
Christoph Jansen, Georg Schollmeyer and Thomas Augustin

A Probabilistic Evaluation Framework for Preference
Aggregation Reflecting Group Homogeneity

Technical Report Number 193, 2018
Department of Statistics
University of Munich

http://www.statistik.uni-muenchen.de

http://www.statistik.uni-muenchen.de/
http://www.statistik.uni-muenchen.de/


A Probabilistic Evaluation Framework for Preference Aggregation
Reflecting Group Homogeneity

C. Jansena,∗, G. Schollmeyera, T. Augustina

aDepartment of Statistics, LMU Munich, Ludwigsstr. 33, 80539 Munich, Germany

Abstract

Groups differ in the homogeneity of their members’ preferences. Reflecting this, we propose a
probabilistic criterion for evaluating and comparing the adequateness of preference aggregation
procedures that takes into account information on the considered group’s homogeneity structure.
Further, we discuss two approaches for approximating our criterion if information is only imper-
fectly given and show how to estimate these approximations from data. As a preparation, we
elaborate some general minimal requirements for measuring homogeneity and discuss a specific
proposal for a homogeneity measure. Finally, we investigate our framework by comparing aggre-
gation rules in a simulation study.

Keywords: Aggregation procedure, preference profile, voting theory, imprecise probabilities,
maximum entropy, homogeneity measure, group decision making. JEL classification: C1, C6

1. Introduction

One of the fundamental tasks in social choice theory is to define adequately justified rules for
aggregating the preferences of a group of individuals into one global consensus order. Due to the
generality of this problem, it is hardly surprising that many different rules have been proposed
since the pioneering works by de Borda (1781); de Condorcet (1785); Hare (1857) (see Brams and
Fishburn (2002) for a survey). More generally, the question of aggregating collections of binary
relations in a meaningful way does not exclusively concern social choice theory, but also appears
in classification problems in statistics (see, e.g., Maniqueta and Mongin (2016)), benchmarking of
algorithms in the computer sciences (see, e.g., Mersmann et al. (2015)) or problems of judgment
aggregation in philosophy (see, e.g., Hartmann and Sprenger (2012)) to name only a few examples.

Given the diversity of aggregation rules, criteria for evaluating and comparing their quality need
to be established. Many different criteria have been proposed, and comparisons of aggregation rules
with respect to them have been studied intensively (see, e.g., Grofman and Feld (2004)). However,
almost all these criteria are non-group-specific: They are intended to be valid independently of the
group whose members’ preferences are to be aggregated. But what is a perfectly adequate aggre-
gation procedure for one group may not be as appropriate for another one. The adequateness of
an aggregation procedure may, beyond compatibility with non-group-specific criteria, additionally
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depend on certain characteristics of the specific group under consideration. One such characteris-
tic is the homogeneity of the group members (see Section 2.2 for a discussion of the literature on
homogeneity). In this paper we propose a group-specific quality criterion for aggregation rules that
takes into account information on the homogeneity of group members’ preference structure. More-
over, we show different ways to approximate our criterion under partial probabilistic information
and discuss how to estimate these approximations in the presence of data or expert knowledge.

More precisely, the paper is structured as follows: In Section 2, we discuss measures for quan-
tifying the homogeneity of a group that is represented by a fixed profile (R1, . . . , Rn) of strict
weak orders. Specifically, in Section 2.3, we elaborate a list of three minimal requirements that
every reasonable measure should satisfy. In Section 2.4, we then propose a concrete measure, the
maximum consensus homogeneity, and discuss why it is reasonable beyond its mere compatibility
with these minimal requirements. Section 3, after reviewing some basics on Bayesian theory in
Section 3.1, introduces a framework for evaluating and comparing aggregation procedures in the
presence of probabilistic information on the considered group. This involves three steps: In Sec-
tion 3.2, we introduce an optimality criterion that requires perfect knowledge of the probabilities
with respect to which the group constitutes different profiles (R1, . . . , Rn). Section 3.3 discusses
approaches for approximating this criterion if the probabilistic information on the group is partial
in the sense that only the probability distribution of some homogeneity measure is given. Finally,
Section 3.4 discusses several statistical approaches for estimating this distribution in the presence
of data, expert knowledge, or both. Section 4 starts by briefly reviewing some common aggre-
gation procedures relevant to our context (Section 4.1). Afterwards, Section 4.2 summarizes an
aggregation procedure recently proposed in Schollmeyer (2017).1 In Section 5, we investigate the
aggregation procedures reviewed, in respect to our criterion in a simulation study. Section 6 is
reserved for concluding remarks as well as an outlook on future research questions.

2. Measuring Homogeneity of Preference Profiles

We begin the section by introducing our notation and terminology (Section 2.1) and surveying
some related work on the topic (Section 2.2). Subsequently, we establish and discuss a weak set of
conditions (Section 2.3) as well as a concrete proposal (Section 2.4) for measuring the homogeneity
of a fixed collection (R1, . . . , Rn) of strict weak orders each of which representing the opinion of a
member of a group of size n.

2.1. Notation and Terminology

Throughout the paper, C denotes a finite set of at least two consequences. The elements of
C have to be ranked by the members of a specific group Gn of fixed size n ≥ 2, where certain
requirements of rationality regarding the individual orders involved are imposed. Specifically, we
work with the following spaces of binary relations on C:

R := {R ⊂ C2 : R asymmetric, negatively transitive} (1)

Q := {Q ⊂ C2 : Q asymmetric} (2)

In the sequel, every R ∈ R is termed a strict weak order on C. For every R ∈ R, define the usual
equivalence relation ∼R on C by setting a ∼R b if and only if (a, b) /∈ R ∧ (b, a) /∈ R. Given this,

1For an explanation of the procedure and a discussion see Section 4.2.
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interpret (a, b) ∈ R as a is strictly preferred to b and (a, b) ∈∼R as indifference between a and b.
The elements of R are associated with the individual orders of the group members. Hence, the
group members are assumed to have asymmetric and negatively transitive preferences. Importantly,
note that our model of the individual preferences excludes incomparability of consequences: For
alternatives a, b ∈ C chosen arbitrarily, every group member is thus assumed to be able to decide if
she strictly prefers a to b, or b to a, or if she ranks them equally desirable. Thus, we explicitly assume
that incomparability with respect to R ∈ R is interpreted as indifference (see, e.g., Kreps (1988,
Chapter 2) for a discussion of this convention).2 For n ≥ 2, an element R := (R1, . . . , Rn) ∈ Rn is
called a preference profile on C and each component of R is interpreted as the opinion of a member
of Gn about how the consequences in C should be ranked.

Contrarily, every element Q ∈ Q is called a consensus order (or group preference). Except for
asymmetry, we do not impose any further restrictions on the consensus order. This allows for also
investigating aggregation procedures for which the group preference is not always as well-behaved
as the individual orders (this includes, e.g., Condorcet’s method, see Section 4.1, which might yield
intransitive consensus orders). In this context, every mapping S : Rn → Q is called a preference
aggregation function. Particularly, for every preference profile R ∈ Rn, the image S(R) ∈ Q is the
consensus order of the group represented by R with respect to the aggregation procedure described
by S.

2.2. Preference Homogeneity in Related Work

In literature on social choice theory at least two different lines of how to establish a notion
of homogeneity of groups can be identified. One line (see, e.g., Niemi (1969); Jamison and Luce
(1972); Berg (1985); Gehrlein and Lepelley (2010); Lepelley and Valognes (2003)), which could
be called “model-based”, builds up stochastic models that govern the constitution of profiles and
have specific parameters implicitly regulating the group’s homogeneity. One prominent exam-
ple is the multivariate Pólya-Eggenberger urn model (see, e.g., Johnson and Kotz (1977)), which
has been used for instance in Berg (1985); Gehrlein and Lepelley (2010); Lepelley and Valognes
(2003) in order to analyze the relationship between group homogeneity and the probability of the
voting paradox or the manipulability of different aggregation functions. The Pólya-Eggenberger
model contains two other well-established models as special cases: impartial culture and impartial
anonymous culture, which are also often presumed in studies of the voting paradox and the manip-
ulability of aggregation procedures (see, e.g., Aleskerov et al. (2012); Diss et al. (2012); Pritchard
and Slinko (2006)). Other model-based approaches, in which the orders in the profile are assumed
to be randomly drawn with replacement, measure the homogeneity of the generating process by
the probabilities pi (i = 1, . . . , |C|!) with respect to which the order Ri is drawn: Natural measures
of homogeneity are then the variance of the pis used for instance in Abrams (1976) or the Herfind-

ahl index
∑|C|!

i=1 p
2
i used, for instance, in Gehrlein (1981). Measures that only rely on the values

of the pi’s and not on the concrete associated orders Ri are called non-profile specific measures
(see Gehrlein (1981)). Since they are related to the probabilities pi, they are also called population
specific homogeneity measures in Gehrlein and Lepelley (2010, p. 191).

2An alternative approach would be to directly model the individual preferences by weak orders, i.e. complete and
transitive binary relations P ⊂ C2. To every such relation we then can associate its strict part RP ⊂ C2 by setting
(a, b) ∈ RP if and only if (a, b) ∈ P ∧ (b, a) /∈ P for all a, b ∈ C. The relation RP is then asymmetric and negatively
transitive. Our model thus explicitly assumes that the individual orders R ∈ R arise as strict parts of a weak order.

3



A second line of establishing a notion of homogeneity, which can be called “data-based”, relates
homogeneity not to a probabilistic model but to the actually observed data in a profile. For
example, in the above approaches, one can replace the probability pi of observing the order Ri
in a profile with the relative frequency of the associated order in the actually observed profile.
Then one arrives at a notion of homogeneity that is no related to a generating process, but instead
related to the observed profile. Such measures are called situation specific homogeneity measures
in Gehrlein and Lepelley (2010, p. 192). A further type of such data-based measures are distance-
based measures, which additionally utilize the information in the orders of the profile. These
measures, arising not only in social choice theory but also in statistics and computer sciences (see,
e.g., Fligner and Verducci (1986); Dwork et al. (2001)), rather rely on a geometric understanding
and first introduce a distance between pairs of orders. Based on this distance, one defines a measure
of heterogeneity by computing the average distance of all pairs of orders in the profile. Homogeneity
of the profile is then measured by comparing the maximal distance to this average distance. This
type of measures is local in the sense that not the whole group is examined simultaneously, as only
pairs are considered. Another data-based measure of homogeneity, especially used in social choice
theory (see, e.g., Fishburn (1973)), is the W coefficient introduced in Kendall and Smith (1939).
This measure intends to analyze the whole population simultaneously by looking at the variance of
the vector of the summarized ranks of each consequence. However, note that also this measure, as
shown by Kendall and Smith (1939), could be alternatively represented as the average Spearman
correlation coefficient of pairs of rank-vectors and is thus also local in the above sense.

Beyond concrete proposals for data-based homogeneity measures, axiomatic approaches have
also been studied (see, e.g., Bosch (2006); Alcalde-Unzu and Vorsatz (2013)). Here, the terms con-
sensus and cohesiveness are used instead of homogeneity. For the concept of polarization, a concept
very similar, but not identical to the concept of heterogeneity,3 an axiomatic characterization of a
measure of polarization of profiles is given in Can et al. (2015).

2.3. Minimal Requirements for Measuring Homogeneity

Before introducing a concrete non-local and profile-specific homogeneity measure in the next
section, we first set out to agree on some minimal requirements that, in our eyes, every reasonable
candidate for such a measure should necessarily satisfy. We list these requirements in the following
definition. Afterwards, a discussion of each is given.

Definition 1. A preference homogeneity measure (for a group of size n) is a map An : Rn → [0, 1]
satisfying the following three properties:

(S1) Consensus sensitivity: An(R) = 1 if and only if R = (R∗, . . . , R∗) for some R∗ ∈ R.

(S2) Anonymity: Let φ : {1, . . . , n} → {1, . . . , n} be a bijective map. Then An(R1, . . . , Rn) =
An(Rφ(1), . . . , Rφ(n)) for all (R1, . . . , Rn) ∈ Rn.

(S3) Majority strengthening: Let R ∈ Rn. Define k(j) := {i : Ri = Rj}. If there exists
j0 ∈ {1, . . . , n} such that n > |k(j0)| ≥ bn2 c, choose j1 ∈ {1, . . . , n} \ k(j0) and define

3While the notion of heterogeneity refers here to the diversity of the orders in the profile, polarization means that
the orders in the profile are clustered in two or more “opposite” subgroups. A clear cut rigorous disambiguation
between polarization and heterogeneity for the case of preference profiles is, as far as the authors are aware, not yet
established. For a more elaborate disambiguation between polarization and heterogeneity/inequality in the context
of, for instance, poverty measurement, see, e.g., Esteban and Ray (1994); Duclos et al. (2004).
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φ : {1, . . . , n} → {1, . . . , n} by φ(j) = j0, if j ∈ k(j0)∪ {j1} and φ(j) = j else. Then we have
An(R1, . . . , Rn) ≤ An(Rφ(1), . . . , Rφ(n)).

So, why is it reasonable to require (S1), (S2), and (S3) as a minimal basis for measuring homo-
geneity of preference profiles? Consensus sensitivity states that every measure should be capable
of identifying perfect consensus by attaining its maximal value 1 if and only if all group members
share identical preferences. This is certainly reasonable since it reflects the fact that we know
exactly that the identical profiles are ideal and superior to the non-identical ones with respect to
homogeneity. This knowledge should not get lost by the construction of the measure. Anonymity
ensures that the homogeneity value of a profile does not depend on the order in which the individ-
uals state their preferences, as no individual has greater influence. Finally, majority strengthening
can be interpreted as a weak demand for monotonicity: If a subgroup consisting of at least bn2 c
group members shares identical preferences and one member from outside this subgroup changes
her mind towards this subgroup, then the homogeneity value of the modified profile should not
decrease.

Clearly, all three conditions rely solely on the categorical and not the ordinal scale of mea-
surement of the orders in the profile, i.e. one conceptually only distinguishes between equal and
non-equal orders and does not make use of for example a notion of how similar different orders
are by e.g. counting edges that two different orders have in common. Of course, one could also
establish a notion of (S3) that uses the ordinal structure by stating for instance that if one order
R in the profile is changed towards another order R′ that is more similar to the order of the ma-
jority, then the homogeneity should not decrease. However, this would require a notion of what
the terms “majority” and “more similar order” then exactly mean. Note further that adequately
axiomatizing more subtle aspects like the difference between heterogeneity and polarization seems
to be not possible if one only relies on the categorical scale of measurement of the orders in the
profile. In this sense, the conditions (S1), (S2), and (S3) should indeed be understood as minimal
requirements for a notion of homogeneity that leaves much space for content matter considerations
in the final choice of the measure.4

2.4. The Maximum Consensus Homogeneity

We now introduce a specific homogeneity measure, the so-called maximum consensus homogene-
ity, show that this measure satisfies the minimal requirements given in Definition 1, and discuss
why it is a reasonable choice for our purposes beyond its mere compatibility with the minimal
requirements. The basic idea of the measure is to compare, for each pair (a, b) separately, the max-
imal number of coinciding opinions about that pair in the profile to the maximal possible number
n.5

Some additional notation is needed: Let n ≥ 2 and let R0 ∈ R with ∼R0= {(c, c) : c ∈ C} be
fixed, such that R0 always contains exactly one of the pairs (a, b) or (b, a) for all distinct a, b,∈ C.
For a fixed preference profile R ∈ Rn and a fixed pair of distinct consequences (a, b) ∈ C2, we define
the expressions cR(a, b) := |{i : (a, b) ∈ Ri}| and eR(a, b) := |{i : (a, b) ∈∼Ri}| to be, respectively,
the number of individuals in R that prefer a to b and the number of individuals that are indifferent
between these options.

4An (in parts) similar axiomatization, however stronger, is given in Alcalde-Unzu and Vorsatz (2013) in the
context of measuring cohesiveness of preferences profiles.

5A similar measure is introduced in Can et al. (2015): There, the authors first list a set of axioms for measures
of polarization that uniquely characterize a measure that is closely related to the one used in this work.
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Definition 2. The mapping δn : Rn → [0, 1] defined by

δn(R) :=

∑
(a,b)∈R0

max
{
cR(a, b), cR(b, a), eR(a, b)

}

n ·
(|C|

2

) (3)

for all R ∈ Rn is called maximum consensus homogeneity.

Importantly, note that the definition of δn does not depend on the choice of R0 ∈ R with the desired
properties (see Appendix A1). As a first step in our discussion of the proposed maximum consensus
measure δn, we show that it does indeed satisfy the conditions (S1), (S2), and (S3). Therefore,
we consider it compatible with the minimal requirements a measure of homogeneity should satisfy.
This is the assertion made in the following proposition. The proof consists in straightforwardly
verifying (S1), (S2), and (S3) from Definition 1 and is given in Appendix A1.

Proposition 1. The maximum consensus homogeneity δn satisfies (S1), (S2), and (S3).

So, why is the maximum consensus measure δn a reasonable candidate for measuring homogeneity
and what makes it preferable to the measures discussed in Section 2.2 for our purposes? First,
δn utilizes the information encoded in the orders collected in the inserted profiles and does not
solely rely on the shares pi of identical orders. Accordingly, δn is profile-specific (in contrast to,
e.g., Herfidahl’s index). This certainly is a desirable property, since any measure of homogeneity
should be capable of distinguishing between profiles of very similar yet not identical orders and
profiles of completely opposed orders. Second, δn is not a local measure in the sense of being
only based on pairwise comparisons of individual orders (see the discussion in Section 2.2): For
computing the value δn(R) the whole profile needs to be examined simultaneously. This is a
very desirable property conceptually, since group homogeneity should depend on the group as a
whole rather than on comparisons of pairs of individuals only. Note that, in addition to this
argument, distance-based homogeneity measures also satisfy the minimal conditions (S1) to (S3)
from Definition 1.6 Finally, note that the classical measure W of Kendall and Smith mentioned in
Section 2.2 does not satisfy majority strengthening: For a counterexample, take C = {a, b, c, d, e}
and consider the profiles R = (R1, R1, R1, R2, R3) and R′ = (R1, R1, R1, R1, R3) where relation R1

ranks a b c d e, relation R2 ranks a b c e d and relation R3 ranks e b c a d. Clearly, the majority
strengthening condition (S3) requires assigning higher homogeneity to the profile R

′
, but simple

calculations yield W (R′) = 0.584 < 0.592 = W (R).

3. A Probabilistic Evaluation Framework for Preference Aggregation Functions

Section 3.1 recalls required concepts from Bayesian statistics (see, e.g., Berger (1980); Gelman
et al. (2004) for monographs). Subsequently, based on the concept of preference homogeneity mea-
sures from the previous section, we propose a probabilistic criterion for evaluating the adequateness
of a preference aggregation function S for a fixed group Gn of size n. Specifically, this will involve
three steps: Firstly, in Section 3.2, we introduce a theoretical criterion mu

Gn
(S) that measures the

expected similarity that S yields given the true probability measure PGn with respect to which
the group constitutes different profiles R ∈ Rn. Secondly, reflecting the fact that in reality the

6A formal justification of the non-locality and a discussion of distance-based homogeneity measures in the light
of Definition 1 are given in Appendix 3.
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measure PGn will typically be unknown, Section 3.3 shows how to construct approximations for it
if only the distribution of some homogeneity measure is available instead. Finally, in Section 3.4,
we discuss different methods for estimating the distribution of a homogeneity measure.

3.1. Required Concepts of Bayesian Statistics

Roughly stated, Bayesian theory addresses two fundamental questions: (Q1) How to model an
agent’s beliefs in the light of uncertainty and (Q2) How to update the model once new information
is gained. In classical Bayesian theory as pioneered by de Finetti’s concept of subjective probability
(see, in particular, de Finetti (1974)), Question (Q1) is addressed by the assumption that an agent’s
beliefs/information about any uncertain phenomenon (independent of whether that phenomenon
is random or not) can be perfectly characterized by a unique subjective probability measure π on
the space of potential outcomes of the phenomenon. All reasoning should then be based on this
unique probability measure π.

However, apart from classic Bayesian theory, this uniqueness is often strongly doubted for being
too demanding in regard to the consistency of the agent’s beliefs. Instead, beliefs are assumed
to be only partial in that they specify a whole set M of probability measures compatible with
them. Then, two main approaches are followed: The first one establishes criteria for choosing
one particular distribution from the set M and, subsequently, bases all further analyses on the
chosen representative. The most common choice for such a criterion is Jayne’s maximum entropy
principle (see Jaynes (1957)): Among all measures compatible with the beliefs, choose the one
that is least informative and thus best captures the complete ignorance among the compatible
measures (see Rosenkrantz (1977, Section 3.5)). Particularly, the informativeness of a distribution
used in the definition of the principle is measured by means of Shannon’s entropy (see Shannon
(1949)). For a more recent justification of the maximum entropy principle see, e.g., Landes and
Williamson (2013). The second approach treats the set M of all compatible distributions, also
called credal set7 in this context, as an entity of its own: The agent’s beliefs are represented by
all members of M, not just by one single representative. Clearly, an argument supporting this
approach is that it avoids any selection: Even a well-justified criterion might select a rather bad
representative in certain situations and therefore could yield misleading reasoning. Contrarily,
reasoning based solely on the credal set obviously produces less informative results. For a detailed
discussion of the advantages and disadvantages of the two directions and a decision-theoretical
justification of maximum entropy see Walley (1991, Section 5.12). From a practical point of view,
it often makes sense to consider both approaches simultaneously: Use a well-established selection
criterion (such as maximum entropy) and analyze the credibility and robustness of the derived
inferences by additionally considering the set of inferences drawn by the credal set.

Let us turn now to Question (Q2): Suppose (new) information x about the uncertain phe-
nomenon is gained (e.g. in the form of data). The agent then updates the unique8 measure π
describing her beliefs, also called prior distribution in this context, to a posterior measure π|x
according to Bayes’ rule. This posterior measure π|x is then assumed to appropriately express
the updated beliefs about the uncertain phenomenon given the data x. In the specific context

7The name credal set is attributed to Isaac Levi (see Levi (1980)). For the general framework of imprecise
probabilities, working with sets of probabilities or interval-valued assignments, see Walley (1991) and Weichselberger
(2001), or, for a recent introduction, see Augustin et al. (2014).

8For Question (Q2), for the sake of brevity, we restrict presentation to classic Bayesian theory. For discussions
on how to adequately update credal sets in light of new information see, e.g., the discussions in Walley (1991).
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of Bayesian statistics as used here, this translates as follows: Suppose some random variable
X : Ω → X , mapping from a probability space (Ω,A,P) to a measurable space (X , σ(X )), for
which we can specify its distribution up to a parameter θ from a parameter space Θ, i.e. we know
X ∼ Pθ given θ ∈ Θ is the true parameter. Following the ideas of Bayesian theory described above,
we can then describe the uncertainty about the true parameter θ by a random variable V : Ω→ Θ
taking values in the measurable space (Θ, σ(Θ)) with prior distribution π, i.e. V ∼ π, and we know
that Pθ(A) = P(X ∈ A|V = θ) for all θ ∈ Θ and A ∈ σ(X ). After having observed a sample x of
X, one then computes the posterior distribution π|x by setting π|x(B) := P(V ∈ B|X = x) for all
B ∈ σ(Θ) and utilizing Bayes’ rule.

If an estimate for the parameter rather than the posterior measure itself is of interest, popular
choices are to use the expectation, the median or the mode of the posterior distribution. For sake
of computational convenience, so-called conjugate families of distributions are often used: A family
of distributions D1(Ξ) with parameter space Ξ is called conjugate to another family D2(Θ) with
parameter space Θ if, whenever π ∈ D1(Ξ) and X ∼ Pθ ∈ D2(Θ), it holds that π|x ∈ D1(Ξ),
where x is an observation of X. Hence, such models guarantee that the posterior belongs to the
same distribution family as the prior and, therefore, that the posterior as well as its moments can
basically be computed by updating only the parameter of the prior distribution. An example for
such a conjugate model is the Dirichlet-categorical model, which will be used in Section 3.4.

3.2. A Probabilistic Criterion for Evaluating Preference Aggregation Functions

We now turn to the first step of the construction of our criterion. Therefore, for the mo-
ment, we assume the probabilities according to which the members of the group Gn constitute the
different profiles contained in Rn are known. More formally, we consider the measurable space
(Rn, 2Rn) together with a known group-specific probability measure PGn , and we interpret the
value PGn({R}) as the probability that the members of Gn constitute the preference profile R. In
order to utilize the probabilistic information (given by PGn) in the construction of our criterion,
we want to compute the similarity of the individual orders collected in R and the consensus order
S(R) that an aggregation rule S yields in expectation. However, before such a criterion can be
defined, we need to be more precise about what we mean by the similarity of a consensus relation
to a profile of relations. Specifically, we will consider similarity measures of the following kind:

Definition 3. Let u : R+ → R+ be a monotone increasing function and let S : Rn → Q be a
preference aggregation function. The mapping

Y u
S : Rn → R , R 7→

n∑

i=1

u(|Ri ∩ S(R)|) (4)

is called the similarity measure for S with respect to u.

The basic idea underlying a similarity measure in the above sense is to quantify similarity of
pairs of relations R1 and R2 by computing the cardinality of their intersection |R1 ∩ R2| or, in
other words, by counting the edges shared by both relations. An axiomatic justification is given
in Kemeny and Snell (1962), were the authors show that the distance measure d(R1, R2) := |R14
R2| = |(R1 ∪ R2) \ (R1 ∩ R2)| = |R1| + |R2| − 2|R1 ∩ R2| is unique in satisfying four desirable
conditions (including the properties of a metric). Together with the assumption that similarity
of R1 and R2 should be high whenever their uniquely determined distance d(R1, R2) is low and
vice versa, using |R1 ∩R2| = 1

2(|R1|+ |R2| − d(R1, R2)) = 1
2(|C|(|C|+ 1)− d(R1, R2)) is a natural
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choice. For a fixed profile R = (R1, . . . , Rn), the idea of a similarity measure Y u
S is then to compute

the pairwise similarity |Ri ∩ S(R)| between every individual order Ri and the group order S(R)
separately and, afterwards, sum up monotone transformations u(|Ri ∩ S(R)|) of these values. The
role of u is to control the influence of high similarity values |Ri0 ∩ S(R)| for certain orders Ri0 on
the global similarity Y u

S (R): If u is chosen to be a convex function, high pairwise similarity values
will have a strong influence on the global similarity, whereas if u is concave, then increasing the
similarity of an inadequately represented group member contributes more to global similarity than
doing the same for a group member that is already appropriately represented.

Once having decided which specific similarity measure Y u
S to use, one can go on to construct a

quality criterion for the aggregation function S: We evaluate S by computing the expectation of
the chosen similarity function with respect to the group specific probability PGn .

Definition 4. Let Gn be a group consisting of n members and let PGn denote its group specific
probability measure on (Rn, 2Rn). For a preference aggregation function S and a monotone in-
creasing function u : R+ → R+ with associated similarity measure Y u

S , we define the value

mu
Gn(S) := EPGn (Y u

S ) =
∑

R∈Rn
Y u
S (R) · PGn({R}) (5)

Then mu
Gn

(S) is called the expected similarity of the aggregation function S with respect to Y u
S .

The criterion mu
Gn

(·) is intended to be applied as follows: Given two aggregation functions S1 and
S2 and a group Gn that agrees to measure similarity by Y u

s , the group should prefer aggregation
rule S1 whenever mu

Gn
(S1) ≥ mu

Gn
(S2), i.e. if S1 yields higher expected similarity than S2.

In practice, this criterion will often not be directly applicable, since PGn cannot be fully speci-
fied. However, in many applications there will be at least some information about the homogeneity
structure of the preferences of the group under investigation. In the following Section 3.3, we
demonstrate how to construct approximations for the true group-specific measure PGn if this infor-
mation is given in the form of the probability distribution of some homogeneity measure An and
how these approximations can be utilized for estimating expected similarity.

3.3. Constructing Approximations for Expected Similarity

This leads us to the second step of our construction: Let An : Rn → [0, 1] denote a fixed
preference homogeneity measure attaining exactly the values k1 < k2 < · · · < kξ ∈ [0, 1]. We
assume that the available information on the homogeneity of Gn can be specified as the probability
distribution of this homogeneity measure An. More formally, we (for the moment) assume to

know α := (α1, . . . , αξ) ∈ ∆ξ−1 := {x ∈ [0, 1]ξ :
∑ξ

i=1 xi = 1} such that PGn(An = kj) = αj for
all j = 1 . . . , ξ. Substantially, this relates to the assumption that, even if the full group-specific
measure PGn is unknown, we still know the probabilities α that the group Gn constitutes a certain
degree of homogeneity, which is characterized by the chosen preference homogeneity measure An.
Given this, our goal is to approximate the true underlying group-specific probability measure PGn
such that the available knowledge on the distribution of An is utilized in the best possible way.

To reach this goal, first note that our assumption naturally characterizes a set of probability
measures on (Rn, 2Rn), namely the credal set Mα of all probability measures that are compatible
with the available information on the distribution of An. Formally, we have

Mα :=
{
π ∈ P(Rn) : π(A−1

n (kj)) = αj for all j = 1, . . . , ξ
}

(6)
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where P(Rn) denotes the set of all probability measures on the space of profiles (Rn, 2Rn). Con-
sequently, any element of Mα is a candidate for the true group specific measure and, therefore,
a plausible candidate for approximating it. As discussed in Section 3.1, (at least) two different
approaches exist for dealing with the ambiguity between the compatible measures in Mα in such
situations: Applying the maximum entropy principle to Mα in order to specify the least infor-
mative measure or directly working with the set Mα as an entity of its own. We contrast both
approaches and the approximations for expected similarity obtained by them in the sequel:

Maximum entropy approach: Given the distribution of An, we know that the probability of the
homogeneity class A−1

n (kj) := {R ∈ Rn : An(R) = kj} equals αj . Contrarily, there is complete
ignorance between all measures fixing the probabilities of these classes. Applying the maximum
entropy principle, we choose the representative among the compatible measures in Mα that max-
imizes Shannon’s entropy and that therefore can be viewed as the least informative one. The
measure satisfying the desired property is induced by the assignment

P∗α({R}) :=
αφ(An(R))

|A−1
n (An(R))|

(7)

for all R ∈ Rn, where φ(kj) := j for j = 1, . . . , ξ. Among all measures fixing the probability values
of the homogeneity classes A−1

n (kj) to αj , the resulting probability P∗α is exactly the one giving
equal probability mass to all profiles belonging to the same class. Therefore, beyond maximizing
entropy, the measure P∗α is also intuitively appealing: Why should two profiles with coinciding
homogeneity value be assumed to have different probability?

Credal set approach: Directly approximating PGn with the credal set Mα protects against
possibly misleading inferences based on an unlucky selection of a representative. Obviously, the
set Mα contains exactly these probability measures that are compatible with the probabilities αj
of the homogeneity classes A−1

n (kj). By construction, we therefore have PGn ∈Mα and P∗α ∈Mα,
i.e. the true measure and the maximum entropy measure are contained in the credal set.

By using the two approaches just described, the expectation in (5) can now straightforwardly
be approximated by replacing the true measure PGn in the expression with the corresponding
approximation P∗α or Mα. Note that for the credal set approach this will lead to a set-valued ap-
proximation, each element of the set representing the expected similarity with respect to a different
distribution from Mα. Formally, this leads to the following two approaches for approximation.

Maximum entropy approximation: Compute the expected similarity with respect to the maxi-
mum entropy measure P∗α. We then arrive at the following real-valued approximation:

mu∗
Gn(S) := EP∗α(Y u

S ) =
∑

R∈Rn
Y u
S (R) · P∗α({R}) (8)

The maximum entropy is represented by a single real number and, therefore, allows for easy compar-
isons of different aggregation functions S1 and S2. However, the maximum entropy approximation
P∗α might differ from the true underlying measure PGn in a way yielding mu∗

Gn
(S1) > mu∗

Gn
(S2) but

mu
Gn

(S2) > mu
Gn

(S1) and, thus, might produce misleading comparisons.

Credal approximation: Compute the expectation with respect to the set Mα, i.e. the interval
ranging from the lowest to the highest expected similarity value compatible with a measure from
Mα. We arrive at the following interval-valued approximation:

Mu
Gn(S) := [Mu

Gn(S),M
u
Gn(S)] :=

[
inf

π∈Mα

Eπ(Y u
S ), sup

π∈Mα

Eπ(Y u
S )
]

(9)
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Again, by construction, it holds that mu
Gn

(S) ∈Mu
Gn

(S) and mu∗
Gn

(S) ∈Mu
Gn

(S) and thus both the
true expected similarity value and its maximum entropy approximation are contained in the interval
given by the credal approximation. The smaller the width of the credal interval, the less ambiguity
underlies the situation. Consequently, analyses based on the maximum entropy approximation are
then more reliable.

For the computation of the approximations (8) and (9), we give a proposition showing that,
once the preimages of the homogeneity values are computed, one only has to compute the scalar
products of the weight vector α with corresponding fixed vectors associated to the previously
computed preimages. This will prove very valuable also to our study in Section 5. Checking the
validity of the proposition is straightforward and therefore omitted.

Proposition 2. For the maximum entropy approximation and the credal approximation defined in
(8) and (9), the following equations hold, respectively:

i) mu∗
Gn

(S) =
∑ξ

j=1

(
αj · 1

|A−1
n (kj)|

∑
R∈A−1

n (kj)
Y u
S (R)

)

ii) Mu
Gn(S) =

∑ξ
j=1

(
αj ·minR∈A−1

n (kj)
Y u
S (R)

)

iii) M
u
Gn(S) =

∑ξ
j=1

(
αj ·maxR∈A−1

n (kj)
Y u
S (R)

)

3.4. Estimation of Homogeneity Class Probabilities

Finally, we turn to the last step of the construction described at the beginning of Section 3: In
real-world applications, not only the group-specific probability PGn , but also the precise homogene-
ity class probabilities αj will typically be unknown. Accordingly, an estimate α̂ := (α̂1, . . . , α̂ξ) for
these probabilities has to be obtained. In principle, different ways of addressing this estimation task
are conceivable. Firstly, one can draw on expert knowledge, i.e. ask experts from the investigated
field for their probability estimates of the homogeneity classes. If more than one expert is involved,
an estimate could be received by using either an weighted average of the experts’ estimates or by
directly working with the credal set containing all of them.

Secondly, one can collect data. For this purpose, a questionnaire can be designed consisting
of d items (covering a relevant topic), each of which demanding the participant to order q := |C|
alternatives by preference. Each of the n group members participates in the survey such that,
after combining the questionnaires, each item produces a preference profile of the relevant group
and, therefore, a collection of d preference profiles R1, . . . , Rd is received. For each of these profiles
we compute the homogeneity measure and receive data x := (x1, . . . , xd), where xs := An(Rs) for
s = 1, . . . , d. We then estimate αj by computing relative frequencies

α̂j :=
1

d
·
∑d

s=1
1{kj}(xs) (10)

Finally, expert knowledge and available data can be combined by following a Bayesian approach:
A preference homogeneity measure An : Rn → [0, 1] defines a categorically distributed random
variable9 taking values in {k1, . . . , kξ}. Specifically, since αj = P(An = kj), we have An ∼ Cat(α).

9A random variable X with possible values {x1, . . . , xk} is called categorically distributed with parameter vector
λ = (λ1, . . . , λk) ∈ ∆k−1, formally X ∼ Cat(λ), if the probability that X attains value xi equals λi for all i = 1, . . . , k.
The categorical distribution is that special case of the multinomial distribution (see, e.g., Berger (1980, p. 562))
where the sample size n = 1.
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If we, as described in Section 3.1, interpret the parameter α = (α1, . . . , αξ) as a random quantity

with a Dirichlet distribution with (hyper-)parameter γ := (γ1, . . . , γξ) ∈ Rξ+ as a prior10, we
can use the data (x1, . . . , xd) from above and compute the posterior distribution of α given x.
For specifying the parameter γ of the prior distribution drawing on expert knowledge seems to
be reasonable. As the family of Dirichlet distributions is conjugate to the family of categorical
distributions (see Section 3.1), the posterior is again a Dirichlet distribution with updated posterior-
parameter γ|x := (γ1|x, . . . , γξ|x), where γj |x := γj +

∑q
s=1 1{kj}(xs) for j = 1, . . . , ξ.11 The

common choice for estimating α is then the posterior expectation given by

α̂j :=
γj |x∑ξ
l=1 γl|x

(11)

Which approach to follow also depends on the situation: If q is large and the homogeneity measure
can attain many different values, taking the relative frequencies will often fail, since doing so
requires too many data points to be stable. Particularly, in such cases the Bayesian approach has
certain advantages. However, this approach needs to specify a hyper-parameter γ.12 Note that,
when it comes to eliciting experts, the advantages of the proposed framework become perfectly
clear: Instead of directly asking experts for their probability estimates on the space of profiles
Rn, which contains (q!)n different elements, one could let them specify a distribution α on the
much smaller space {k1, . . . , kξ}. Due to its very intuitive interpretation as a relatively small
homogeneity scale, the distribution α is much easier to enquire about: How homogeneous do you
think the considered group is in probability?

4. Aggregation Rules investigated in the Study

In Section 4.1, we briefly survey some common preference aggregation procedures and demon-
strate how they straightforwardly extend to our definition of preference aggregation functions.
Importantly, it should be noted that all preference aggregation procedures listed in the following
section 4.1 are adaptations of the classic rules from literature to the framework that is used in the
present paper. In Section 4.2, we shortly describe a new aggregation method, recently proposed
in Schollmeyer (2017), which is based on a generalized concept of quantiles on complete lattices.

4.1. Adaptations of some common Aggregation Procedures

Mean rank (Borda count): For R ∈ R and a ∈ C, let rankR(a) denote the rank of alternative
a with respect to R.13 The mean rank aggregation function MR : Rn → Q is defined by (a, b) ∈

10The Dirichlet distribution with parameter vector µ = (µ1, . . . µk) ∈ Rk+ is a probability distribution on the unit
simplex ∆k−1. It can therefore be used as a prior distribution for the parameter of a categorical distribution with k
categories. For details, see, e.g., Berger (1980, p. 561).

11For further details concerning the Dirichlet-Categorical Model see, e.g., Gelman et al. (2004).
12If no expert knowledge for specifying the hyper-parameter is available, a so-called near-vacuous prior model, such

as the imprecise Dirichlet model (IDM), can be chosen (see Walley (1996) for the original work or Bernard (2005)
for further interesting properties).

13Formally, we have rankR(a) := |{b ∈ C : (a, b) ∈ R}| + 1
2
|{b ∈ C : (a, b) ∈∼R ∧a 6= b}| + 1. Note that this

definition of the rank, as common in statistics, assigns the mean value of all possible ranks to the members of the
equivalence classes of ∼R (see for instance, Yule and Kendall (1924)). Other, less common, choices are to assign to
these consequences the minimum or the maximum rank.
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MR(R) if and only if
∑n

i=1

(
rankRi(a) − rankRi(b)

)
> 0, where R ∈ Rn. Specifically, the group

assigns each alternative its average rank and prefers alternative a to alternative b iff the latter
achieves a strictly lower average rank. a and b are equivalent with respect to ∼MR(R) if and only
if they have equal average rank in the profile R.

Condorcet’s method: The Condorcet aggregation function CO : Rn → Q is defined by (a, b) ∈
CO(R) if and only if (cR(a, b) > cR(b, a) ∧ cR(a, b) > eR(a, b)), where R ∈ Rn. Hence, for each
pair (a, b) we decide if the majority of the group prefers a to b or vice versa or if the majority
of the group is indifferent between a and b. The consequences a and b are considered equivalent
with respect to ∼CO(R) if and only if either at least half of the group is indifferent between them
or an equal number of persons prefer a to b and vice versa. Importantly, note that this is one
adaptation of Condorcet’s method to our framework: In principle there may be other plausible
ways of defining the group’s indifference relation.

Instant runoff (Hare’s method): Instant runoff is a sequential aggregation procedure: In the first
step, all alternatives with the fewest number of first-place votes are excluded from C. These form
the alternatives that are least preferred by the group, and between them the group is indifferent.
Afterwards, we exclude the alternatives with the fewest first-place votes in the profile on the
reduced space of alternatives and receive a set of alternatives that the group prefers second least.
Again, between these alternatives the group is indifferent, but each of them is preferred to every
alternative excluded in the first step. Successively repeating this procedure, we end up with a set of
optimal options with the same number of first-place votes. This describes a preference aggregation
function IR : Rn → Q defined by (a, b) ∈ IR(R) if and only if a is excluded at a later stage than
b, where R ∈ Rn. The consequences a and b are equivalent with respect to ∼IR(R) if and only if
they are excluded at the same stage of the procedure.

Coombs’ rule:14 The basic idea of Coombs’ rule is very similar to that of instant runoff voting,
as it is also based on sequential exclusion of alternatives. However, in contrast to instant runoff
voting, we exclude the alternatives with the maximal number of last-place votes in every step. The
corresponding aggregation function CM : Rn → Q is defined by (a, b) ∈ CM(R) if and only if a is
excluded at a later stage than b, where R ∈ Rn. Moreover, a and b are equivalent with respect to
∼CM(R) if and only if they are excluded at the same stage.

Kemeny’s rule:15 Given a profile R := (R1, . . . , Rn) ∈ Rn, the idea of Kemeny’s rule is to choose
that consensus order Q ∈ R that minimizes the sum of the distances d(Ri, Q) to the individual
orders (see Section 3.2). Formally, we say Q∗ is a Kemeny consensus ranking for R whenever it
holds that Q∗ ∈ argminQ∈R

∑n
i=1 d(Ri, Q) =: KE(R). Since such Q∗ will generally not be unique,

in order to define an aggregation function from this rule, we need to choose a choice function
f : 2R \ {∅} → R satisfying f(C) ∈ C for all C ∈ 2R \ {∅}. The Kemeny aggregation function
KEf : Rn → R with respect to f is then given by KEf (R) := f(KE(R)) for all R ∈ Rn.16 In

14Cf. Coombs and Cohen (1984) for a discussion or Grofman and Feld (2004) for comparisons with Hare’s method.
15Originally proposed in Kemeny (1959); some nice properties of the method are shown in Young and Levenglick

(1978). Generally, note that determining a Kemeny consensus ranking for R is NP-hard (see Bartholdi et al. (1989).
Also, compare Ali and Meila (2012) for a comparison of algorithms alleviating the NP-hardness.

16Note that, since
∑n
i=1 d(Ri, Q) is minimal iff

∑n
i=1 |Ri ∩Q| is maximal (see Section 3.2), this implies Y idKEf

(R) ≥
Y idS (R) for all R ∈ Rn for every other preference aggregation function S, where id(x) := x for all x ∈ R. Consequently,
this implies EP(Y idKEf

) ≥ EP(Y idS ) for any probability measure P and, thus, Kemeny’s rule is superior to every other
method if similarity is measured based on the function u = id.
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the study in Section 5, we enumerated the orders and defined f(C) = Rj0 , where j0 is the smallest
index of an order belonging to C.

Dictatorship: For i0 ∈ {1, . . . , n}, the dictatorship aggregation function DIi0 : Rn → Q is
defined by (a, b) ∈ DIi0(R) iff (a, b) ∈ Ri0 , where R ∈ Rn. Hence, the group prefers a to b whenever
individual i0 does. Even if this does not seem like the fairest way of aggregating preferences, it
might be worth investigating how the dictatorship function performs in comparison to the others.

4.2. An aggregation rule based on quantiles on complete lattices: commonality sharing

We now briefly sketch the idea of the commonality sharing aggregation rule that was recently
proposed in Schollmeyer (2017) and that initially arose in a different context, namely through
attempts to generalize concepts of centrality and outlyingness of observations to partially ordered
data. Opposed to the other methods investigated here, this aggregation procedure does not locally
look at different alternatives or pairs of alternatives, but takes into account the full order of all
individuals and embeds these orders into the complete lattice of binary relations on C equipped with
the set intersection and set union as meets and joins, respectively. Then, a notion of outlyingness
in this space, described in Schollmeyer (2017), is used to select one or more orders of individuals
who are most centered in the population. Concretely, the following procedure can be applied:

For a given minimum size k, one looks at every possible sub-population M i
k consisting of at

least k individuals. Then, one considers the set Qk of all individuals qjk who share with every sub-
population M i

k all commonalities of this sub-population (i.e., all edges (a, b) that the population M i
k

has in common should also be edges of every order qjk in Qk). The set Qk of individuals who share
with every sub-population of size ≥ k its commonalities is to some extent representative for every
such sub-population. If k is too small, then Qk is empty. In contrast, for k = n the set Qk is the
whole population. Now, for a given order q, the smaller the smallest k such that Qk still contains
q, the more central is the order q, since then q is a representative for a bigger collection of sub-
populations including smaller sub-populations with bigger and thus more specific commonalities.
Finally, to select a consensus order, choose k as small as possible under the restriction that Qk 6= ∅
and choose the arising Qk as the set of candidates for the consensus order. If Qk has more than one
element then for a unique consensus order choose arbitrarily from the set Qk or apply some further
aggregation rule to the orders in Qk. In the study of Section 5 we apply the first approach and,
like in the procedure for Kemeny’s rule, choose that most central order with the smallest index.

Note that the commonality sharing consensus rule is in fact a non-local rule in the sense that
if for example two individuals in a profile both prefer all alternatives in the set {a, b, c} over the
alternatives in the set {d, e, f}, but with different orders within these sets, then the consensus order
could possibly change if the individuals swap their orders within the set {a, b, c} with each other
while maintaining their orders within the set {d, e, f}. Thus, the orders do in fact play a role as a
whole. This is the main difference from the aggregation rules of Section 4.1 (except dictatorship):
There, for example, it does not matter which individual an alternative gets its score from in the
mean rank aggregation or where edges for pairs of alternatives in Condorcet’s method are counted
without differentiating between edges belonging to the same individual and edges belonging to
different individuals. Note that commonality sharing can be computed in O(n · |C|2) time, much
simpler than one would expect from the conceptual description.
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5. A Simulation Study for the Case n = 8 and |C| = 4

In this section, we apply the evaluation framework developed in Sections 2 and 3 to the aggre-
gation functions discussed in Section 4. Specifically, we design a study allowing for the comparison
of the appropriateness of these aggregation functions for groups of varying degrees of homogeneity
in Section 5.1 and then discuss the results in Section 5.2.

5.1. Setup of the Study

Throughout this study, we consider groups G8 consisting of n = 8 group members, each of
which has ranked |C| = 4 consequences. We further assume that within the individual preferences
there is no indifference, i.e., we restrict analysis to the set H of all strict weak orders R ∈ R
satisfying ∼R= {(c, c) : c ∈ C}. In order to analyze the appropriateness of different aggregation
functions S for groups of varying degrees of homogeneity, we compute and compare the maximum
entropy approximation from (8) and the credal set approximation from (9) for different choices of
the homogeneity class probabilities α. Therefore, we need to specify three things: A preference
homogeneity measure An in the sense of Definition 1, a similarity measure Y u

S in the sense of
Definition 3, and a sequence of probability vectors α[i], each determining a distribution of An while
representing a different degree of group homogeneity.

Firstly, for An, we choose the maximum consensus homogeneity δn from Definition 2 restricted
to the domain H8, which in this case reduces to δ8(R) = 1

48

∑
(a,b)∈R0

max
{
cR(a, b), cR(b, a)

}
for all

R ∈ H8. Secondly, for measuring similarity between a profile and its consensus order with respect
to an aggregation function S, we consider three different choices for the function u in the similarity
measure Y u

S , taking into account the discussion after Definition 3: The linear function u1(x) = x
giving equal influence to all group members, the convex function u2(x) = x2 giving higher influence
to appropriately represented group members, and the concave function u3(x) = 36 − (6 − x)2

strengthening the influence of inadequately represented members. Note that u1 and u3 were also
proposed in Kemeny (1959).

Finally, in order to model varying degrees of group homogeneity of the considered groups G8,
first note that δ8 attains the values k1 = 24

48 < k2 = 25
48 < · · · < k25 = 48

48 , where 1
2 indicates minimal

homogeneity and 1 indicates perfect homogeneity of the inserted profile. Accordingly, assuming
δ8 to be categorically distributed with parameter vector αmin = (1, 0, . . . , 0) obviously represents
a group G8 with a lower degree of homogeneity than assuming the same for parameter vector
αmax = (0, . . . , 0, 1). Generalizing from this idea, we can construct a sequence α[0], . . . , α[50] ∈ ∆24

of parameter vectors representing groups G8 of increasing degrees of homogeneity by setting

α
[i]
j := Bin

(
24, i

50

)
({j}) =

(
24
j

)
· ( i

50)j · (1− i
50)24−j (12)

with i = 0, . . . , 50 and j = 0, . . . , 24, where α
[i]
j denotes the jth component of the ith parameter vec-

tor and Bin(n, p) denotes the binomial distribution with parameters n and p. Using the constructed
sequence then allows for analyzing the performance of different aggregation function for varying
degrees α[i] of homogeneity. Note that, due to Proposition 2, computation of the approximations
is possible without computing the whole assessment for every single α[i].

5.2. Discussion of the Results

The results of the study described in Section 5.1 for the similarity measure Y u2
S are visualized

in Figures 1 and 2, while the results for the similarity measures Y u1
S and Y u3

S can be found in
Figures 3 and 4 in Appendix A4. We will refer to these in our discussion at several points.
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Figure 1 shows the credal approximation Mu2
Gn

(S) (gray shaded region) and the maximum
entropy approximation mu2∗

Gn
(S) (black line) for different choices of the aggregation function S

along an increasing degree of group homogeneity α[i], where i ∈ {1, . . . , 50}. Specifically, an
abscissa value of i indicates that the information on the group G8 is given by δ8 ∼ Cat(α[i]). The
ordinate ranges from 0 to 288, where 0 is the minimal and 288 is the maximal attainable expected
similarity value.

Clearly, for all investigated aggregation functions the width of the intervals Mu2
Gn

(S) does de-
pend on the homogeneity of the group, where very homogeneous and very inhomogeneous groups
tend to produce more narrow intervals than groups of medium homogeneity. Moreover, for all
functions except instant-runoff, both the upper expected similarity M

u
Gn(S) and the maximum en-

tropy approximation mu2∗
Gn

(S) strictly increase along increasing homogeneity. Contrarily, the lower
expected similarity Mu

Gn(S) does not strictly increase along homogeneity for mean rank, dictator-
ship, Kemeny’s rule, and commonality sharing, while it does for the other functions (the same is
true if analysis is based on Y u1

S or Y u3
S ). Finally, the results show that Kemeny’s rule, common-

ality sharing, and Condorcet’s method produce rather narrow credal approximations compared to
the other functions, whereas dictatorship, Coombs’ rule, and instant-runoff lead to rather wide
intervals. Note that the comparison of the width of the credal intervals provides highly relevant
information as it indicates how sensitively the evaluation of an aggregation procedure reacts to
choosing one (possibly wrong) approximating measure from the credal set: If we mistakenly evalu-
ate an aggregation function by using maximum entropy, the average error we make will be higher
for aggregation functions whose evaluation reacts very sensitively to the choice of a representative.

Figure 2 consists of two different graphs: The upper graph compares the lower expected simi-
larity Mu2

Gn
(S) along an increasing degree of homogeneity α[i] for all aggregation procedures. With

the exception of very inhomogeneous groups (i ≤ 2) where dictatorship exceeds Kemeny’s rule, it
shows that Kemeny’s rule and commonality sharing outperform all other methods independent of
the underlying α[i]. Comparing commonality sharing with Kemeny’s rule, we see that the latter
exceeds the former for groups with i ≥ 6, while the opposite is the case for inhomogeneous groups
with i ≤ 5. Further, it turns out that for rather inhomogeneous groups (i ≤ 18), choosing a
dictatorship performs better than all other methods except commonality sharing and Kemeny’s
rule. For medium to perfect homogeneity (i > 18), however, Condorcet’s rule shows the third best
performance, for high homogeneity (i ≥ 35), very closely followed by mean rank and Coombs’ rule.
Moreover, it is interesting to note that instant-runoff is outperformed by all other aggregation func-
tions independent of the underlying α[i]. For Y u1

S and Y u3
S (see Appendix A4), the main difference

is that the lower expected similarity values Mu1
Gn

(S) and Mu3
Gn

(S) of Kemeny’s rule exceed those

of the other functions, independent of α[i].
Comparing the maximum entropy approximations mu∗

Gn
(S) in the lower graph gives a similar

picture. Again, commonality sharing and Kemeny’s rule, whose (numerically) coinciding approx-
imations cannot be distinguished, are superior to all the other aggregation methods. However,
mean rank aggregation now outperforms Condorcet’s method independent of homogeneity and is
already superior to a dictatorship for groups with a rather low homogeneity value (i ≥ 10). For
homogeneous groups (i ≥ 30), all methods except dictatorship and instant-runoff show a very
similar performance. Again, instant-runoff is outperformed by all other functions.
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Figure 1: The figures shows the credal approximation Mu2
Gn

(S) (gray shaded region) and the maximum entropy
approximation mu2∗

Gn
(S) (black line) for different choices of the aggregation function S along an increasing degree of

group homogeneity α[i], where i ∈ {1, . . . , 50} and u2(x) = x2.

6. Summary, concluding remarks, and discussion

In this paper, we introduced the expected similarity mu
Gn

(S) as a theoretical criterion for
evaluating and comparing the performance of different preference aggregation functions S if per-
fect probabilistic information on the homogeneity structure of the group members’ preferences is
available. Approaches for approximating the true value of mu

Gn
(S) under imperfect probabilistic

information are fundamentally based on the concept of preference homogeneity measures, for which
we gave both a set of minimal requirements and a concrete proposal. Specifically, we studied two
different ways to approximate mu

Gn
(S): the maximum entropy approximation and the credal set

approximation. Finally, by comparing these approximations, we investigated the performance of
six common aggregation procedures as well as the recently proposed commonality sharing rule by
means of a simulation study for groups along varying degrees of homogeneity. Specifically, we were
able to show that the adequateness of a preference aggregation function for a fixed group indeed
depends on the group’s homogeneity structure.

In future research this framework needs to be applied to real-world data. Particularly, we plan
to apply the proposed estimation procedures and evaluation framework to survey data on political
opinions and investigate whether groups of significantly differing degrees of homogeneity can be
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Figure 2: The upper graph shows the lower expected similarity Mu2
Gn

(S) for different choices of the aggregation

function S along increasing degrees of group homogeneity α[i], where i ∈ {1, . . . , 50} and u2(x) = x2. The lower
graph shows the same for the maximum entropy approximation mu2∗

Gn
(S).

identified in empirical studies. Beyond this, three further extensions seem particularly promising:
Partial individual preferences: The preferences of the group members are modeled by asymmet-

ric and negatively transitive relations R ∈ R. This explicitly excludes the case of group members
judging certain consequences in C incomparable (since incomparability with respect to R is treated
as indifference, see Section 2.1 and Footnote 2 in particular). Allowing also for incomparability of
consequences could lead to a more realistic model in certain situations. Of course, this requires
appropriate adaptations of the aggregation rules from Section 4.

Axiomatic foundations: The conditions that have been listed in Definition 1 are to be under-
stood as minimal requirements for measures of preference homogeneity. However, they are rather
weak, as they only look at the profile on a categorical scale. Going beyond the categorical scale in
the spirit of Bosch (2006) and Alcalde-Unzu and Vorsatz (2013) could give a more detailed picture
of what is actually meant by homogeneity on an axiomatic level.

Efficient algorithms for simulation: In Section 5, we presented a study for a group of n = 8 mem-
bers ranking |C| = 4 alternatives. For this setting, the approximations for expected similarity were
able to be computed analytically. However, for larger settings this becomes computer-intensive,
and computation using simulations has to be applied instead. A proposal for simulation designs
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is given in Appendix A2. More efficient designs, comparable to the MCMC-driven approaches
already used in the statistical analysis of networks (see, e.g., Hunter et al. (2012)), are planned to
be investigated in future research.
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Appendix

A1: Proof of Proposition 1

First, note that the definition of δn does not depend on the choice of R0 ∈ R with ∼R0= diag(C2),
since every such relation contains exactly one of the pairs (a, b) and (b, a) for all a, b ∈ C with
a 6= b and summation is commutative. Moreover, one easily verifies that Im(δn) ⊂ [0, 1]. Hence,
δn is well-defined.

(S1): We have to show that 1 is attained iff the profile consists of identical orders. Obviously,
δn equals 1 for identical profiles by construction. In contrast, if R := (R1, . . . , Rn) ∈ Rn is a
non-identical profile, a pair (a, b) ∈ R0 exists such that max

{
cR(a, b), cR(b, a), eR(a, b)

}
< n. This

gives δn(R) < 1.

(S2): Let φ : {1, . . . , n} → {1, . . . , n} be a bijective map and R := (R1, . . . , Rn) ∈ Rn. By
definition, we have c(R1,...,Rn)(a, b) = c(Rφ(1),...,Rφ(n))(a, b) and e(R1,...,Rn)(a, b) = e(Rφ(1),...,Rφ(n))(a, b).

This implies δn(R1, . . . , Rn) = δn(Rφ(1), . . . , Rφ(n)).

(S3): Let R := (R1, . . . , Rn) ∈ Rn be a preference profile such that exactly k ∈ {bn2 c, . . . , n−1}
group members share identical preferences. Without loss of generality, we assume it holds that
R1 = · · · = Rk =: R∗ (otherwise we can rearrange the profile in this way due to (S2)). For
all distinct pairs (a, b) ∈ C2 it then holds that fR(a, b) := max

{
cR(a, b), cR(b, a), eR(a, b)

}
≥ k,

since each pair (a, b) is identically ranked within the orders R1, . . . , Rk. Choose an arbitrary index
j0 ∈ {k+1, . . . , n} and define Q := (Q1, . . . , Qn) to be the profile that arises from R by exchanging
order Rj0 with order R∗. We show that δn(R) ≤ δn(Q). Therefore, let a0, b0 ∈ C, a0 6= b0 be
arbitrary but fixed. We distinguish two cases:

Case 1: fR(a0, b0) = k. Clearly, this implies fQ(a0, b0) = k + 1 > k = fR(a0, b0), since (a0, b0)
is then identically ranked by exactly Q1, . . . , Qk and Qj0 .

Case 2: fR(a0, b0) > k. For arbitrary but fixed R ∈ R and a, b ∈ C, a 6= b, define the expression
R{a,b} := {(x, y) : x, y ∈ {a, b} ∧ (x, y) ∈ R}. We then distinguish two sub-cases:

Sub-case 1: ∀ j ∈ {k + 1, . . . , n} : R∗{a0,b0} 6= (Rj){a0,b0}.
This implies that (Rj1){a0,b0} = (Rj2){a0,b0} for all j1, j2 ∈ {k + 1, . . . , n} (and that k = bn2 c and
n is odd), since otherwise fR(a0, b0) > k would not be possible. Hence, the pair (a0, b0) is ranked
identically by bn2 c+1 members and, therefore, we have fR(a0, b0) = bn2 c+1. However, it also holds
that fQ(a0, b0) = bn2 c+ 1, since (a0, b0) is identically ranked by exactly Q1, . . . , Qk and Qj0 .

Sub-case 2: ∃ j ∈ {k + 1, . . . , n} : R∗{a0,b0} = (Rj){a0,b0}.
Then, if R∗{a0,b0} = (Rj0){a0,b0} we have fR(a0, b0) = fQ(a0, b0), and if R∗{a0,b0} 6= (Rj0){a0,b0} we

have fR(a0, b0) < fQ(a0, b0). In either case, we have fR(a0, b0) ≤ fQ(a0, b0).

Thus, we have shown that, in every case, it holds that fR(a0, b0) ≤ fQ(a0, b0). Since the pair
(a0, b0) was chosen arbitrarily, this implies δn(R) ≤ δn(Q), completing the proof. �

A2: A possible simulation design for larger settings

The simulation can be done in the following way: Draw N random samples R1, . . . , RN from the
space of profiles Rn. For all j = 1, . . . , ξ, define the set Nj := {Ri : An(Ri) = kj} of all samples
mapped to homogeneity class kj . For given weights α := (α1, . . . , αξ) and aggregation function S,
we use the characterization of the assessments given in Proposition 2 and receive
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mu∗
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(S) =
∑ξ

j=1

(
αj · 1

|A−1
n (kj)|
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n (kj)
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S (R)

)
≈ ∑ξ

j=1

(
αj · 1

|Nj |
∑

R∈Nj Y
u
S (R)

)

Mu
Gn(S) =

∑ξ
j=1

(
αj ·minR∈A−1

n (kj)
Y u
S (R)

)
≈ ∑ξ

j=1

(
αj ·minR∈Nj Y

u
S (R)

)

M
u
Gn(S) =

∑ξ
j=1

(
αj ·maxR∈A−1

n (kj)
Y u
S (R)

)
≈ ∑ξ

j=1

(
αj ·maxR∈Nj Y

u
S (R)

)

However, note that this simulation design requires a sample satisfying the condition Nj 6= ∅ for all
j = 1, . . . , ξ, i.e., the sample needs to be rich enough that every homogeneity class has been met at
least once. Consequently, such a design becomes computationally intensive as n and |C| increase.

A simulation design producing fewer computational costs can be realized by taking advantage of
the fact that the maps An and YS are invariant under permutations of the inserted profile. Let Φ
denote the set of all bijective maps φ : {1, . . . , n} → {1, . . . , n}. For R := (R1, . . . , Rn) ∈ Rn and
φ ∈ Φ, we set Rφ := (Rφ(1), . . . , Rφ(n)) and define an equivalence relation ∼Φ on Rn by setting

R ∼Φ Q :⇔ ∃φ ∈ Φ : R = Q
φ

Moreover, let Rn∼Φ
denote the quotient space produced by ∼Φ and let f : Rn∼Φ

→ Rn be any choice
function satisfying f(C) ∈ C for all C ∈ Rn∼Φ

. Further, for every possible homogeneity value kj ,
where j = 1, . . . , ξ, we define the set Lj := {C ∈ Rn∼Φ

: An(f(C)) = kj} of all equivalence classes
with members that are mapped to kj . Due to Proposition 2 and the fact that both An and Y u

S are
constant on every C ∈ Rn∼Φ

(as they are invariant under permutations of the inserted profile), one
easily verifies the following identities:

mu∗
Gn(S) =

ξ∑

j=1

(
αj ·

∑
C∈Lj Y

u
S (f(C)) · |C|

∑
C∈Lj |C|

)

Mu
Gn(S) =

ξ∑

j=1

(
αj · min

C∈Lj
Y u
S (f(C))

)

M
u
Gn(S) =

ξ∑

j=1

(
αj ·max

C∈Lj
Y u
S (f(C))

)

Using the above identities allows the application of a similar simulation design as proposed above,
however, instead of drawing samples from the space Rn, we can now sample from the smaller space
Rn∼Φ

. In our context, this means we can sample from the space of all n-combinations of R instead
of sampling from the space of n-permutations of R.

A3: Non-locality of the maximum consensus homogeneity δn

The measure δn is not local as it cannot be represented as an average similarity of pairs of
orders: For a counterexample, consider the profile R = (R1, R1, R1, R2, R2) on C = {a, b, c}, where
R1 ranks a b c and R2 ranks c b a. An arbitrary homogeneity measure hn based on average pairwise
similarities would satisfy h5(R) = 1

10 [3 · h2(R1, R1) + 6 · h2(R1, R2) + h2(R2, R2)]. However, the
maximum homogeneity measure δn does not satisfy this identity, since we have δ5(R) = 0.6, but
at the same time 1

10 [3 · δ2(R1, R1) + 6 · δ2(R1, R2) + δ2(R2, R2)] = 0.7.
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Note that, despite their locality, homogeneity measures based on pairwise distances of relations
satisfy the minimal requirements listed in Definition 1. Conditions (S1) and (S2) are trivially true.
For (S3), the triangle inequality can be used: If an order R changes from a non-majority order to the
majority order R∗ then the distances d(R,R∗) change to d(R∗, R∗) = 0 and the distances d(R,Rj)
from R to non-majority orders Rj change to d(R∗, Rj). With d(R∗, Rj) ≤ d(R∗, R) + d(R,Rj) we
get d(R,R∗) ≥ d(R∗, Rj)−d(R,Rj). Since in addition to the order R that changes to R∗ there are
as least as many majority orders as non-majority orders, we can match every increase in distance
associated with a pair (R,Rj) to a decrease associated to d(R,R∗) that is greater or equal, so the
overall change in the sum of all distances can only be a decrease or zero.

A4: Results for the linear function u1(x) = x and the concave function u3(x) = 36− (6− x)2
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Figure 3: The graphs show the credal approximation Mu
Gn

(S) (gray shaded region) and the maximum entropy
approximation mu∗

Gn
(S) (black line) for different choices of the aggregation function S along an increasing degree of

group homogeneity α[i], where i ∈ {1, . . . , 50}. For the same S, the left graph corresponds to the choice u(x) =
u1(x) = x, whereas the right graph corresponds to the choice u(x) = u3(x) = 36− (6− x)2.
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Figure 4: Graphs 1 and 3 show the lower expected similarity Mu
Gn

(S) for different choices of the aggregation function

S along an increasing degree of group homogeneity α[i], where i ∈ {1, . . . , 50} for the choices u(x) = u1(x) = x and
u(x) = u3(x) = 36− (6− x)2. Graphs 2 and 4 show the same for the maximum entropy approximation mu∗

Gn
(S).
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