o), " "+, @ (Sa-1).

Proor. We can assume that d is cut-free. Hence by the subformula
property any instance of the rule 3 in d has the p.f. Ix ¢ (x). Let so,..., Sazy
be all the terms such that ¢ (s;) is the m.f. of such an instance of 3. Now add
©(S0), - - -, @(s.-1) to the side formulas of any inference in d, and cancel all
occurrences of Ix ¢ (x) in d. It is easy to see that the resulting object is
(essentially) the required derivation. [J

3. Transfinite induction

In this and the following sections we shall deal with (classical) arithmetic
Z. We begin with a discussion of transfinite induction, particularly of the
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question which initial cases of transfinite induction are derivable in Z. By
an extension of the cut-elimination argument in Section 2 we shall show
that transfinite induction up to &, is underivable in Z. This provides a
precise bound, since it is easy to see that for any a < g, transfinite
induction up to « is provable in Z (cf. ScHUTTE [1960] or Chapter D.4).

3.1. Tofix notation we first describe our version of arithmetic Z, which is in
fact usual arithmetic plus free set and function variables. So we have
number variables, set variables and for any n >0 variables for n-place
functions (countably many of each sort). They are denoted by k, m, n, p, by
X, Y, Z, and by f, g, h, respectively. The terms of Z are built up from a
constant 0 (for the number 0) and the number variables by means of the
function symbols S (for successor), +,- and the function variables. The
atomic formulas of Z are of the form s =, s <t or s € X, where s, t are
terms and X is a set variable. The formulas are built up from these as
usual, using quantification on number variables only.

The axioms of Z are the usual axioms for 0,5, < (—n<0,
m <Sn<e(m <nvm=n)), +,-and equality, and the induction schema

e(0)AVn(e(n)—(Sn))—>Vne(n),

where ¢(n) is an arbitrary formula of the language, possibly containing
additional variables. The theorems of Z are those derivable from the
axioms by classical logic.

The various sets and functions one wants to talk about in arithmetic can
be introduced in definitional (and hence conservative) extensions of Z.
There is one type of these we are particularly interested in, the so-called
recursive extensions of Z. Such an extension occurs if

(i) we introduce a new set symbol M with the defining axiom n € M
< ¢(n) where ¢(n) is quantifier-free, or

(ii) if we have derived 3m ¢ (n, m, f) with ¢ (n, m, f) quantifier-free and
then introduce a new functional symbol F with the defining axioms

e(n,E(n,f).f), m<F(nf)—e(nm,f).

Z' is called a recursive extension of Z if it is obtained from Z by a finite
sequence of definitional extensions of this sort. Recursive extensions of Z
will also be denoted by Z.

One can show that any primitive recursive function can be introduced in
a recursive extension of Z (cf. SHOENFIELD [1967]). Conversely, any such
function is certainly recursive. We will determine in Section 4 exactly which
recursive functionals can be introduced in recursive extensions of Z.
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Obviously Z is a conservative extension of its part without function
variables, or without set variables, or without both. These subsystems will
also be denoted by Z.

3.2. Natural well-orderings of order type ¢,

As is well known, the ordinals < g, can be built up from 0 by means of
the ordinal functions « + 8 and w°. This build-up is unique if one uses the
Cantor normal form (cf. BACHMANN [1955]). Hence ordinals < &, may be
considered as finite objects and so they can be coded by natural numbers. It
is easy to choose these codes in such a way that

(i) the coding provides a bijective mapping a » 'a' from the ordinals
< g, onto the natural numbers,

(ii) the relation n < m corresponding to the less-than relation between
ordinals < g, is primitive recursive, and

(iii) the number-theoretic functions corresponding to the ordinal func-

tions a + B, w* and their inverses are primitive recursive.
Obviously, any two codings with the properties (i)-(iii) will be primitive
recursive isomorphic. Any of the corresponding < -relations between
natural numbers is called a natural well-ordering of order type &,. We
choose one of them, denote it by < and fix it for the following. We write
n<mforn<mvn=m.

3.3. Let Prog(X) (“X is progressive”) be the formula Vn(Vm (m <n
—m € X)— n € X). The axiom of transfinite induction up to &, is

TIL.(X) Prog(X)— Vn (n € X).

Here m <n stands for (m,n)E M where (-,-) is one of the usual
primitive recursive pairing functions and M is a symbol for the primitive
recursive set of pair-numbers (m, n) such that m <n holds.

3.3.1. THEOREM (GENTZEN [1943]). TL.(X) is underivable in arithmetic Z.

The proof of thi§ theorem will cover the rest of Section 3. In outline, it
proceeds as follows. We first embed Z in a “‘semi-formal” system Z.., where
induction is replaced by a rule with infinitely many premisses, the so-called
w-rule:

F,A(i_o,...,l-k.q) for all io,...,ik_1<w
RA(no,...,nk_l)
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where 7 is the i-th numeral, i.e. S'0. By a slight extension of the argument
in Section 2 we will obtain a Cut-Elimination Theorem for Z.. which gives a
bound on the length of the cut-free derivation in terms of length and
cut-rank of the derivation we started with. In particular, if we started with
(the image in Z.. of) a Z-derivation, then this length will be < g,. We will
then extend Z by yet another infinitary rule, the so-called progression rule
introduced by Schiitte:

I'reX foralli<j
IseX

Prog

where s is a closed term with numerical value j. 1t is easy to see that in
Z. + Prog one can give a derivation of Prog(X), and that this derivation has
a finite length. Again a Cut-Elimination Theorem with the same ordinal
bounds holds for Z. + Prog. Now assume that TI, (X) is derivable in Z.
Since Prog(X) is derivable in Z. + Prog with finite length, we can conclude
that the formula n € X (with variable n) is cut-free derivable in Z.. + Prog
with a length a < &,. Hence also '@ + 1' € X is derivable in Z.. + Prog with
length a. But this is a contradiction, since from the form of the rules of
Z.+ Prog it follows immediately that any cut-free derivation of rB—‘E X
has length B.

3.4. Cut-Elimination for Z.

3.4.1. Description of Z.

The language of Z.. is the same as for Z; we can assume here that we do
not have function variables. For notions connected with derivations we use
the same notation as in Section 2.

A finite set 4 of formulas is called a Z.-axiom if 4 consists of atomic or
negated atomic formulas without number variables such that VA (the
disjunction of the formulas in 4) is a tautological consequence of substitu-
tion instances of the quantifier-free axioms of Z.

The normal rules of Z.. are

A I,A if A is a Z.-axiom,
the rules A, v, v,;, V, 3 listed in Section 2 and the w-rule

IA(7) foralli
I A(n)

w

Furthermore, we have in Z. the cut-rule Cut stated in Section 2.
Note that in the w-rule we allow n to be empty. Also it is allowed that in
A(n) no variable of n actually has a free occurrence. In these cases the
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conclusion of the w-rule is the same as its premiss(es). Such an instance of
the w-rule is called improper.

The prinicipal formulas (p.f.) in A are all formulas in A. In the w-rule the
p.f. are all formulas in 4 (n). The minor formulas (m.f.) in the i-th premiss
of the w-rule are all formulas in A(7).So any inference now has the form

() IA, foralli<a
r,A

(0= a = w), where A consists of the p.f. and 4; consists of the m.f. in the
i-th premiss. The formulas in I" are again called side formulas (s.f.) of (*).

Derivations will now be infinite; they are defined as in Section 2.2. (In
the case of the w-rule we have to add information about the variables n.)
Also the other notions introduced in Section 2.2, particularly the length |d |
and the cut-rank p(d) of a derivation d carry over with the same
definitions. Note that |d| is now a countable ordinal, and p(d) < w. We
restrict ourselves throughout to derivations with only finitely many free
and bound variables. The set of variables free in a derivation d is denoted
by Var(d).

3.4.2. EMBEDDING LEMMA. For any ¢ derivable in Z we have a Z.-
derivation d v ¢ of length |d| < w -2 and cut-rank p(d)< w.

This is easy to see for the axioms of Z (for induction one has to use the
w-rule), and it is trivially preserved by the logical rules.

3.4.3. We now extend the proof given in Section 2 of the Cut-Elimination
Theorem for first-order logic to Z.. Obviously we have:

WEAKENING LEMMA. Ifd VA, thend, '+ T, A with |d, | =|d], p(d, T) =
p(d) and Var(d,I') = Var(d) U V, where V is the set of variables free in I.

Note that any closed term s has a numerical value i, and s =17 is a
Z.-axiom.

EvALUATION LEMMA. Let s, t be closed terms, both with the same value i. If
d I (s), then we can find do+T(t) with |do|=]|d|, p(dy) =p(d) and
Var(d,) = Var(d).

It is easily seen that this holds for instances of the rule A and is preserved
by the other rules.
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SussTiTUTION LEMmMA. If d(n)FI(n), then d(s)FIT(s) with |d(s)|=
[d(n)|, p(d(s))= p(d(n)) and Var(d(s))C (Var(d)—{n})U V, where V is
the set of variables free in s.

The proof is by induction on |d(n)|. The only case which requires some
argument is that in which the last inference of d(n) is an instance of the
w-rule of the form

I'(n,m,p), A1, ],p) forall i j
r'n,m,p),A(n,m,p)

where m, p include all variables free in s =s(m,p) (but I'(n,m,p),
A(n,m,p) may contain free variables other than those shown). By the
induction hypothesis,

FI(T,m k), A(T.j, k) forallijk

with length <|d(n)| and cut-rank =<p(d(n)). From some of these
derivations we obtain by the Evaluation Lemma,

FL(s(7, k), m, k), A(s(7, k), T, k) for all j k

without raising length or cut-rank. The result follows by an application of
the w-rule.

INVERSION LEMMA. () If d + T, @o A @1, then we can find di + T, ¢ (i =0,1)
with |d;|<|d|, p(d.)=p(d) and Var(d,)C Var(d).

(i) If d+ T, Vny(n), then we can find dot+ T, ¥(n) with |d,|<|d],
p(do) = p(d) and Var(d,) C Var(d) U {n}.

The proofs of (i) and (ii) are almost identical, both by induction on |d|.
We restrict ourselves to (ii). The only subcase not similar to 2.5 is where the

last inference of d is an instance of the w-rule. Then that inference is of the
form

A(m), o(m), A(i), (i) for all i
A(m), A(m), ¢(m)

with m.f. A(7), ¢(7), p.f. A(m), ¢(m) ands.f. A(m), o(m),and I' = A (m),
A(m), ¢ = ¢(m). By two applications of the induction hypothesis

FA(m), y(n,m), A(7), (n,7) foralli

with length <|d| and cut-rank < p(d). The result follows by an applica-
tion of the w-rule.
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RepucTioN LEMMA. Let do+T, ¢ and d,+ A, 4, both with cut-rank
p(d)=|@|. Then we can find d+ A, T with p(d)<|¢|, |d|=]|do|#|d,|
and Var(d) C Var(d,) U Var(d,).

Here # denotes the natural (or Hessenberg) sum of ordinals (cf.
BACHMANN [1955]); # is strictly monotonic in both arguments.

The proof is by induction on |d,| #|d,|. Again the only (sub-) case not
similar to 2.6 is where ¢ is a p.f. in the last inference of do, and 1 ¢ isa p.f.
in the last inference of d,, and the last inference of d, or d, is an instance of
the w-rule. By symmetry we can assume the former. We can also assume
that ¢ is a s.f. of the last inference of d,, replacing d, by do, ¢ if necessary.
So that inference is of the form

A(m), o(m), O(1), (i) foralli
A(m), ©(m), ¢(m)

withm.f. O(), ¢ (), pf. O(m), o(m)ands.f. A(m), p(m),and I' = A (m),
O(m), ¢ = ¢ (m). By the Substitution Lemma + I'(7), ¢ (i) for all i, with
length <|d,| and cut-rank =|¢|, and also + A(7), — ¢ (i) for all i, with
length =<|d,| and cut-rank =|¢|. By the induction hypothesis F I'(7),
A1) for all i with length <|d,|#|d.| and cut-rank =|¢|. The result
follows by an application of the w-rule. This completes the proof of the
Reduction Lemma. [

Let £(a) be the a-th g-number.

Cut-ELIMINATION THEOREM. (i) If d T with p(d)= { + 1, then we can find
d'+ T with p(d')< ¢, |d'| <=2 and Var(d') C Var(d).

(ii) If d+ I with p(d)= w, then we can find d'+T with p(d’)=0,
|d'|=e(|d|) and Var(d')C Var(d).

Proor. (i) As in 2.7.

(ii) By induction on |d|. We may assume that the last inference of d is a
cut

I ILne
r

for otherwise the result follows by the induction hypothesis. So assume
this. By the induction hypothesis we have do+ I, ¢ and d,+ T, 7 ¢, both
cut-free and with length |d;| < £(]|d|). The result then follows by applying
(i) |@| times. O
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CorOLLARY. If d + T, then we can find a cut-free d* + I with |d*| <24, if
p(d)<w, and |d*|=e(|d]) if p(d) = w.

3.5. Cut-Elimination for Z..+ Prog

We add to Z. the following progression rule:

Prog ? ; g § foralli <) for s a closed term

with value .

The p.f. in Prog is s € X, and the m.f. in the i-th premiss is I € X. Now all
the definitions, lemmas and proofs of Section 3.4 carry over almost word
for word. Only part of the proof of the Reduction Lemma must be
extended slightly: So let ¢ be a p.f. in the last inference of do, —1 ¢ be ap.f.
in the last inference of d, and ¢ be atomic. Let further the last inference in
d, be Prog and in d, be A. We can assume that ¢ is a s.f. in the last
inference of d,; hence it has the form

seX,reX forali<j
IseX

s a closed term
with value j.

The last (and only) inference of d, is an instance A, — (s € X) of the rule
A. Now it is easy to see that then either

(i) t€ X is in A for some closed ¢t with value j, or

(ii)) A is already an instance of the rule A.
In the latter case the result follows by weakening. In the former case we
have by the induction hypothesis +I', A, t € X, T € X for all i <j, with
length <|d,| and cut-rank 0. The result follows by an application of the
rule Prog.

3.6. Underivability of T, (X) in Z

3.6.1. LEmMma. In Z.. + Prog we can derive Prog(X) with finite length and
cut-rank.

We give an informal argument which can be easily transformed into a
derivation in Z.+ Prog.

Recall Prog(X)=Vn(Vm (m <n—-m € X)—»>n€ X). For any i<j
we have Vm (m <j—m € X)— 1 € X. Hence by the progression rule
Vm(m <j—m € X)— j € X Hence Prog(X) by the w-rule.

3.6.2. Lemma. Let d be a cut-free derivation in Z.+Prog of Ble
X,...,'"B) € X. Then d has length =min(B,,..., Bx).
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This follows immediately from the form of the rules of Z.+ Prog; use
induction on | d|. The whole derivation must consist of instances of the rule
Prog and of improper instances of the w-rule.

3.6.3. Now assume TI, (X) is derivable in Z. Recall that TL(X)=
Prog(X)—Vn (n € X). By 3.42 and 3.6.1 we then have a Z.+ Prog-
derivation of n € X (with variable n) with length <w -2 and finite
cut-rank. By the Cut-Elimination Theorem for Z.+ Prog we obtain a
cut-free derivation of n € X in Z.. + Prog with length « < &,. Hence by the
Substitution Lemma we should also have a cut-free derivation of 'a + 1' €
X in Z.+ Prog with length a. This contradicts 3.6.2.

4. Bounds from proofs of existential theorems

We now take up the question ‘“What more do we know if we have
proved a theorem by restricted means than if we merely know that it is
true?”” As before, we restrict ourselves to arithmetic Z, where one can get a
satisfactory answer; cf. Section 1.4 for a summary of the results. Using the
‘terminology of Section 3.1 we can also summarize the results as follows.
We show that a functional F of level =2 (i.e. with number and function
arguments) can be introduced in a recursive extension of Z iff F is < gy
recursive, i.e. F can be defined by the (Kleene) primitive recursive
operations and a-recursions for a < g,.

4.1. < go-recursive functionals

A functional F of level =2 is called primitive recursive in Kleene’s sense
iff it can be defined by means of schemata (i}-(v) below. Here n =
Ny,...,N,—; is a sequence of number variables and f=fo,....f,;-1 is a
sequence of function variables.

(i) (Identity) F(n, f)= n: (for i <p).

(ii) (Function application) F(n, f)= fi(n,...,n,_) (for i<gq and
Jos e s Jk-1 < P).

(iii) (Successor) F(n, f)= n; +1 (for i < p).

(iv) (Substitution) F(n,f)= G(Ho(n, f),..., Hi-i(n, f), Ko(:,nf),...,
Ko+, n.£)).

(v) (Primitive  recursion) F(0,m,f)=G(m,f), F(n+1,m,f)=
H(F(n,m, f),n, m,f).

In (iv), K;(-,n, f) means AxK; (x, n, f). Note that F(n, f) is always a
natural number.



cH. D.2, §4] BOUNDS FROM PROOFS OF EXISTENTIAL THEOREMS 885

Let a be an ordinal < ¢, and let < be our natural well-ordering of order
type &o (cf. Section 3.2). By a-recursion we mean the following definition
schema.

(vi) (a-Recursion) For n < 'a',
F(n,m,f)=G(n,m (Fln)(-,m,f),f)
FGiymf) ifi<n,

where

(FIn)(ii,m, f):= {
0 otherwise.
For 'a'<n, F(n,m, f):=0.
A functional F of level =2 is called < go-recursive iff F can be defined
by the primitive recursive operations (i}-(v) and a-recursions for a < g,.
The class of <egq-recursive functionals of level = 2 is denoted by Rec,,.

4.2. THEOREM (KREISEL [1952]). If Vn Am @ (n, m) is derivable in Z with
¢ (n, m) quantifier-free and without free variables other than those shown,
then we can find a function F € Rec.,, such that VYno(n, F(n)) holds.

4.2.1. We first sketch the proof. So let a Z-derivation of Vn 3m ¢ (n, m) or
equivalently of 3m(n, m) be given. As in 3.4.2 we can transform this
Z-derivation into an infinite Z.-derivation d(n)F3m ¢ (n, m) with length
|d(n)| < w -2 and finite cut-rank. Furthermore, as in 3.4.3, we can trans-
form d(n) into a cut-free Z.-derivation d*(n)F3Im ¢ (n, m) with length
|d*(n)| < eo. By the Substitution Lemma in 3.4.3 we obtain for any i a
Z.-derivation d*(7)F3m¢(7, m) also with length |d*(7)| < &0. Now from
the form of the normal rules of Z.. it is clear that d*(7) contains only
subformulas (cf. 2.8) of 3m ¢ (7, m). We may assume that d *(7') contains no
free variable (otherwise substitute 0 for any variable free in d*(7)). Hence
all instances of the w-rule in d*(7) must be improper (cf. 3.4.1) and so we
may as well cancel them. This yields a cut-free d**+3m ¢ (7, m) which
does not involve the w-rule. To d** we can apply the same argument as in
the proof of Herbrand’s Theorem 2.9 and obtain closed terms s, ..., S
and a derivation of ¢ (i, So),. .., @ (I, sc-1). At least one of these formulas
must be true. The value at the argument i of the function F we have to
construct is to be the (say) least numerical value of some s; such that ¢ (i, s;)
is true.

What still remains to be shown is that this F is < go-recursive. For this
we use an ‘“effective’” counterpart of the above construction, where we
work with codes for Z.-derivations instead of using the Z.-derivations
themselves.
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4.2.2. Codes for Z.-derivations

The codes will be natural numbers. They are defined inductively,
corresponding to the inductive build-up of Z.-derivations. The inductive
definition is trivial for the finite rules A, A, v,, v,, ¥, 3, Cut. However, for
the w-rule there is a difficulty since then we in general have infinitely many
premisses. The idea now is to assume that the codes for the premisses can
be enumerated by a primitive recursive function, and to use a code (or
primitive recursive index) of such an enumeration function to construct a
code of the whole derivation. Another essential point is that our codes
should contain sufficient information about the coded derivation. In
particular, if a number u codes a derivation d, then we want to be able to
read off primitive recursively from u

(i) the name of the last inference of d and its p.f., m.f. and s.f. (and
hence its conclusion),

(ii) a bound for the length |d]|,

(iii) a bound for the cut-rank p(d), and

(iv) a bound for the (finite) set of variables free in d.

The corresponding primitive recursive functions will be denoted by
Rule(u), p.f.(u), m.f.(u), s.f.(u), End(u), |u|, Rank(u) and Var(u),
respectively.

We do not write out all cases of the inductive definition of the predicate
u € Code(u is a code for a Z.-derivation), but rather give two examples
corresponding to the rule Cut and the w-rule.

Cut: If u, v € Code, End(u) =T, ¢', End(v) =T, ¢' and |u|, |v| <
a, then (Cut!, ', 'T"", a, u, v) € Code.

w-rule: If, for any i, [e](i)=:u;ECode, End(w;)=T,A(1), |u |<a,
Rank(u;) <k and Var(u)C*b, then ('w!,'A(n)", 'n!, T, a, k, b, e)E
Code.

Here [e] denotes the primitive recursive function coded by e. - -1
denotes as usual a natural code for the finite object - - - ; C* corresponds
(under the relevant coding of finite sets of variables) to C ;(xo,...,Xi-1)is a
primitive recursive coding of finite sequences of natural numbers with
primitive recursive inverses (x); i.e. ((xo, ..., X-)); = x; for i <l We also
skip the (trivial) primitive recursive definitions of the functions Rule(u), ...
mentioned above.

4.2.3. It is easy to see that all Z.-derivations obtained by embedding Z in
Z. (cf. 3.4.2) can be coded, and that any such code has length |u|<|w -2].

4.2.4. We now show that to the operations on Z.-derivations defined in
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3.4.3 (weakening, substitution, etc.) there correspond primitive recursive
functions on the codes. This will follow by easy applications of the
Primitive Recursion Theorem of KLEENE [1958]. The lemmas are stated in
the order they can be proved. We shall only sketch the proof for one of
them (a typical example).

WEAKENING LEMMA. We have a primitive recursive function Weak such that
for any u € Code and any I the following holds.
(i) Weak(u, 'T") =: u, € Code,
(i) End(uo)= "I, A" if End(u)="'4",
(iii) |uo| =|ul,
(iv) Rank(u,) = Rank(u), and
(v) Var(uo) = Var(u)U” V* with V the set of variables free in I.

EVALUATION LEMMA. We have a primitive recursive function Eval such that
for any u € Code, I'(n), variable n and closed terms s, t with the same value
the following holds.
(i) Eval(y, 'T'(n)','n",s", "t")=: u, € Code,

(i) End(uo)="I'(¢)" if End(u)="I(s)',

(iii) |uo| =]ul,

(iv) Rank(u,) = Rank(u), and

(v) Var(u,) = Var(u).

SussTiTUTION LEMMA. We have a primitive recursive function Sub such that
for any u € Code, variable n and term s the following holds.

(i) Sub(u, 'n','s')=:u, € Code,

(ii) End(uo) = 'T'(s)" if End(u)="T'(n),

(iii) uo| <[ul,

(iv) Rank(u,) = Rank(u), and

(v) Var(uo) C* (Var(u)="{n}*)U* V* where V is the set of variables free
in s.

For the proof one has to construct a primitive recursive function (also by
the Primitive Recursion Theorem) corresponding to the change of bound
variables in Z.-derivations.

INVERSION LEMMA. (1) We have primitive recursive functions Inv; (i =0,1)
such that for any u € Code and conjunction @, A ¢, the following holds.
(i) Invi(u, "@o A @)')=: u;ECode,
(i) End(u;) =T, ¢! if End(u)="T, oA @' with gon @, not in I,
(iii) u|=<]ul,
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(iv) Rank(w;) = Rank(u), and

(v) Var(u;)C* Var(u).

(2) We have a primitive recursive function Inv such that for any u € Code
and generalization Y ny(n) the following holds.

@) Inv(u, 'Vniy(n)')=:u, € Code,

(ii) End(uo) =T, ¢(n) if End(u) = "T,Vni(n) with Vndi(n) notin T,

(iii) Juo| <]ul,

(iv) Rank(u,) = Rank(u), and

(v) Var(uo) C* Var(u)U*{n}*.

REeDpucTioN LEMMA. We have a primitive recursive function Red such that
for any uo, u, € Code and formula ¢ with Rank (u)=<|e| (i =0,1) the
following holds.

(i) Red(uo. u,,'¢')=:u€eCode,

(ii) End(u) =T, A" if End(uo) =T, ¢' with ¢ not in I' and End(u,) =
'A,— ¢! with ¢ not in A,

(iii) Rank(u)=<|¢]|,

(v) |u|<"é&# & if lu|="¢&, and

(v) Var(u)C* Var(u,) U* Var(u,).

Cut-ELIMINATION THEOREM. We have a primitive recursive function Elim
such that for any u € Code with Rank(u)=k +1 the following holds.
(i) Elim(u)=:u' € Code,
(ii) End(«’) = End(u),
(iii) |u’| <2 with '&':=|u],
(iv) Rank(u') =<k, and
(v) Var(u')C* Var(u).

Proor. By the Primitive Recursion Theorem we can define a primitive
recursive function Elim with code e as follows.

Case 1. Rule(u)="Cut'. Let m.f.(u)={p, ¢p}".

Subcase 1.1. |@ |+ 1<Rank(u). Define Elim(u) = {(t)o, (u ), (u)s, 2°,
Elim((u).), Elim((u)s)) where '¢' = (u),.

Subcase 1.2. |¢ |+ 1= Rank(u). Define Elim(u)= Red(Elim((u).),
Elim((4)s), '¢").

Case 2. Rule(u)="w'. Define Elim(u) = ((u)o, ..., (u)s, 2, k, (u)e, €")
where '¢' = (u), and e’ = e'(e, u) is a code of Elim([(u),](n)) as a primitive
recursive function of n; e’ as a function of e and u is primitive recursive.
The other cases are treated similarly. By < -induction on |u | one can prove
easily that Elim(u) has the required properties. [J
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4.2.5. Now we prove Theorem 4.2, following the sketch in 4.2.1. So
let a Z-derivation of Im¢ (n, m) be given and let u be a code of
the corresponding Z.-derivation (cf. 4.2.3). Hence |u|="¢!<w -2l
By a finite number of applications of the Cut-Elimination Theorem in 4.2.4
we obtain a code u* of a cut-free Z.-derivation of Im¢e(n, m) with
|u*| < 2% . Then Sub(u*, 'n', i) is a code for a cut-free Z.-derivation
of Ame(i,m). We may assume Var(Sub(u* 'n' 7)) =0* (otherwise
apply Sub(:,'m!,'0") for any m €* Var(Sub(u*,'n','i")). Hence the
Z.-derivation coded by Sub(u*,'n','i') contains only improper instances
of the w-rule, which may be cancelled. However, the function F, corre-
sponding for codes to this cancellation is not primitive recursive, but
only < g recursive: in case Rule(v)='w' we have to define Fy(v)=
Fo([(v)s)(0)) and we only know |[[(v)s](0)]<]|v|. Now from
Fo(Sub(u*,"n','i1)) we can easily read off primitive recursively all (closed)
terms So,..., S-; used in instances of the rule 3 in the corresponding
derivation. Since by the same argument as in the proof of Herbrand’s
Theorem 2.9 we get a derivation of ¢(7,so),..., @ (7, S-1), we know
that at least one ¢(i,s;) must be true. Let F(i) be the least numerical
value of some s; such that ¢(i,s;) is true. This completes the proof of
Theorem 4.2. [

4.3. We now turn to a generalization of Theorem 4.2 to arbitrary
Z-formulas. For the formulation of the result we need the notion of the
Herbrand normal form ¢ of a formula ¢, which we introduce first.

The general definition of ¢y is sufficiently explained by the following
example. Let e=3InVm Ik Ypy(n, m,k,p). Then ou=
3n, k y(n, f(n), k, g(n, k)) with function variables f, g. One can show easily
that ¢ — ¢ is derivable (logically and hence) in Z, and furthermore that if
ou is derivable in Z then so is ¢ (cf. SHOENFIELD [1967]).

In general, for an arbitrary prenex formula ¢ the Herbrand normal form
¢n is obtained from ¢ by (i) dropping all universal quantifiers in the prefix
of ¢, and (ii) replacing any variable m bound by a universal quantifier in ¢
by f(n), where n are all variables preceding m in the prefix of ¢ and bound
by existential quantifiers, and f is a new function variable. Hence ¢u has
the form 3me" with ¢" quantifier-free and generally containing new
function variables. Again ¢ — ¢u is derivable (logically and hence) in Z,
and if ¢y is derivable in Z then so is ¢.

4.4. THEOREM (KREISEL [1952]). Let ¢ be a formula without set variables
derivable in Z. Let oy=3m ¢"(f, n, m) be its Herbrand normal form. Then
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we can find < gq-recursive functionals G such that for all functions F and
numbers i, ¢"(F,i, G(F,i)) holds.

Proor. For simplicity assume ¢ =3Im ¢"(f, n, m) with ¢" quantifier-free
and without free variables other than those shown. Since by assumption ¢
is derivable in Z, we know that also ¢u is derivable in Z. We have to
construct a function G € Rec.,, such that for any function F and number i,
¢"(F, i, G(F, 1)) holds.

The proof is completely parallel to the proof of Theorem 4.2; we only
have to relativize it to a given function F.

We first introduce a relativization Z.(F) of Z.. The language of Z.(F) is
the language of Z without set variables and with just one distinguished
function variable f. A finite set A of formulas is called a Z.(F)-axiom if A
consists of atomic or negated atomic formulas without number variables
such that V 4 is a tautological consequence of substitution instances of the
quantifier-free axioms of Z and the additional axioms f(j) = k for all j, k
such that F(j)= k. The rules of Z.(F) are the same as the rules for Z..

The treatment of cut-elimination for Z.. in Section 3.4 carries over nearly
unchanged to Z.(F). Just note, for the Evaluation Lemma, that any term
s(f) without number variables has a numerical value i under the assign-
ment f~ F, and s(f) =T is a Z.(F)-axiom. Now the proof of Theorem 4.2
can be adapted almost word for word, with the following exceptions.

(1) In the definition of codes for Z..(F)-derivations we replace [e](i) by
[e](F,i); [e] is now the e-th primitive recursive functional (in the sense of
Kleene).

(2) The functions Weak, Eval, Sub, Inv, Inv, Red, Elim, F, are to be
replaced by functionals with F as an additional argument. This completes
the proof of Theorem 4.4. O

4.5. We now state a converse to Theorem 4.4 (and hence also to Theorem
4.2) and sketch its proof.

THEOREM. Let Fbe a < go-recursive functional. Then F can be introduced in
a recursive extension of Z.

4.5.1. For the proof we need an auxiliary notion: the modulus of continuity
of a functional F. We now introduce this notion.

First note that any < go-recursive functional F(n, f) is continuous in the
sense that it depends only on a finite part of any of its function arguments.
Or equivalently, F is continuous for the discrete topology of N and the
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corresponding product topology on product spaces. This can be seen easily
by induction over the build-up of < g,-recursive functionals. A functional
M; is called a modulus of continuity for F iff for any n, f, Mr(n, f) codes a
finite set § of natural numbers such that for any two tuples of functions f
and f' coinciding on U, $* we have F(n, f)= F(n, f').

4.5.2. We shall prove the following extension of Theorem 4.5.

THEOREM. Let F be a < ey-recursive functional. Then we can construct a
< go-recursive modulus of continuity Mg for F, and F as well as My can be
introduced in a recursive extension of Z.

Remark. The fact that any < g,recursive functional F has a < go-
recursive modulus of continuity was first proved by Kreisel in lectures

(’71/72); other proofs are in TROELSTRA [1973] and in SCHWICHTENBERG
[1973].

The proof is by induction on the build-up of < g4-recursive functionals.
We only treat the case of a-recursion, the other cases being simpler or
trivial. So let

F(n,m,f)= G(nm,(FIn)(-,m,f),f).

By the induction hypothesis we can assume that G and a modulus of
continuity Mg of G have been introduced (in a recursive extension of Z).

We first show how F can be introduced. The trick is not to introduce F
directly, but via another functional which assigns to any argument n, m, f a
computation u of F at this argument. Here u is called a computation of F
at n, m, f iff the following holds.

(1) u is a finite function with domain {ao, a,, ..., a._\} where a, < a, <
e L ak-l = n.

(ii) u(a;)= G(a,m,(ula), f) for i <k, where (u [ a;) is defined by

u(x) if x =a forsome j<i

(ula)(x) = {

0 otherwise.

(iii) Mg (a,m,(ula),f)N{x|x<a}C{ao,...,a-} for i<k Note
that any of the conditions (i)~(iii) is quantifier-free and does not involve F.
Now one can prove in Z Vn, m, f 3u (u is a computation of F at n, m, f), by
a-induction on n. To see this, observe that adding to Z the arithmetical
axiom of choice and second-order logic (but no second-order instances of
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the induction schema) gives a conservative extension of Z; this can either
be proved directly using the method indicated in Chapter D.4, 5.5.1,
or else follows from the much stronger result in Chapter D.4, 8.7.
Hence the corresponding functional giving u as a functional of n, m, f can
be introduced, and from this F can be easily defined explicitly. Further-
more, from the conditions (i}-(iii) and the fact that Mg is a modulus of
continuity for G one can prove (in Z) the defining equations of F.
Now M, can be defined from F by the following «-recursion

Me(n,m, f)=S*U* U”* Me(a,m,f),

a<n
a€S
where

S*= MG(n»m’(Frn)("m’f)’f)'

Hence, by the argument just given, Mr too can be introduced. By
a-induction on n one can show in Z that M, is a modulus of continuity for
F, using the defining equations for F and the fact that Ms is a modulus of
continuity for G.

5. Transfinite induction and the reflection principle

5.1. We now consider Z without set and function variables. The (uniform)
reflection principle for Z is the schema

RP Der(x, ‘¢ (n))— ¢ (n)

where Der(x, y) is the primitive recursive predicate which holds iff x codes
a Z-derivation dt¢ and y ="', and ' (n)' is a primitive recursive
function of n and denotes a code for the formula obtained from ¢ (n) by
substituting the numerals 7 for the variables n, ie., lp(n) =
Subst(‘e (n)', 'n', Num(n)) with the obvious primitive recursive functions
Subst and Num. Furthermore, we assume that x is not free in ¢ (n). Note
that RP trivially implies the consistency of Z, i.e. the formula
Vx —Der(x, '0 = 1'). The schema of transfinite induction up to &, for Z is

TI,, Vn(Vm(m <n—-oep(m))—e(n)—VVne(n).

5.2. THEoReM (KREISEL and LEvy [1968)). Z together with the schema RP is
equivalent to Z together with the schema TI,,

PrrOOF. We begin with the easy part and show that TI,, is derivable in
Z + RP. So let ¢(n) be given and define ¢ (k) to be
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Vn(VYm(m <n—e(m))—¢(n)—=>Vn(n<F(k)—=¢(n))

where F(k)="w/, wo=1, w;., = 0. Since ZF¥Ym Ik m < F(k), it suffices
to derive ¢ (k) in Z+ RP. Now from the proof of Gentzen [1943] (or
ScHUTTE [1960]) of transfinite induction up to wi in Z one can extract a
primitive recursive function G such that Z+Vk Der(G(k), ¢ (k)'). From
this and RP we obtain ¥(k), as required.

The proof of the converse will cover the rest of this section. We have to
show that RP is derivable in Z + T1,,. So assume Der(x, ¢ (n)). Now the
following lemma is derivable in Z (cf. 4.2.3 and 5.2.2):

EMBEDDING LEMMA. We have a primitive recursive function Emb such that
for any x, y with Der(x, y) the following holds.
(i) Emb(x)=: u,€Code,
(ii) End(u.)=y, and
(i) |ue|<'w -2\

Also the Cut-Elimination Theorem of 4.2.4 is derivable in Z + TI,, (cf.
5.2.2). Hence we can prove in Z+TI, that we have a u¥ & Code
(depending primitive recursively on x) with End(u*)='e(n)" and
Rank(u*)=0. In 5.2.1 we shall give within Z a partial truth definition Tr,
with the following characteristic property: For any formula ¢(n) with
depth of quantifier-nesting QD(¢(n)) < g one can prove in Z

Tr, ("¢ (n)) & y(n).

Now the following lemma obviously holds (use < -induction on |u|)and is
derivable in Z + TI,, (cf. 5.2.2):

TrRUTH LEMMA. For any u € Code with Rank(u)=0 and End(u)="¢'
where QD() < q we have Tr,('¢").

Specializing this to u = u* we obtain Tr,('¢(n)') and hence ¢ (n), both
in Z+TI,,

5.2.1. We define for any ¢ =0 a set Tr, which is intended to give a partial
truth definition for all Z-formulas ¢ with depth of quantifier-nesting
QD(¢)=gq.

First note that we can easily introduce a function Val (in a recursive
extension of Z) such that for any term s(n) Val('s(n)') = s(n) is derivable
in Z.
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DeriNiTION. Tr, is defined as follows.
(i) Tr,('Pso(n) - s,-1(n)") > P(Val('sy(rn)"), ..., Val('s,_,(r)")) for any
predicate or set symbol P.
(i) Try('@on @) o Tr,('0o") A Tr,('¢)') if QD(¢:) = g. Similarly for v.
(iii) Tr,('Vne(n))oVnTr,.,('e(n)) if g=1 and QD(e(n))<qg-—1.
Similarly for 3.

[
LemMa. Tr, ("¢ (n)") <> ¢ (n) is derivable in Z if QD(¢(n))=<gq.
The proof is obvious, using induction on | (n)]|.

5.2.2. We now show that the Embedding Lemma and the Truth Lemma
stated in Section 5.2 as well as all the lemmas in 4.2.4 up to and including
the Cut-Elimination Theorem are derivable in Z + TI,,. The only point to
verify is that all these lemmas can be formulated in the language of Z; the
formalization of the proofs is then routine. Now the only possible obstacle
against such a formulation is the occurrence of the inductively defined
notion of a code for a Z.-derivation (cf. 4.2.2) in all these lemmas. We now
show how this notion can be represented in purely generalized form.

Infinite Z.-derivations may be considered as well-founded trees, where
at each node there is either no branching at all (i.e. it is a bottommost node)
and an instance of the rule A is affixed, or there is a 1-fold branching
(corresponding to the rules v,, ¥ 3), or a 2-fold branchirg (corresponding
to the rules A, Cut), or an w-fold branching (corresponding to the w-rule).
Then any code u of a Z.-derivation d can be thought of as obtained
inductively by affixing to each node of the tree corresponding to d a code
of the corresponding subderivation. Hence the property u € Code is
equivalent to u having such a well-founded genealogic tree. But the latter
fact can be easily written in purely generalized form: One has to express
that at any node (= sequence number) n the tree is locally correct, i.e. that
the code u, affixed there (u, can be easily defined by induction on n) and
all its predecessors u,-u, i =0,1,2,..., fulfill a relation as given in the
definition of codes for Z.-derivations. The well-foundedness is then
obtained automatically, since in particular | u,-,| <|u| is required and <
is a well-ordering. [
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