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A NORMAL FORM FOR NATURAL DEDUCTIONS IN A TYPE THEORY
WITH REALIZING TERMS

Helmut Schwichtenberg

Mathematisches Institut
Universit4t Minchen
Theresienstrafle 39, D-8000 Miinchen 2 — West Germany

We shall describe a formal system T which is well suit-
ed to formalize mathematical proofs and, in particular, to make
explicit the algorithmic content of such proofs.

Formulas are allowed to contain, in addition to the clas-
sical logical operators, the constructive existential quantifier
denoted by 3* ; v* will be defined by

Av*B := 3I*x[(sg(x) =0->A) A (sg(x)=1->B)] .

Looking at formulas like (3*xA - 3*yB) -» 3*zC makes it clear that
our system T will have to deal with functionals of finite types.
Since we want to allow definitions by (primitive) recursion and
proofs by induction, we have to work with the primitive recursive
functionals from [Gd&del 1958].

In T we shall derive not only formulas but formulas A
together with terms LgreeesX =3 L realizing them in the sense
of [Kreisel 1959]). Such realizing terms denote primitive recur-
sive functionals. For " r realizes A" we simply write "r€A";
such expressions are called judgements. For formulas A without
3* (so-called negative formulas) the sequence r of realizing
terms is empty and hence our judgements coincide with the usual
formulas.

The logical rules of T are those of natural deduction in



96 H. SCHWICHTENBERG

the sense of [Gentzen 1934]. We only use the rules for so-called
minimal logic. O=1 can play the r8le of falsity; hence A
can be defined by A-0=1 . The presence of realizing terms
makes it possible that the introduction and elimination rules for
3* have the following simple formulation:

r € Als] s,r € 3*xA

(3*-#-) J . (3*~) —m4m—
s,r € 3*xA r € Als]

Note that, due to the presence of realizing terms, T is
stronger than HA® : In T we can derive trivially any instance
of the axiom of choice in the form

vx3*yAlx,y] - 3I*fvxalx,fx] ,
and also the so-called independence-of-premiss (IP) schema
(A->3*xB) - 3*x(A->B)

for negative A .

Functionals of T are intended to be extensional. Formal-
ly this will be expressed by the fact that we have equality rules

r=s t

) e =)

=t
t

=52

2 S
159 = 538,

and that a term Ax(rx) is identified with r .

It is easy to see that T (w.r.t. its negative fragment)
is conservative over classical arithmetic 2 , since within Z one
can define the model HEO (cf. [Troelstra 1973]) of T . In this
way many metamathematical results known for Z can be transferred
to T . However, since it is our aim to make explicit the algo-
rithmic content of proofs in a way as simple as possible, a di-
rect proof-theoretic analysis of T seems to be appropriate.

The central point of such an enterprise is certainly
Gentzen's Hauptsatz, saying that any derivation in T can be
transformed into a normal form. The main property of such a nor-
mal form is that it does not make any "detours". We shall prove
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such a normal form theorem for T , by an adaption of a method of
[Tait 1965].

Note that the existence of derivations in T without de-
tours doesn't say much if proofs by induction are made possible
in T by admitting induction axioms of the form

A[O] A VX (A[x])»A[x+1]) -» VvyAly]

Then one doesn't have any control over the complexity of the in-
duction formula A . Hence we shall formulate T with an w - rule
instead of induction axioms. Then derivations will be infinite
objects, and by proper restrictions one has to take care that the
resulting system is equivalent to the original one.

As an application of the normal form theorem we shall
prove that from any derivation of a formula 3y(fxy=0) with the
classical existential quantifier (and x,y of type O) one can
find a term r[x] and a derivation of fxr[x]=0 and hence of
r(x] € 3*y(fxy =0) ; this is (the appropriate formulation of) the
Markov rule for T .

The idea of using formulas with realizing terms has been
introduced into the literature independently by Martin-L&f and
Minc (see [Martin-L&f 1984], [Minc 1975]). Minc used it as a
tool in his proof of the conservativity of HAY + AC over HA '
whereas Martin-Lo6f aims at a rather general theory of meaning.-
From Martin-L&f I have taken the terminology r €A and the name
"judgement” for such expressions.

Concerning the relation of T to intuitionistic mathemat-
ics it seems to me that T deals properly with one aspect of the
intuitionistic approach, namely to make explicit the algorithmic
content of proofs. However, other aspects, in particular the fact
that a proof gives an insight into the validity of e.g. a I'I?-for—
mula Vx(fx=0) , are not made explicit.

Bayer!e |
Slaat§bibliothek
Minchen :
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§1 The formal system T

The intended model of T consists of the primitive recur-
sive functionals in the sense of [G&8del 1958], i.e. of all func-
tionals which can be defined explicitely from recursion operators
in all finite types. In order to understand properly the computa-
tion procedure given by the definition of such functionals it is
advisable to use infinite terms instead of the recursion opera-
tors. Of course the formation of infinite terms has to be re-
stricted properly in order to make sure that they define just the
primitive recursive functionals. Here we follow this course and
define our language accordingly.

Finite types are O, the type of natural numbers, and
with p,0 also p-0 , the type of functionals mapping function-
als of type p into those of type o . We shall write PprecerPy 20
for p1-' (pz-» (pn-> g)..) . The level Lp of a type p is de-
fined inductively by LO=0 , L(p-0) =max(Lp+ 1, Lo) . Terms of
type p are defined inductively, as follows.

() zg ’ z’1° ’ zg ;, ... are terms of type p . They are called

variables of type p and usually denoted by x,¥,... .

(O+) For any natural number j the numeral j is a term of
type O.

(07) If t is a term of type O and Sq7Sq7Sys ... are terms
of type p then Et(si) i< (E for evaluation) is a term
of type p . This rule of term formation is called critical
since Et(si) has the same type as its "minor parts" s; -

(-»+) If x is a variable of type p and r is a term of type o,
then Axr is a term of type p=~>0 .

() If t is a term of type p-0 and s is a term of type

p , then ts 1is a term of type o .
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We shall only consider terms with only finitely many free
variables. Then substitution rx[s} can be defined easily. For-
mulas of T are built from equations r=s between terms of the
same type p by means of A ,->,V and also 3* . Av*B 1is an
abbreviation of 3*x[(sg(x) =0-2A) A (sg(x) =1-B)] ; here sg is
the term AxEx(sg(i)) i<w ° The classical operations v, 3 are
taken as defined, i.e. AvB := 1(TTAATB) , 3xA := TI¥VX1A ; the
negation TA stands for A-0=1 . Note that variables of arbi-
trary types can be gquantified.

As already mentioned, we want to derive in T judgements

of the form r €A , not just formulas A . Here Ler o, ..., is
a finite sequence of terms of types PprecesPy i D and the types
Ppreecsp, =2 p are determined by A, as follows. To an equation

r =s there belongs the empty sequence of types. If p are the
types of A and o= Oqre+-s0, are the types of B, then p,0
are the types of AAB , .9."01"“'.9."01“ are the types of
A-B , P=>04seec,p>0  are the types of vxPB and p,g are
the types of a*xPB

Derivations in T are defined inductively, by the follow-
ing rules. It is helpful to think of them as tree-like figures
made up from judgements. At the top nodes there are assumptions
of the form w€A with different variables us=s Uqreeesu, , OF
axioms. An assumption can be bound at a later inference. We iden-
tify the equation r=s with s=r . To form derivations we ad-

mit the following rules of inference. Again some of those rules

are called critical, namely if their "minor parts" are of the
same types as the conclusion.

(A) u€A

(R) X=X

(T) E—— critical
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_ ... €A (t=1) .... for all i<w
(0 ) critical
r€A
=+ .
(0 ) i=3
__ t1=t2 ceee Sq TS, e for all i<w

(07 ) critical

Et1 (s1i) i<o = Et2 (s2i) i<w

£,§€A/\B £,§€AAB

rea S€EB

r€B (BéA)

)\E‘E'EA-»B

te€A-»B SE€A

ts€B

re€a

kxg € VxA

t € VxA
EsGA[s]
r €Als]

(3*+) P
S,r € 3*xA



NORMAL FORM IN TYPE THEORY WITH REALIZING TERMS 101

s,r€ I*xA
(3*7) _—
r € Als]

In applications of »=F ,»+ and V+ the obvious condi-
tions on variables are to be respected. Also we require that any
derivation has only finitely many variables free in the deriva-
tion, and only finitely many different free assumptions. Then
substitutions of terms for variables and of derivations for as-
sumptions are possible, since necessary changes of bound varia-
bles can be carried out.

A term (Axr)s obviously denotes the same functional as
r{s] . Hence it seems to be appropriate to identify both terms.
This is particularly advisable when later we want to eliminate
detours in derivations and e.g. want to replace a derivation

u€A(1)

~

re€B

(1)
AE£€A-»B S EA

(Ag{)gEB

by

§€A

l
rls]l €B

In order to be able to consider the second derivation as deriving
the same judgement as the first one, we have to consider (Aur)s
and £[§] as equal. For similar reasons we have to identify
Ei(si) with sj ’ E(Et(si))(pj) with Et(Esi(pj)) and
(Et(si))p with Et(sip) . Since functionals are taken to be ex-
tensional we shall further identify Ax(rx) with r .

Our formal procedure will be to show that any term can be
reduced to a uniquely determined term in normal form not con-
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taining any subterm of the form (Axr)s , Ej_(si) B E(‘E:t(si) ) (pj) ,
(Et(si) Jp or Ax(rx) . Then we identify two terms if they have

the same normal form.

The existence of the normal form will be proved in § 3 by
the method of [Tait 1965]. The proof of the uniqueness of the
normal form will not be given here; it can be done by a method of
[MaaB 1974)] (cf. [Ruckert 1984]).

§ 2 Examples for derivations

Now we want to show that some expected derivations can be

carried out in T .

Lemma 2.1 (Axiom of choice)

s,r € vx3*yAlx,y] - s,r € 3*fvxaA[x,f]

Proof: S,r € Vx3*yA[x,y]

sx,rx € 3*yA[x,y]

rx € Alx,sx]

r € VxA[x,sx]

s,r € I*fvxA[x, fx]

Lemma 2.2 (Independence of premiss) For negative A we
have s,r € (A->3*yB) b s,r € 3*y(A->B)

Proof: S,r € A- 3*yB a®

s,r€ 3*yB

r€Bl[s]
—_— (1)
r€A-B[s]

s,r € 3*y(A-B)
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Remark: Obviously Lemma 2.2 holds for all formulas A
with an empty sequence of types (cf. § 1 ). These are exactly the
so-called Harrop - formulas, i.e. formulas with 3* only in pre-

misses of implications.

Lemma 2.3 (Extensionality)

vx(rx =sx) k tr=sr

Proof: We make use of the fact that Ax(rx) is identi-
fied with r .
vX(rx =sx)

r§=s§
Ax(rx) = Ax(sx)
t=t r s

tr =sr

The Peano axioms can be proved easily from the w - rule
0 . For the argument one needs

Lemma 2.4 (Equality)

a. t,=t, |- r[t1] =r[t2]

b. t,=t, , rlt ] €Alt,] F clt,] €alt,]

Proof: a can be seen easily by induction on r . b is

proved by induction on A , using a.
Next we show that O=1 can play the rdle of falsity,
i.e. that from the assumption O=1 one can derive an arbitrary

judgement r €A .

Lemma 2.5 O=1Ik <€

>

Proof: Step 1: O=11I i=3j . Obviously it suffices to
define a term + of type 0,0-0 such that i+ j (more precisely:
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(+1i)j ) has i+j as its normal form. Take

+ 1= Axy.Ex(Ey(i+ 3J j<(o)i<w

Step 2: O=11I| r=s for arbitrary terms r,s of type
O . This can be obtained from step 1 using the w - rule o :

o=1
i=j r=1"
r=j .. for all i<w
(1)
r=j s=3@
r=s ... for all Jj<w
(2)
r=s
Step 3: O0=1I|- r=s for arbitrary terms r,s of type
p . We use induction on the type p . The case p=0 has been

dealt with in step 2. For the general case p-»0 we make use of
the fact that functionals are taken in T to be extensional:

o=1

rx =sx

Ax(rx) = Ax(sx) ,

and Ax(rx) , Ax(sx) are identified with r,s .

Step 4: O0=11I|-r€A . We use induction on the formula
A . The case of an equation has been dealt with in step 3. The
case A is trivial. In the case -+ we have

o=1
I
Iu€B

)\}\1‘(5}3) €EA-B ’

and Ag(gﬁg‘) is identified with r . The case V is treated simi-
larly, and the case 3* is trivial again. a
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As is to be expected we have the usual rules for the de-

fined classical operations v, 3

Lemma 2.6 For negative formulas A,B,C we have
a. A+ AVB BIl-AvVvB
b. AvB , A»-C , B>C|-C
c. Als] |- 3IxA

d. 3xA , A»CF C

Remark: This lemma can be strengthened somewhat: A,B
may be arbitrary formulas, and for C it suffices that C is a
Harrop formula (i.e. with 3* only in premisses of implications);
for such C we have TIC F C

Proof: We shall prove the lemma in the strengthened form
of the remark above. It suffices to deal with ¢ and 4 ; a and
b are treated similarly. Note that 3xA abbreviates T7IVX1A .
For c¢ we have

vxa (D

TA[s]) r € Als)

For 4 we have to use T1IC |- C ; then the required derivation can

be obtained easily:

A->C
Y acsa
N
IxA VXA
9:
— (1)
B e TIC - C
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So it remains to prove TIC F C for Harrop formulas C . We show

this by induction on the formula C

Step 1: TI(i=3j) F i=3J . This is clear if i and j are

equal numbers. If they are unequal, we have

i=3
I
o=1
(1)
T(E=3) i=j-0=1

Step 2: TIl(r=s) F r=s for arbitrary terms r,s of

type O . This can be obtained easily from step 1 above using the
w-rule O ; cf. step 2 of the proof of Lemma 2.5.
Step 3: T N(r=s) I~ r=s for arbitrary terms r,s of

type o . We use induction on the type p . The case p=0 has
been dealt with in step 2. For the general case we again make use
of the fact that functionals are taken in T to be extensional:

r=s |- rx=sx
TN(r=s) - T(rx=sx) |- rx=sx by ind. hyp.

MM(r=s) F Ax(rx) = Ax(sx)
—_— ~—
r s

Step 4: C i- C for Harrop formulas C . We use induc-
tion on C . The case of an equation has been dealt with in
step 3. The case A 1is similar to the case V :

vxC I C
TvxC + TC - C by ind. hyp.
TIvVxC F vxC
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Case - :

cC,C>»DFD

C, TI(C-»D) v TIDF D

T(C-»D) + C»D

Finally we show that for the operation v*
by Av*B := 3*x[(sg(x) =0-A) A (sg(x) =1-B)]

lowing rules:

Lemma 2.7

a. L€ALO,r,SE€EAV*B
S€EBFi+1,r,s€EAV*B

by ind. hyp.

defined above
we have the fol-

b. t,g,geAv*B,pEA-»C,qu—vC}-QEC

The proof of a is obvious. For b we have

t,L,8EAVFB t=0 ! trseavtB  t=i+1 P
re€ (sg(t) =0-A) sg(t)=0 S€ (sg(t) =1-B) sg(t)=1
pPEA-C r€a qEB-C SEB

grvec g§€c

—~ —
ao] t=0 dli+1] t=i+1 M

dlt]ec «e.. dlt]ec ...
()
daltlec

where 4 := Ex(Bg,gg,gg,...) .
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§3 A normal form for terms

As already mentioned we want to prove now that any term
can be brought into a normal form not containing any subterm of
the form (Axr)s , Ei(si) P E(Et(si))(pj) ’ (Et(si))p or Ix(rx) .
The easiest way to achieve that is by applying a method due to
[Tait 1965]. We present the proof in such a way that it can be
generalized easily to the case of derivations to be treated in

§5.

The rules of term formation have been described in § 1 ;

they are

(A) X

") i

(0 ) Et(si)i<m critical
-1 AXT

(=) ts

Rules marked with + (-) are called introduction (elimination)

rules. In an elimination rule we call the term denoted by t its
main part and the terms denoted by S5 its minor parts. A term
is called convertible by evaluation if it ends with an elimina-

tion rule whose main part is obtained by an introduction rule for

numerals, i.e. 0+ . The relation P 1is convertible by evalua-

tion into g " 1is defined by

1. Ej(s)) = sj .

A term is called properly convertible if it ends with an elimina-

tion rule whose main part is obtained by a non-numerical intro-
duction rule, i.e. -t . The relation " p is properly convertible
into g " 1is defined by

2. (AXr)s »+— rx[s] .

A term is called permutatively convertible if it ends with an
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elimination rule whose main part is obtained by a critical rule,
i.e. 0O . The relation "p is permutatively convertible into gq"
is defined by

3. E(Et(si))(pj) — Et(Esi(pj))
4. (Et(si))p — Et(sip)

Finally, a term is called n -convertible if it is of the form

Ax(rx) . The relation "p is n -convertible into gq" is defin-
ed by
5. Ax(rx) +— 1r .

The relation of reducibility between terms is the smallest re-
flexive and transitive relation containing the relation of con-
vertibility and closed against the rules of term formation. A
term is said to be in normal form if it contains no properly,
permutatively or n - convertible subterm and also no subterm con-
vertible by evaluation.

We want to show that any term can be reduced to a term
in normal form. To achieve this it suffices to produce a normal
form w.r.t. proper and permutative conversions; this is carried
out in Theorem 3.4 below. For after this is done one can easily
eliminate all n - convertible subterms by replacing each subterm
Ax(rx) by r ; doing that no new convertible subterms will a-
rise. Finally one can also eliminate all subterms convertible by
evaluation: replace each subterm Ej(s;) by 8y - (We shall show
in § 4 that the corresponding function on code numbers for terms
is the only one that can not be choosen to be primitive recur-
sive). Note that doing this at most new n - convertible subterms
will arise; they can again be eliminated as above.

We also want to note the effect of the construction of
the normal form to the height of the terms involved. (Here the
word "height" refers to the helpful picture of a term as given
by a labelled tree). The height Irl of a term r is defined as
follows.
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Ixl = 131 =1
IEt(s.) | = max(Itl , supls,|) +1
i i i
IAxr| = Ir|
lts| = max(Iltl , Isl) +1

One can see easily that with this definition we have
Lemma 3.1 lr[sll S Isl+ Ir|

Furthermore it is clear that n - conversions and conver-

sions by evaluation can only lower the height of a term.

The level Lr of a term r is the level of the type of
r . By the rank Rr of a term r we mean the least number
greater than all levels of main parts of properly or permutative-
ly convertible subterms of r

Lemma 3.2 (Reduction Lemma) Let p be a term ending
with an elimination with main part t and minor parts S; + SO
pEEt(si) or pEtso . If Ltsk and Rt,Rsisk , then t can
be reduced to a term gq with Rgsk and

lg! smax(Ipl,(supls.|) + Itl)
l l

Proof: By induction on t . We may assume that t ends
with a non-numerical introduction (i.e. ->+) or with a critical
rule (i.e. 0 ), for otherwise we already would have Rp=<k .

Case I Then t=Axr , hence p-= ()\xr)so . Since
L(Axr) sk we have Lso<k and hence Rr[so] <k . Furthermore we
know by Lemma 3.1 that Ir[so]I < Isol + |r| . So we can take
qar[sol .

Case O : Then t=Er <pj> , hence p=E(Er (pj> ) <si) or
ps (Er(pj) )so . Each p. 1is a proper subterm of t , and ij=

= Lt £k . Hence, by induction hypothesis, Ep:.l (si) or pjso can
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be reduced to a term qj with qu sk and

| s max(lp.| , supls, +1 su . + . .
IqJI max ( (pJ ipl lI) P (iplsll) ijl)

We can take g =Er (qj) , since REr(qj) <k and

IEr(q.} | = max(lrl , suplg.l) +1
J 3 J
< max(lrl, sup(ip. 1+ 1), (supls,|) +suplp.|) +1
j J i 1 j J

s max((suplp.|) +2, (supls,|) + Itl])
b] J i 4

s max(lpl, (supls,|) + Itl)
i 1

Lemma 3.3 (Structural Lemma) Consider a term of rank
s k+1 ending with an elimination with main part t of a level
Ltzk+1 . Then t is obtained by in general multiple uncritical

eliminations (i.e. applications of -~ ) from a variable.

Proof: If t =: to is obtained by an uncritical elimina-
tion, take its main part t1 . If t1 again is obtained by an
uncritical elimination, take again its main part 1:2 , and so on.
Note that all t1 have levels 2k+ 1 . The procedure terminates
with a main part tn . By construction tn is not obtained by an
uncritical elimination. Since by assumption the whole term has a
rank £k+ 1 , we also know that tn can neither be obtained by
an introduction nor by a critical rule. Hence tn is a variable.

Theorem 3.4 (Existence of the Normal Form)

a. Any term r of rank £k+ 1 can be reduced to a term r' of
rank <k , such that |[r']| sz'r' .

b. Any term r (of arbitrary rank =w) can be reduced to a term
r* of rank O , such that |r*]<se

.

Ir |

Proof of a: By induction on r . If r doesn't end with an
elimination the claim follows immediately from the induction hy-
pothesis. So assume that r ends with an elimination, i.e.
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rEEt(si) or rstso . Then, by induction hypothesis, wg have
t',s;_ such that Rt', Rs; sk and It'| s 2 IEl PN <2171

Case 1. The main part t has a level Ltzk+ 1 . Then by
the Structural Lemma 3.3 we know that t is obtained by multiple
uncritical eliminations from a variable, i.e. t=xr_,....r

1 n

Then we have t' = xr;... .rx’1 (by induction hypothesis w.r.t. a

claim to be proved simultaneously, saying that
1

(xr1....rn)'axr1 .r! )

n
Take r'=Et'(s') or r' Et's(') , respectively. Then we know from
the form of t' that Rr' sk . For the height we have
Ir'l = max(lt'|, supls!|) +1
i 1
It Is; |
s max(2 , Sup 2 ) +1
i
max(lt| , suplsil) + 1
< 2
= plrl

Case 2. The main part t has a level Lts<k . Then we can
apply the Reduction Lemma 3.2 to Et' (si) or t‘s") , respective-
ly. We obtain the required term r' with rank Rr' sk . For the
height we have

lr'| £ max(max(Ilt'| , supls!l) +1, (supls!|)+ 1t'l)
it i 1

max(lt'l+ 1, (supls{l) + It'l)
1
| Is; |

< max(2It +1, (s1.i1p2 . )+2|tl)
. max(2|tl+1 ’ 2max(ltl , Slj.'.lp|5i|) + 1
= olrl
Proof of b: Again by induction on r . If r doesn't end

with an elimination the claim again follows immediately from the
induction hypothesis. So assume that r ends with an elimination,

i.e. rEEt(si) or rEtso . Then, by induction hypothesis, we
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have t*,si* such that Rt*, Rs;==0 and |t*]| s €le) ’

Is;lé €l1s.| ° Let k <w be the level of the main part t . Then
i

we construct the required term r* by a k-fold application of

part a to Et*(s;) or t*s; , respectively. For then we have

Rr* =0 and

lr*| = expk(max(lt*l, sgpls;l)+ 1) with expa:= 2¢
i
s ex k(max(e sup ¢ )+ 1)
P el PP s,
= expk(e + 1)
max(ltl , suplsil)
i
< fmax(ltl, supls; ) +1
i
= S o

§ 4 Restrictions on infinite sequences in terms

Up to now our terms have been allowed to be rather arbi-
trary; in particular, in the case of the rule Et(si)i<w there
has not been any restriction on how the terms S5 should be
choosen. However, such a restriction seems to be advisable when
we want to use terms to represent the primitive recursive func-
tionals. For otherwise e.g. any function f of type 0-0 could

be represented, namely by AxEx(f(i))i<w .

Now what requirements should be satisfied by a properly
restricted class of terms? First of all, we certainly want that
the functionals represented by such terms are exactly the primi-
tive recursive functionals. Second, it seems advisable that the
formation of normal forms described above does not lead us out of
our class, for then it is possible to give a detailed analysis of
the trade-off of higher type primitive recursion against lower
type & - recursion, for some a<e . We do not go into the de-
tails of this matter here but just refer to [Schwichtenberg 1973]
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or [Schwichtenberg 1975] and the literature cited here.

To fulfill those requirements we certainly have to bound
the rank of the terms s; in Et(si)i<w , and further have to
bound their heights by an ordinal « <eg - In order to exclude
the possibility of representing arbitrary functions as above, we
only allow terms that can be "coded" by natural numbers. This is
a rather standard procedure; for later reference we describe the

main points of such a coding, following [Schwichtenberg 1977].

Code numbers of terms are defined inductively, corre-
sponding to the inductive build-up of terms. The inductive defi-
nition is trivial for the finite term formation rules A ,O+ ,»+
and - . However, in the case of the rule O : Et(si)i<w we
have a difficulty since then we have infinitely many premisses
S - The idea now is to assume that the codes for the premisses
s; can be enumerated by a primitive recursive function, and to
use a code (or primitive recursive index) of such an enumeration
function to construct a code number of the whole term. Another
essential point is that our code numbers should contain suffi-
cient information about the coded term. In particular, if a num-
ber u codes a term r , then we want to be able to read off

primitive recursively from u

1. the name of last rule of term formation applied in r and the
type of r ,

2., an ordinal <eq which is a bound for the height |Ir]| ,
3. a bound for the rank Rr , and
4. a bound for the (finite) set of variables free in r .

The corresponding primitive recursive functions will be denoted
by Rule(u) , Type(u) , lul , Rank(u) and Var(u) , respectively.
The ordinals <&y from 2. are represented by natural numbers;
for this we refer to a fixed canonical well-ordering < of the
natural numbers of order type &y -

We do not write out all cases of the inductive definition



NORMAL FORM IN TYPE THEORY WITH REALIZING TERMS 115

of the predicate u€Code (u is a code number for a term), but

rather give two examples corresponding to the rules - and 0 :

-~ : If u,v€cCode, Type(u)="p-0" and Type(v) = "7 , then
"+ 7,4, v) € code

0" : 1If, for any i , lel(i) =: u; € Code, Type(u;)="To",

Iuil < a7< "7, Rank(ui) <k and Var(u,) c* r{x1,...,xn}1 ,
and furthermore v € Code, Type(v) = 0" , Ivl<"8", Rank(v) sk
and Vvar(v) * r{x1,...,xn}1 , then

('o™7, 7, rBj,k, r{x1, .. .,xn}-' ,v,e) € Code .

Here [e] denotes the primitive recursive function coded by e .
"...7 denotes as usual a natural code number for the finite ob-
ject ... c* corresponds (under the relevant coding of finite

sets of variables) to € ; <xo,...,x is a primitive recur-

)
n-1
sive coding of finite sequences of natural numbers with primitive

recursive inverses (x)i , i.e. ((xo,...,x 1))i=x. for i<n .

n- i
We also skip the (trivial) primitive recursive definitions of the

functions Rule(u),... mentioned above.

It is easy to see that all primitive recursive function-
als in the sense of [GBdel 1958], i.e. all functionals explic-
itely definable from the recursion operators of finite types, can
be represented by coded terms; this can be done in such a way
that the code numbers have heights |ul< "w.27 . Conversely it
is easy to see too that any functional represented by a term with

code number is primitive recursive.

Furthermore one can show that to the operations on terms
defined above (substitution, in the Reduction Lemma 3.2 and in
the Theorem 3.4 on the existence of the normal form, part a)
there correspond primitive recursive functions on the code num-
bers (cf. [Schwichtenberg 1977]). However, to the elimination of
subterms convertible by evaluation there does not correspond a
primitive recursive function any more, but an « - recursive func-
tion, where a<e¢ is the bound on the height of the given term

o
of rank O .
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§5 A normal form for derivations

We now transfer the arguments of § 3 from terms to deri-
vations. More precisely, we want to show that any derivation can
be transformed into a normal form with the same assumptions and
the same final judgement, where the normal form has the property
that it does not contain any subderivation ending with an elimi-
nation rule whose main part is obtained by an introduction rule
or a critical rule. Such derivations in normal form have many de-
sirable properties, in particular they do not make any "detours",
in a sense which can easily be made precise. We shall give some
applications of the existence of a normal form for derivations in
§ 6 (equivalence of a restricted form of our infinitary system T
to a version of T without infinite rules) and in § 7 (closure of
the restricted form of T against the Markov rule).

The rules of the inductive definition of a derivation
have been described in § 1 . Remember that we now identify equiv-
alent terms, i.e. terms with the same normal form. Rules marked
with + (-) are called introduction (elimination) rules. In an

elimination rule other than

_ oo X€A(t=1i) .... for all i<o
(0 )

£€A

we call its left hand subderivation its main part; in 0 the
term t is considered as the main part of this rule. In an elimi-
nation rule other than

- r € VXA

(v ) _—
rs € Als]

all subderivations except the main part are called minor parts;

in Vv~ the term s is considered as the minor part of this rule.

A derivation is called convertible by evaluation if it

ends with an elimination rule whose main part is obtained by an

introduction rule for numerals, i.e. O+ or O=+ . The relation

"d is convertible by evaluation into e " is defined by
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1 2f=£
r€A .... for all i<w j=3
(1) e
2.
j=3j «¢e. S,.=8S,, .... for all 1i<ow
= = 1i 21 "
El(s1i> =E1(s2i) s1j = st

A derivation is called properly convertible if it ends

with an elimination rule whose main part is obtained by a non -

. . . . =+ + + . .
numerical introduction rule, i.e. = , A, for derivations,

+
v or 3*t . The relation "d is properly convertible into e "

is defined by

3. I
r,=r, I
Axr, =Axr, s;=s, . rils;1=r,ls] ryls1=r,ls,] .
()\xr1)s1= ()\xrz)s2 r1[s1] = r2[52]

Here the derivation of r1[s1] =r2[s1] is obtained from the
given derivation of r,=r, by substituting S, for the free
occurrences of x in this derivation; axioms x=x are to be re-

placed by derivations of S;=s built up according to the for-

1
mation of the term sy - The derivation of rz[s1] =r2[52] is
built up corresponding to the formation of r, from the given

derivation of Sy = Sy -

4. |
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£€A sS€B
r,s€AAB
[ d
S E€B §€B
5. BEA“)
cen |
—_— (1) s €A
Aur € A~ B S €A |
-
(Aur)s € B risl€B
6. |
£€A
AxEGVxA
_ R - l
(Axr)s € Als] xls] € Als]
7. l
reals]
sS,r € 3*xA |
— (e d
r € Als] r € Als]

A derivation is called permutatively convertible if it
ends with an elimination rule whose main part is obtained by a

critical rule, i.e. O for terms, T , O for derivations or

(o) . The relation "d is permutatively convertible into e " is
defined by

8.  Btlsy =i

+e.e €A .... for all i<w

(1)
re€Aa
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_ . (2 - _ . (D -
nd t=3 sj_1--s:L_1 sj i sj+1 Sj+1
Et(s.) =1i
3 ES
e X€A ..., for all i<w
(1)
«e.. LEA c... for all j<w
(2)
re€A
9.
r=s s=t
r=t ...pi=qi....for all i<w
Er(pi) =Et<qi)
” l
=8 .... pi=pi s=t .... pi=qi
Er(pi) = Es(pi) Es(pi) =Et(qi)
Er (pi) =Et (qi)
10 | I l l
r=s s=t l r=s P=p s=t P=q
r=t P=q rp = sp sp = tq
—_— (=4
rp = tq rp = tq
11. =4V
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3
S€B
(1)
S E€B
12.
t1=t2 cee Sq{ TS, e l
Et1(s1i) =Et2(szi) e p1j==p2j e
E(Ety (s, ) (P} =E(Bt,y(s,)) (pyy
" I I
$11 =524 ....p1j=p2j
t1 =t2 Es1i(p1j) =E52i(p2j) ceon
Ety (Esy; (py)) =Ety(Esy; (py)
13.
t1=t2 ....s1i=521.... I
E'I:1 (s.li) =Et2(s2i) < =P2
(Et1(s1i))p1 =(Et2(szi))p2
" I |
S1i TS24 Py =Py
t1=t2 ceee SyP=S,4Py eenn
Et1<s1ipp =Et2(szip£

The relation of reducibility between derivations is the
smallest reflexive and transitive relation containing the rela-
tion of convertibility and closed against the rules for forming
derivations. A derivation is said to be in normal form if it con-
tains no properly or permutatively convertible subderivation and

also no subderivation convertible by evaluation.
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We want to show that any derivation can be reduced to a
derivation in normal form. To achieve this it suffices to produce
a normal form w.r.t. proper and permutative conversions; this is
carried out in Theorem 5.4 below. For after this is done one can
easily eliminate all subderivations convertible by evaluation:
first replace each subderivation

(1)

j=1i
J=3
ce.. T€A .... for all i<w T
(1) by I ’
r€A re€aA
and then replace each subderivation
j=3 cee. S,. =8,
= = 1i 2i by
El(sh'_) =El(521) s1j=52j

We also want to note the effect of the construction of
the normal form to the height of the derivations involved. The
notion of the height of a derivation is not completely unproblem-
atic: on has to take into account that certain rules for forming
derivations implicitely have terms as further premisses (these
are A , 0~ for derivations, v~ and 3%+ ). Also in order to
obtain a proper notion of height we must look in more detail to
terms in derivations. So from now on we do not identify terms any
more, but rather allow that in the rules for forming derivations
described in § 1 the judgements written there are replaced by
"variants". A variant I[r€A] of a judgement r€A is a judge-
ment r'€A' , where each ri is equivalent to r.o and A' is
equivalent to A, i.e. obtained from A by replacing equations

r=s in A by r'=s' , with r',s' equivalent to 1r,s .

We define the height |[|d| of a derivation 4 for a
judgement r €A by induction on d, as follows:
Idl=max(l£€AI,ldlo) , Where lgeAI=max(|r1|,...,lrnl,lAI)
with [Al defined by I|r=s!|=max(lrl,Isl) , |IAAB|l=|A->B]| =
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= max(lAl,IBl) , |vxAl| = |3*xA|=|A| , and where IdIo is defined
by
IW€Al = Ix=x] =1j=31_ =1
| .
r=s s' =t | I
= max(lr=sl,Is'=¢tl)
[r=1t] o
[e=1)t @
I .
. _.qi
... [realt ... (e=1]
(1) = max(ltl, sup | ) +1
LEA o Polireart

| |
t1=t2 S1i-SZi

- 1 1
= max(|t1—t2l ,sgpls1i-521|) + 1

[Et1 (s,y) =Ety(s,) 1 °
|
r=s
= Jr=s]|
[Axr = Axs] °
t lt s ls
1 2 1 2 = max(|t it I, 1ls is 1y +1
[t,s, =t.s,] ! 2 1 2
171 272 o

| |
= max(lr€Al,|s€BI)
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| |
r,s€AAB r,s€AAB I
- o = - - = lx,s €AABI + 1
[r€al o (s €B] °
gEA(l)
|
res u€A
—_— (1) = |
[Aur € A-B] ° reB
| |
t€A-B S €A’ [ |
= max(lt€A-B| , Is€A']) +1
[ts €B] °
|
r€a |
_— = Iz €al
[Axr € ¥xA]
~ o
|
t € VxA l

max (|t € VxAl , Isl) +1

[ts € Als]] °

|
r € Als] |
-~ = max(lx€Als]l, Isl)
[s,r € 3*xa]

|
s,r € 3*xA |
_— = Is,x€3*xal +1 .

[r€als]]

[e]

One can easily see that with this definition we have
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Lemma 5.1 (Substitution Lemma)

a. Let d be a derivation
u€nA
d I
r€B ’

x be a variable different from all assumption variables (i.e.

variables uy in assumptions u€A ) and s be a term of the
same type as x . Then we can find a derivation
u€Als)
d(s] |
rls) € B(s)

of height |d[s]l s Isl+ |dl

b. Let d,e be derivations

u€A
e} | e |
r€B SEA'
with A' equivalent to A . Then we can find a derivation
|
d(e] SEA

|
rlsl €Bls]

of height |dlell = lel + |d] .

Furthermore it is clear that conversions by evaluation
can only lower the the heicht of a term.

The level LA of a formula A is defined by L(r=s)=ILr,
L(AAB) =max(LA,LB) , L(A-»B) =max(LA+1,LB) , L(VxA) =
= max(Lx+ 1, LA) and L(3*xA) =max(Lx,LA) . If Pyre--sp, are
the types of A (cf. §1), then we clearly have Lp; SLA . The
level Ld of a derivation d is the level of the formula in the
judgement derived by 4 . By the rank Rd of a derivation 4 we
mean the least number greater than all levels of main parts of
properly or permutatively convertible subderivations of 4 .
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Lemma 5.2 (Reduction Lemma) Let d be a derivation
ending with an elimination with main part ¢ and minor parts
bi . If Lcsk and Rc,Rbisk , then d can be reduced to a
derivation e with Resk and lel smax(ldl, (sxi1plbi| Yy +lcl).

Note that in the case of the rule O  for derivations
the main part is a term t , and in the case of the rule Vo

the minor part is a term s .

The proof is by induction on ¢ . We may assume that c
ends with a non-numerical introduction or with a critical rule,
for otherwise we already would have Rds k . Corresponding the
ten last rule applied in ¢ we distinguish the following cases.

Ccase »~ ' : Then the given derivation d has the form
c |
r,=r, I b
Thxr, = Axr.] =
>\xr1 >\xr2 s,=8,

[(>\xr1)s1 = (Axrz)szl .

For the derivation e to be constructed we take

I |
r1[s1]=r2[s1] r2[s1]=r2[52]

r1[s1] = r2[s2]

Since L(Axri) <k we have Lsi <k . Hence the derivation of
r1[s1] =r2[s1] has a rank < k , and also the derivation of
r2[s1] =r2[52] has a rank s k . So Resk . For the height we
obtain by Lemma 5.1

| ]
lel =max(|r1[s1] =r2[s1]| ’ Ir2[s1] =r2[s2]|)
| |
Smax(ls1l + Ir1 =r2I R Is1 =szl + Irzl)

| |
< Is1 =52I + |r1=r2I

slbl + lcl
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+ *+ Cos
The cases A and 3 are trivial: for e we can

take a subderivation of 4 .

+
Case =»

geal

c |

I
LeB | }b - s€A
[2ur € A~ B] s EA'

[ (Aur)s € B]

Since L(A-+B) sk we have LA <k and hence also Lsi<k for
each sy from s . So Resk . From Lemma 5.1 we obtain
lel s Ibl +1lcl .

Case V+:
|
o] £€A
[Axr € vxa] g ! }e
—_—_— rls]l € Als]
[ (Axr)s € Als]]

Since L(VxA) sk we have Ls <k . Hence Resk . From Lemma 5.1
we obtain lel s sl +lcl .

Case O for terms: Then the given derivation d has
the form

(et (s =11 ()

b. |

[£€A]l for all i<uw

£€A

For the derivation e to be constructed we take

i_.(2) i _ i i_. (1) i _ i
t =] Sj—1 —sj_1 ,sj—l ,sj.'_1—szj_’_1
Etl(s;') = i
IH |
[x€ A" .... for all i<uw
(1)
reaA ee.. for all j<uow

Y (2),
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where tl,s;.' are the terms equivalent to t,sj used in
[Et(sj) ='£]1 . IH(....) 1is the result of applying the induction
hypothesis to the derivation shown; this application is possible
since sj is a proper subterm of Et(si> . We clearly have
Re =0 (note that k=0 1in this case). For the height we obtain
| tl=j...s;=_i_...
lel s max(ltl , syp[max(lx € Al ,(swp - )+Isjl)])+1
i .
) Et'(si) =1
J
|
(realt
smax(ltl , (s;zplbil ) + stjlplsjl) +1

s b, + |Et(s.)| .
(sgpl lI) | sJ |

Case T : We have two subcases according to whether the

last rule in 4 is O or - . Since both subcases are
treated similarly, we restrict ourselves to the first one. Then
the given derivation d has the form

| |
r=s s'=t b.
c | i
[r=t] «es Py =9

[Er(p;) = Bt(q,’]

For the derivation e to be constructed we take

| I |
r=s P; =P; .- s'=t ...p;=9; ...
IH = 1 IH L
= ' -
Exr (pi) Es (pi) Es (pi) Et (qi)

Er (pi) = Et (qi)

It is clear that Re =0 (note that again k=0 in this case),
and for the height we obtain
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I |
lel Smax(max(lEr(pi) =Es(pi)l ’ (suplpil) +lr=sl) ,

| * | |
max (IEs’ (p,) =Et(gy |, (suplp; =q; 1) +1s' =tl))
i

| | |
smax(lr=sl +1, (Suplbil) + lr=sl,lIs'=tl+1, (suplbil)-f-ls'=t|)
i i

smax(ldl , (suplb;1) +icl) .
i

Case O for derivations: Then the given derivation
d has the form

[t=1]

i (1)

Elimination.

For the derivation e to be constructed we take

re=11+ (M

IH |

i
€A ee. b, ...
[real 3

S€EB

(1) .

§€B

It is clear that Re sk , and for the height we obtain

[e=41t (e=i1t
lel smax(ltl, sup (max( I ‘ , (suplb.l) + [ 1)) +1
i SEB i [r€A]
fe=11% te=11t
=max(lt| , sup(max( Iy +71 . (suplb,l) + TIRRR A
i (£ €A] i (L €Al
(e=11%
smax(lcl , (suplb.l) + sup Loy ) +1
i i llreal

smax(|d]l , (sgplbjl) +|cl) .
J
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Case O ~: We again have two subcases according to
whether the last rule in 4 is O _ or - _ . Since both

subcases are treated similarly, we restrict ourselves to the

second one. Then the given derivation d has the form
| |

. ty=ty .. sy =S,y e |
. b
[Et (s,,) =Et,(s,,)] Py =P,

[(Et (s, )Py = (Ety(s,.0)p,] .

For the derivation e to be constructed we take

| l
S..=s P, =P
I 1H 1i 2i 1 2

17 % ... Sq1iP1 T S23P2 ) ...

Et p1) =Et

19893 2 523P2 :
It is clear again that Re sk , and for the height we obtain

| | | |
lel Smax(lt1 =t2I ,s;:.p 1'naJ»<(Is.|ip1 =52ip2| , Ip1 =p2| +|s1i=s2i|))+1

| | |
= max(lt1 =t2I ,stjfp max(ls1i=52iI +1, Ip1 =pzl + Is1i=52j_|)) +1

|
smax(lc| , |bl +S\ip |s1i = s2i|) +1

s max(ldl , Ibl +lcl) .

Lemma 5.3 (Structural Lemma) Consider a derivation of
rank sk+1 ending with an elimination with main part ¢ of a
level Lcz2k+1 . Then c is obtained by in general multiple
uncritical eliminiations from an assumption, from an axiom x=x

or from a variable x .

Proof: If c
elimination, take its main part cq - If ¢4 again is obtained

N is obtained by an uncritical

by an uncritical elimination, take again its main Cy s and so
on. Note that all cy have levels 2k+ 1 . The procedure

terminates with a main part c, - By construction c, is not
obtained by an uncritical elimination. Since by assumption the

whole derivation has a rank sk+1 , we also know that ¢, can
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neither be obtained by an introduction nor by a critical rule.
Hence the claim follows.

Theorem 5.4 (Existence of the Normal Form)

a. Any derivation d of rank s k+ 1 can be reduced to a
derivation d' of rank g k , such that |[d'| 52|d|

b. Any derivation d (of arbitrary rank 5 w ) can be reduced

*
to a derivation d of rank O , such that ld*l s eldl .

The proof is by induction on d . If d doesn'tend with
an elimination claims a and b follow immediately from the
induction hypothesis. Otherwise d has the form

c{ |
r €A ”‘bi”‘

sS€B

Elimination.

Note that in the case of 0O  for derivations the term t
occurring there is to be considered as main part c¢ , and in the
case of VY the term s occurring there is to be considered as
the single minor part bj .

Part a: By induction hypothesis we have c¢', b:.i. with
Rc', Rblsk and lc'is2!S!, |byis2!Pil

Case 1 : The main part ¢ has a level Lc2k+1 . Then
by the Structural Lemma 5.3 we know that ¢ is obtained by in
general multiple uncritical eliminations from an assumption,
from an axiom x=x or from a variable x . As in the proof of
Theorem 3.4 we know the form of <¢' by the induction hypothesis
of a claim to be proved simultaneously: <c¢' is obtained from
the same assumption, the same axiom x=x or the same variable,
respectively, by the same uncritical elimination rules, where
in each of those rules the minor parts have to be reduced
corresponding to the induction hypothesis. We let 4d' be
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Elimination.
SEB

Then we know from the form of d' that RA4'sk . For the height

we have

I1d'l =max(lc'l , suplb!l) +1
i 1

I Ib

Smax(ZIC , sup 2 i|)+1
i

<2max(lcl ’ sxilplbil) +1

Case 2 : The main part ¢ has a level Lcsk . Then
we can apply the Reduction Lemma 5.2. We obtain the required
derivation d' with rank Rd' sk . For the height we have

1d'| s max(max(lc'l , sgplbl!_l) +1, (sgplbil) +lc'l)
i i
=max(lc'l +1, (st}plbil) +lc'l)
i

]
smax(2'l 41, (sup 2!Pily 4 plel,
i

olel+1  ,max(lcl ,sxi1plbil)+1)

< max( , 2

_,ldl

Part b : By induction hypothesis we have c*, b’J'.‘_ with
* * = * *
Rc,Rb:.L O and IcISe'cI ’ IbiISelbi| . Let k<w be the
level of the main part ¢ . Then we construct the required
derivation d* by a k-fold application of Part a to

c* |
r€EAa ee. b¥ (..
~ i

Elimination.

s €EB

For then we have Rd*=0 and
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fa*| Sexpk(max(lc*l ,suplbzl) +1) with exp a := 2%
i
Sexpk(max(el |+ SUP € Yy +1)
[ i | i |

<€max(lc|,sgp|bi|)+1

1

= €41

§ 6 Restrictions on infinite derivations

We now want to impose some restrictions on the infinite
rules of T . Such restrictions are necessary, for otherwise
our system would be unreasonably strong. For instance, any true

o
]'[ -

1 formula, i.e. formula of the form Vx(fx=0) with f
primitive recursive, could be derived trivially.

Now what requirements should be satisfied by a properly
restricted class of derivations ? First of all, we want the
resulting system to be equivalent to the finitary version of T,
where we have induction axioms instead of the w-rule O , and
constants for the recursion operators of finite types instead of
the infinite terms. Second, we obviously want that the formation
of normal forms described in § 5 does not lead us out of our
class.

To fulfill those requirements we introduce code numbers
for derivations. This can be done in a similar way as it was
done for terms in § 4 ; hence we omit the details. However, the
mere existence of a code number is not yet a strong enough
restriction: the trivial derivation mentioned above of an
arbitrary true H?-—formula can certainly be coded. What seems
to be necessary here is a reference to a formal system, e.g. the
finitary version of T , and to require that a derivation not
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only has a code, but furthermore that this fact is derivable in
the finitary version of T .

Note that there is a problem here: Since the notion of
a code number of a derivation (or of a term) is defined induc-
tively, it is not immediately clear how this notion is to be
represented in T . To solve this problem, let us first argue
that the set of code numbers of terms is H? . To see this, think
of terms as given by well-founded trees, where at each node there
is either no branching at all (i.e., it is a topmost node) and a
variable or a numeral is affixed, or there is a 1-fold branching
(corresponding to the rule »+), or a 2-fold branching (corres-
ponding to the rule =), or an w-fold branching (corresponding
to the rule O ). Then any code number u of a term r can be
thought of as obtained inductively by affixing to each node of
the tree corresponding to r a code number of the corresponding
subterm. Hence the property "u is a code number of a term" is
equivalent to u having such a well-founded genealogic tree.
But the latter fact can be easily written in H?'-form: One has
to express that at any node (= sequence number) n the term is
locally correct, i.e. that the code number u, affixed there
(un can be easily defined by induction on n) and all its
predecessors u

n* (i)
nition of code numbers for terms. The well-foundedness is then

fulfill a relation as given in the defi-

obtained automatically, since in particular Iu

n*(i)|<'|unl 1s

required and < 1is a well-ordering.

Similarly, one can see that the set of code numbers for
derivations is H? . The only additional difficulty here is that
our rules for defining derivations involve the notion of equiva-
lence of terms. Hence we have to know that the relation "u and

. . o ;
v are code numbers of equivalent terms" is I Now this means

that the code numbers u* and v* of the nor;al forms of u
and v (which can be obtained recursively from u and v ; cf.
§ 4) code terms which are the same up to a change of bound
variables. But from any code number u of a term one can define

primitive recursively a code number u' of an equivalent term
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whose bound variables are choosen in a fixed, standard way: e.g.,

at a node n where Ax’ 1is introduced (by the rule »+) use

the variable z§+k instead of x° , where k-1 1is the maximal

index of variables free in the term coded by u . Hence the

above relation between u* and v* is n? .
So we restrict the infinite rules of T as follows: We

only allow a derivation if it has a code number u , and further-

more if the n?-—formula expressing the fact that u codes a

derivation is derivable in the finitary version of T (or equiv-

alently, in pure arithmetic z).

We have to show now that the restricted system T 1. is
equivalent to the finitary version of T , and 2. is closed
against the formation of normal forms of derivations as described
in § 5. The second fact can be seen easily by formalizing the
arguments in § 5. For the first fact, one direction is obviously
true, since we can embed the finitary version of T into our
restricted system. For the other direction we use the formal-
ization of the normal form theorem of § 5, as follows.

First note that a normal derivation has the subformula
property, i.e. it contains only subformulas of the derived
formula or of an assumption. Here the notion of a subformula is

as usual, with the sole exception that any equation r‘; =rg is

a subformula of s‘; =s; (this is a consequence of the transi-
tivity rule T). Now assume that a code u of height «a < €

for a derivation of a judgement xr €A from assumptions giGBi
is given. We may assume that u is in normal form. Hence only
subformulas of A and the finitely many Bi's can occur in
this derivation. So, using a truth predicate choosen accordingly,
we can prove by a-induction that r€A is true provided that
the S; €Bi are true, and hence can derive the judgement r€A

from the assumptions Si EBi in the finitary version of T .
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§ 7 The Markov rule

As an example of possible applications of the normal form
theorem of § 5 we want to show now that T (i.e., from now on,
T with its infinite rules restricted as described in § 6) is
closed against the Markov rule. This is to say that from a
derivation of 3y(fxy =0) with the classical existential
quantifier 3y and variables x,y of type O (and f a closed
term of type O,0-»0) we can construct a term .h of type O0-0
(so h denotes a <eo-recursive function) and a derivation of
th 3§(fxy==g) , now with the constructive existential quantifier
3y

Note that the well-known method due to [Dragalin 1980]
and [H. Friedman 1978)] of proving closure under the Markov rule
does not work for our system T involving realizing terms. For
this method consists of replacing each equation r=s in each
formula of a given derivation of 3y(fxy =0) by
r=s v* 3;(fxy==0) , and observing 1. that this transformation
does not destroy the property of being a derivation, and 2. that
the derived formula 3y (fxy =0) is transformed into a formula
equivalent to 3;(fxy:=0) . Now this argument does not provide
the realizing terms we would need in order to obtain a derivation
in T .

To prove closure of T under the Markov rule, assume
that a derivation d of 3y(fxy =0) or equivalently of
173;(fxy==0) is given. By § 5 we can assume that d is in
normal form. We may write 113;(r[x,y1 =0) for the endformula
of d with r[x,y] being the normal form of fxy , and
obviously can assume that x is the only variable free in 4d .
Let us first analyse how our normal derivation d must look like.

If we follow a path from the root of the derivation tree
upwards, after possibly some applications of the w-rule 0 we
must come to an application of -F of the form
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o=1

T3y (xlx,y] = 0)

where some assumptions 73;(r[x,y]==9) are cancelled. Following
our path further upwards we may pass through type-O-equations
with rules concerning equations, or stop at an axiom, or stop
at an assumption t[x] =i cancelled at an application of the
w-rule O we passed earlier, or else come to an application of
- of the form

'13;/(r[x,y] =0) s[x] € 3;(r[x,y] =0)

o=1
*
Here we may assume that the left hand premiss T3y(r(x,y] =0)
is cancelled by the application of Y we passed previously.
If we follow our path further upwards through the right hand
premiss, after possibly some applications of the w-rule 0O we

: . . *+
must come to an application of 3 of the form

rix,slx]] =0

slx] € 3;(r[x,y] =0)

Now we have an equation again, and following our path further
upwards we may again pass through type-O-equations with rules
concerning equations, or stop at an axiom, or stop at an assump-
tion t[x] =i cancelled at an application of the w-rule 0 we
passed earlier, or else come to an application of -~ as

described above, and so on.

The first step in our proof of closure of T under the
Markov rule consists in constructing from the given normal deri-
vation d of 773;(r[x,y]==9) a <eo-recursive function h
such that r[n,h(n)) =0 holds, for any n . So let n be
given. Call a node k (i.e., a finite sequence of numbers) of
d an n-node if k is in d and if at each application of the
w-rule O in d )

.... LEA (tlxl=1i).... for all i<w

£€2\
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the j-th branch with j := the value of t[n] is in k ,
provided k 1is long enough. Call an n-node k «critical if at
k and at each initial segment of k there is affixed in d
either the endformula ’1’13;(r[x,y] =0) , or an equation which is
false for x=n , or a judgement s[x]€ 3;(r[x,y] =0) which is
false for x=n . Obviously the bottom node O 1is critical. We

define a function g(n,k) by a-recursion, a := |d| <¢ as

’
follows. If k is not a critical n-node of 4 , let g?n,k) =0 .
If k 1is a topmost critical n-node of d , we know that at k
we must have the conclusion O=1 of an application of -  of
the form

73§(r[x,y] =0) s[x] € 3;(r[x,y] =0)

o=1

where s[x] Ea;(r[x,y] =0) is true for x=n . Let g(n,k) be
the value of s[n] ; then r[n,g(n,k)] =0 holds. If k 1is a
critical n-node of d but not a topmost one, let g(n,k) =
g(n , kx{i)) with i minimal such that kx* (i) is a critical
n-node. Hence with h(n):= g(n,0) we have r[n,h(n)]l=0.

Obviously the above argument can be formalized in the
finitary version of T (or equivalently in pure arithmetic 2).
Then the definition of the <eo-recursive function h yields
a closed term of type O-0 also denoted by h , and we obtain
a derivation in the finitary version of T for £x(hx) =0 . Now

consider the derivation
| |
£f=f x=g(1) h=h x=n'"

fx = fn hx = hn

fx(hx) = fn(hn)
Ny ——
¢}

*
.. hx€3y(fxy =0) .... for all n<w

* (1)
hx € 3y (fxy .

0)

By what we just said its local correctness is provable in the

finitary version of T , and hence we have a derivation in T of
*

hx € 3y (fxy =0) , as required.
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