CONTENTS

PREFACE

P.H.C. ACZEL
The type theoretic interpretation of constructive set theory: choice principles 1

D.S. BRIDGES
Recent progress in constructive approximation theory 41

D.H.J. DE JONGH
Formulas of one propositional variable in intuitionistic arithmetic* 51

C.N. DELZELL
Continuous sums of squares of forms 65

S. FEFERMAN
Monotone inductive definitions 77

M.P. FOURMAN
Notions of choice sequence 91

M.P. FOURMAN, R.J. GRAYSON
Formal spaces* 107

L. GORDEEV
Constructive models for set theory with extensionality 123

S. HAYASHI
A note on the bar induction rule* 149

J.M.E. HYLAND
The effective topos 165

G. KREISEL, A. MACINTYRE
Constructive logic versus algebraization I 217

B.A. KUŠNER
Some extensions of Markov's constructive continuum and their applications to the theory of constructive functions* 261

J. LAMBEK, I. MOERDIJK
Two sheaf representations of elementary toposes* 275

J.S. LODDER, D. VAN DALEN
Lawlessness and independence* 297

E. MARTINO
Creative subject and bar theorem* 311

G. METAKIDES, A. NERODE
The introduction of non-recursive methods in mathematics 319

R. MINES
Algebraic number theory, a survey* 337
I. MOERDIJK*
Glueing topoi and higher order disjunction and existence* 359

G.E. REYES, Ngo VAN QUÊ
Smooth functors and synthetic calculus 377

F. RICHMAN
Finite dimensional algebras over discrete fields 397

W. RUITENBURG
Primality and invertibility of polynomials* 413

A. ŠCEDROV
Independence of the fan theorem in the presence of continuity
principles* 435

A. ŠCEDROV, P.J. SCOTT
A note on the Friedman slash and Freyd covers* 443

H. SCHWICHTENBERG
Complexity of normalization in the pure typed lambda-calculus 453

C.A. SMORYNSKI
Nonstandard models and constructivity 459

A.S. TROELSTRA
On the origin and development of Brouwer's concept of choice
sequence* 465

G.P. VAN DER HOEVEN
An application of projections of lawless sequences 487

W.P. VAN STIGT
L.E.J. Brouwer, the signific interlude 505

W. VELDMAN
On the constructive contrapositions of two axioms of
countable choice 513

An asterisk indicates a contributed paper. The following invited speakers are
not represented by a paper in this volume (the title of their invited address be­
tween parentheses): V.Lifschitz (Classical numbers from the constructive stand­
point; P.Martin-Löf (About mathematical expressions and their synonymy);
D.S.Scott (Some sheaf models for intuitionistic set theory).

The programme of the contributed papers sessions listed the following talks not represented by a paper in this volume:

M. Beeson, Remarks on the structure of the continuum;

O. Demuth, On a class of reals and its rôle in constructive analysis;

G.R. Gargov, On the modal logics of provability in some extensions of Heyting's
arithmetic;

J. Geiser, Tense logic with applications to constructive analysis;

M. Gelfond, A class of theorems with valid constructive counterpart;

N. Greenleaf, Identity and equality in constructive set theory;

G. Heintzmann, Les points de vue constructivistes de la philosophie des mathéma­
tiques de Ferdinand Gonseth(1890-1975);
COMPLEXITY OF NORMALIZATION IN THE PURE TYPED LAMBDA - CALCULUS

Helmut Schwichtenberg

Mathemisches Institut
Der Ludwig-Maximilians - Universität
München

By the pure typed \(\lambda \)-calculus we mean as usual the system of terms built up from typed variables \(x^\tau, y^\tau, \ldots \) and maybe typed constants \(a^\tau, b^\tau, \ldots \) by means of application \((t^\alpha s^\beta) \) and \(\lambda \)-abstraction \((\lambda x^\alpha t^\beta) \). Here the types \(\tau, \sigma, \ldots \) are inductively generated from a ground type \(0 \) by means of \((\sigma + \tau) \). It is well-known (cf. e.g. Troelstra [T]) that any such term has a uniquely determined normal form with respect to so-called \(\beta \)-reductions \((\lambda x^\alpha t^\beta) s^\gamma \rightarrow \ldots t^\alpha_x [s] \ldots \), and that this normal form will eventually be reached no matter which sequence of reduction steps one chooses \(^1\).

In this paper we will be concerned with estimates for the number of reduction steps necessary to reach the normal form. We will give an \(\&^4 \) lower bound in §1 by writing down terms \(t_n \) of length \(^2\) \(3n \) and showing that it takes at least \(2^{\frac{n}{2}} \) reduction steps (with \(2^0 := 1, 2^{n+1} := 2^{2n} \)) to bring \(t_n \) into its normal form. In §2 we describe a particular normalization procedure and give an \(\&^4 \) upper bound (in terms of \(\max(\text{lh}(t), \text{L}(t)) \), where \(\text{lh}(t) \) denotes the length of \(t \) and \(\text{L}(t) \) denotes the inner type level of \(t \), i.e. the maximum type level \(^3\) of a subterm of \(t \)) for the number of reduction steps this procedure will carry out.

The result of §1 also follows from Statman [S], where it is shown more generally that the problem whether two terms \(t_1 \) and \(t_2 \) have the same normal form is not elementary recursive. However, for the more specific question we are interested in here it is possible to give our much simpler proof. Also, the mere result of §2, namely that for some specific normalization procedure there is an \(\&^4 \) upper

\(^1\) We make use here of the following conventions. (1) Type superscripts will be omitted whenever they are clear from the context or inessential. (2) Terms that differ only in the bound variables used are identified. (3) Substitution is denoted by \(t[s] \). (4) Brackets will be omitted whenever possible; we will write \(tsr \) for \((ts)r \).

\(^2\) By the length of a term \(t \) we mean the number of occurrences of variables or constants in \(t \) except those immediately behind a \(\lambda \)-symbol.

\(^3\) The type level \(|\tau| \) of a type \(\tau \) is defined inductively by \(|0| := 0, |\sigma + \tau| = \max(|\sigma| + 1, |\tau|) \).
bound on the number of reduction steps, is certainly not new to any expert in the
field. However, it seems that the simple explicit description of the bounding
function obtained below is of some interest.

It should also be noted that, by combining the results proved here with those
of Gandy [G], one can obtain a universal \(\&^4 \) upper bound for the number of reduc-
tion steps with respect to any normalization procedure. This can be seen as fol-
lows. For any term \(t \) of type \(\tau \), by Gandy's method one can define a closed type-0-
term \(|t| \) with the property that its numerical value is a bound on the number of
reduction steps, where it does not matter in which way the reduction steps are
chosen. Now to obtain a bound for the numerical value of \(|t| \), we first note that
by the argument of §2 we have an \(\&^4 \) bound on the number of reduction steps the
specific normalization procedure given there will carry out to produce the normal
form of \(|t| \); this bound is in terms of \(\max(1h(|t|), L(|t|)) \). Since, by Gandy's con-
struction of \(|t| \), \(1h(|t|) \) depends only linearly on \(1h(t) \), and \(L(|t|) = L(t) \), we
also have an \(\&^4 \) upper bound on the number of reduction steps in terms of \(\max(1h(t),
L(t)) \). Next note that any reduction step at most squares the length of the orig-
inal term. So we have an \(\&^4 \) upper bound on the length (and hence on the numerical
value) of the normal form of \(|t| \), again in terms of \(\max(1h(t), L(t)) \). This gives
the desired result. (The fact that one can obtain an \(\&^4 \) upper bound from Gandy's
work in [G] has been mentioned to me by G.E. Minc and R. Statman).

\(\S1. \) The pure types \(k \) are defined inductively by \(0 := 0, k+1 := k+k \). We de-
fine iteration functionals \(I_n \) of pure type \(k+2 \) by

\[
I_n := \lambda f \lambda x \; f(f(\ldots f(fx)\ldots)) ,
\]

with \(n \) occurrences of \(f \) after \(\lambda f \lambda x \); here \(f,x \) are variables of type \(k+1,k \), re-
spectively. Let \(f \circ g \) be an abbreviation for \(\lambda x \; f(gx) \), and let \(t = s \) mean that \(t \) and
\(s \) have the same normal form. With this notation we can write

\[
| \lambda x f f f f \ldots f |_n = \lambda f f f f \ldots f
\]

with \(n \) occurrences of \(f \) after \(\lambda f \).

The main point of our argument is the following simple lemma, which can be
traced back to Rosser (cf. Church [C, p. 30]).

Lemma. \((I^m f)^o (I^m f) = I^n m + n f \)

\[
|I^m f|_n = I^n m
\]
As an immediate consequence we have

\[t_n := l_2^2 l_2 \cdots l_2 = l_2^n \]

(with \(2_0 := 1 \), \(2_{n+1} := 2^{2^n} \)). Now consider any sequence of reduction steps transforming \(t_n \) into its normal form, and let \(S_n \) denote the total number of reduction steps in this sequence.

Theorem. \(S_n \geq 2^{n-2} - n \).

Proof. The length of \(t_n \) is \(3n \). Note that any reduction step \(\ldots (\lambda x)t \sigma \ldots \rightarrow \ldots t_x[s] \ldots \) can at most square the length of the original term. Hence we have

\[
2^n < \text{length of } t_n \quad \text{(the normal form of } t_n) \\
\leq (\text{length of } t_n)^2 = (3n)^2 \\
= 2^{n+S_n} \quad \text{(since } 3n \leq 2^n) \\
\leq 2^{n+S_n} \\
\]

and the theorem is proved.

§2. Our aim here is to set up a specific normalization procedure for which an upper bound on the number of reduction steps can be obtained easily. So let an arbitrary term be given. Our normalization procedure is an obvious one: we search for redexes of maximal type level, and among those we take the rightmost one and convert it. Here by a redex we mean as usual an occurrence of a subterm \((\lambda x t) \sigma \vdash t \sigma' \), and to convert it means to replace it by \(t_x[s] \). Its type level is the type level of \(\sigma \vdash \tau \).

In order to get an estimate for the number of reduction steps needed, we associate a number with any given term and show that this number decreases with any reduction step. To obtain such a number, we first assign to any term \(t \) a sequence \(a_i(t) \) of numbers, as follows: \(a_i(t) \) is the number of redexes or of variables in \(t \) with type level \(i + 1 \). Obviously only finitely many \(a_i(t) \) will be different from 0. Now let us consider a reduction step and see how the assigned sequence will change:
Here \(m+1 \) is the level of the type \(\sigma + \tau \) of \(\lambda x t \), and \(n \) is the level of the type \(\sigma \) of \(s \). (Note that, if \(n = 0 \), we have \(a_i(s) = 0 \) for all \(i \).) \(c_i \) is the contribution to our sequence of that part of the terms above that is denoted by \(\ldots \). More precisely, if those terms are written as \(r_{y}[^{(\lambda x t)s]} \) and \(r_{y}[^{t,x}[s]] \), respectively, then \(c_i = a_i(r) - 1 \).

Now denote the sequence associated with the original term by \(\mathcal{W} \) and the sequence associated with the reduced term (for which we only gave an estimate) by \(\mathcal{W}' \). We want to have numbers \(|\mathcal{W}|, |\mathcal{W}'| \) assigned to \(\mathcal{W}, \mathcal{W}' \) such that \(|\mathcal{W}| > |\mathcal{W}'| \). This can be done as follows. Let \(\mathcal{D} = (d_i) \) be a sequence with only finitely many entries different from 0. Let \(m \) be maximal with \(d_m > 0 \). Then define

\[
|\mathcal{W}| = g(m,d_m,d) \quad \text{with} \quad d = \max(d_0,...,d_{m-1}),
\]

where

\[
g(m,a+1,b) = g(m,a,b^2) + 1
\]

\[
g(m+1,0,b) = g(m,b,b)
\]

\[
g(0,0,b) = b.
\]

Note that \(g \) belongs to the class \(\mathcal{E}^4 \) of Grzegorczyk \([Gr]\), and that for any fixed \(m \) the function \(g(m,..) \) belongs to \(\mathcal{E}^3 \), i.e. is elementary recursive.

It is easy to check that \(g(m,a,b) \) is monotone in \(a \) and \(b \) for any fixed \(m \). Using this, let us show that \(|\mathcal{W}| > |\mathcal{W}'| \). Case 1: \(c_m + a_m(t) > 0 \).

Then we have

\[
|\mathcal{W}| = g(m,c_m + a_m(t) + 1,m) \quad \text{with} \quad M := \max (c_i + a_i(t) + a_i(s))_{0 \leq i < m}
\]

\[
= g(m,c_m + a_m(t), M^2) + 1
\]

\[
\geq g(m,c_m + a_m(t), \max (c_i + a_i(t) + a_i(s)a_{n-i}(t))) + 1.
\]

\[
\geq |\mathcal{W}'| + 1
\]
Case 2: \(c_m + a_m(t) = 0 \) and \(M = 0 \). Obvious. Case 3: \(c_m + a_m(t) = 0 \), \(i \) maximal such that \(c_i + a_i(t) + a_i(s) = 0 \). Then we have

\[
|\mathcal{M}| = g(m,1,M) \\
= g(m,0,M^2) + 1 \\
= g(m-1,M^2,M^2) + 1 \\
> g(i,M^2,M^2) \\
\geq |\mathcal{M}'|.
\]

Here we have made use of the obvious fact that \(g(m,b,b) \) is monotone in \(m \). This concludes the proof of \(|\mathcal{M}| > |\mathcal{M}'| \). We can summarize our argument as follows.

Theorem. For any given term \(t \), the number of reduction steps for the procedure described above is \(\leq g(m,a_m(t),a(t)) \). Here \(m + 1 \) is the maximal type level of a redex in \(t \), \(a(t) := \max_{0 \leq i < m} a_i(t) \) and \(a_i(t) \) is the number of redexes or of variables in \(t \) whose type level is \(i + 1 \).

Corollary. (1) There is an \(\Delta^4 \) function \(f \) such that for all closed type-0-terms \(t \) the above normalization procedure terminates in \(\leq f(\max(1h(t),L(t))) \) steps. (2) For all \(m \) there is an elementary recursive function \(g_m \) such that for all closed type-0-terms \(t \) with \(L(t) \leq m \) the above normalization procedure terminates in \(\leq g_m(1h(t)) \) steps.

References

