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Detection of differential item functioning (DIF) by use of the logistic modeling

approach has a long tradition. One big advantage of the approach is that it

can be used to investigate nonuniform (NUDIF) as well as uniform DIF

(UDIF). The classical approach allows one to detect DIF by distinguishing

between multiple groups. We propose an alternative method that is a com-

bination of recursive partitioning methods (or trees) and logistic regression

methodology to detect UDIF and NUDIF in a nonparametric way. The output

of the method are trees that visualize in a simple way the structure of DIF in an

item showing which variables are interacting in which way when generating

DIF. In addition, we consider a logistic regression method, in which DIF can

be induced by a vector of covariates, which may include categorical but also

continuous covariates. The methods are investigated in simulation studies and

illustrated by two applications.

Keywords: logistic regression; differential item functioning; recursive partitioning;

item-focused trees

1. Introduction

In recent years, differential item functioning (DIF) and DIF identification

methods have been the areas of intensive research. DIF occurs if the prob-

ability of a correct response among persons with the same value of their

underlying trait differs in subgroups, for example, if the difficulty of an item

depends on the membership to a racial, ethnic, or gender subgroup. If a test

contains DIF items, it may be unfair, that is, favor specific groups. When

developing and using tests that measure latent abilities, one should be aware

of the phenomenon of DIF. Ideally, tests should not contain suspicious items.

If this cannot be obtained, one should at least know which items are DIF

items and by which covariates DIF is generated. For more details on DIF,

measurement bias, and possibly discrimination, see, for example, Holland

and Wainer (1993), Millsap and Everson (1993), Osterlind and Everson

(2009), Rogers (2005), and Zumbo (1999).
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A variety of methods to detect DIF have been proposed (for a more recent

overview, see Magis, Bèland, Tuerlinckx, & Boeck, 2010). One can in particular

distinguish between item response theory (IRT) modeling approaches and test

score methods (Magis, Tuerlinckx, & De Boeck, 2015). The former assume that

an IRT model holds in each group. Tests such as Lord’s test or likelihood ratio

(LR) tests are used to detect differences of item parameters between groups. IRT

approaches have been used by Lord (1980), Raju (1988), and Holland and Wai-

ner (1993), among other. Test score methods use a matching variable as, for

example, Mantel–Haenszel test procedures (Holland & Thayer, 1988) or logistic

regression modeling (Swaminathan & Rogers, 1990). We will use the logistic

regression framework since it also allows us to investigate nonuniform DIF

(NUDIF). Uniform DIF (UDIF) is present if individuals from different groups

but with the same ability level have different probabilities in solving an item and

those differences do not depend on the ability level. In NUDIF scenarios, the

differences are not constant across ability levels, and the crossing item response

curves may occur.

More recently, IRT-based DIF modeling has been extended to allow for con-

tinuous variables that induce DIF. The corresponding latent trait models contain

many parameters since each item comes with an own vector of parameters.

Therefore, maximum likelihood estimates are bound to fail. Tutz and Schauber-

ger (2015) used a penalty approach to regularize parameter estimation, and

Schauberger and Tutz (2015) used boosting techniques, whereas Tutz and Berger

(2015) rely on recursive partitioning methods. A non-IRT modeling approach

with regularization by penalties has been proposed by Magis, Tuerlinckx, and De

Boeck (2015).

This article focuses on score-based methods. A recursive partitioning

(tree based) method is proposed that allows for the identification of the

items that carry DIF together with the variables that induce DIF. The

variables can represent groups as in classical DIF detection techniques but

can also include continuous variables like age. A strength of the method is

that for continuous variables, it is not necessary to define a priori the

intervals that are relevant; the method itself generates the intervals that

are linked to DIF. The resulting tree visualizes in a simple way the struc-

ture of DIF in an item, showing which variables and interactions of vari-

ables generate DIF.

The method should be distinguished from the Rasch trees proposed by Strobl,

Kopf, and Zeileis (2015). One difference between the methods is that Rasch trees

are IRT-based methods designed for UDIF only. However, there are also strong

differences between the methods for the detection of UDIF. By using tree meth-

odology, the Rasch tree method also does not need prespecified subgroups and

can handle continuous variables. Rasch trees recursively partition the covariate

space to identify regions of the covariate space, in which DIF occurs by fitting

separate item response models in these regions. Regions are suspected to be
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relevant if the parameter estimates in the regions differ strongly. Therefore,

regions in the covariate space are identified that show different difficulties, but

the method does not flag items that are responsible. In contrast, the recursive

partitioning method proposed here focuses on the detection of the items that are

responsible for DIF. Recursive partitioning is used on the item level not on the

global level, which treats all items simultaneously and therefore does not show

which item is responsible for the occurrence of DIF. The method developed here

is related to the recursive partitioning method proposed by Tutz and Berger

(2015), which also flags DIF items. Tutz and Berger also give a more detailed

discussion of the different ways of using tree methodology and illustrate the

difference in applications.

In Section 2, we introduce the new recursive partitioning method based on the

logistic regression approach for UDIF, and in Section 3, we present an illustrative

example. A detailed description of the fitting procedure is given in Section 4. In

Section 5, we consider the results of various simulations. Models for the exten-

sion to NUDIF are considered in Section 6. Finally, Section 7 contains two

applications on real data.

2. Logistic Regression Approaches to DIF

In this section, basic logistic regression approaches to the detection of UDIF

are described, and the alternative tree-based method is introduced.

2.1. Linear Logistic Regression Approaches to DIF

The basic test score–based method to detect UDIF was proposed by Swami-

nathan and Rogers (1990). It can be seen as a starting point of the method

proposed here.

Let Ypi 2 f0; 1g, p ¼ 1; . . . ;P, i ¼ 1; . . . ; I denote the response when per-

son p tries to solve item i. Swaminathan and Rogers (1990) proposed to model the

probability of solving an item as a function of the group membership and the test

score by fitting the logistic regression model

log
PðYpi ¼ 1jSp; gÞ
PðYpi ¼ 0jSp; gÞ

� �
¼ hpi ¼ b0i þ Spbi þ gig; ð1Þ

where g denotes the group, Sp is the test score of person p, b0i is the intercept, bi

is the slope of item i, and gig are the group-specific parameters. In this model, the

parameters b01; . . . ; b0I represent the item difficulties and the parameters

b1; . . . ; bI correspond to the discrimination parameters. Within this framework,

the test scores are considered as proxies for the abilities of persons. For the

detection of DIF, the most interesting parameters are the group-specific para-

meters gi1; . . . ; giG, where G denotes the number of groups. They represent the

DIF. In the simplest case of two groups, a reference group and a focal group, one
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chooses gi1 ¼ 0 for the reference group. Thus, for example, with groups defined

by gender with female as the reference group, one has

b0i þ gi;male for males and b0i for females: ð2Þ

If gi;male 6¼ 0, one has DIF in item i generated by gender. The original frame-

work for two groups was proposed by Swaminathan and Rogers (1990), and the

extension to multiple groups was considered by Magis, Raı̂che, Béland, and

Gérard (2011). In the multiple group, Case 1 of the G groups, for example, the

first group, has to be chosen as a reference group by setting gi1 ¼ 0.

DIF detection within the logistic regression framework typically uses LR

statistics that test the null hypothesis H0 : gi1 ¼ . . . ¼ giG ¼ 0. If the hypothesis

is rejected, Item i is considered as a DIF item. Each item is tested separately at

significance level a with the degrees of freedom equal to G � 1, depending on

the number of groups.

The basic concept can be simply extended to include continuous (and cate-

gorical) variables that might induce DIF. Let x>p ¼ ðxp1; . . . ; xpmÞ be a vector of

person-specific explanatory variables of length m. An extension of Model 1 for

UDIF has the form

log
PðYpi ¼ 1jSp; xpÞ
PðYpi ¼ 0jSp; xpÞ

� �
¼ hpi ¼ b0i þ Spbi þ x>p �i : ð3Þ

The new intercept parameters in Model 3 are b0i þ x>p �i, and they differ

according to the characteristics of the person xp. The comparison of multiple

groups is just a special case. Setting the first group as reference one defines the

vector of explanatory variables x>p ¼ ðxp2; . . . ; xpGÞ, where xpg ¼ 1 if person p is

from group g and 0 otherwise. The corresponding vector of parameters for 1 item

i is �>i ¼ ðgi2; . . . ; giGÞ. UDIF is present in this item if �i 6¼ 0. To investigate

DIF, one uses a global test for the whole parameter vector, H0 : �i ¼ 0. The

alternative hypothesis is that at least one of the parameters is unequal to zero.

The hypotheses are tested separately for each item at significance level a. Due to

the design of the tests, the approach identifies the items that carry DIF but does

not contain any information about the components of xp that are responsible for

DIF. Although being a straightforward extension of the fixed groups DIF

Model 1, the extension (3) seems not to have been investigated so far.

We will refer to the multiple groups Model 1 as the classical logistic regres-

sion modeling approach and to Model 3 as the extended approach. It should be

mentioned that the extended approach (including continuous or categorical cov-

ariates) is already implicitly contained in the approach proposed by Magis et al.

(2011). The approach of Magis et al. (2015) provides an extra layer of complexity

with penalization on the DIF parameters. The main contribution in the present

article, which is outlined in the following sections, is that the linear part of the

basic model is replaced by tree structured fitting.
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2.2. A Tree Representation of DIF

DIF detection based on the logistic regression model as described in the previous

section has some limitations and drawbacks. If one uses the traditional version with

G groups, DIF can be induced only by group membership. A continuous variable

like age has to be divided into intervals to obtain groups without knowing which

intervals are important. The extended version with a linear predictor is restricted by

the assumption that the DIF effect is linear. Moreover, the tests that are used to

identify items that carry DIF do not show which variables are responsible for DIF, at

least not in a simple way. The proposed recursive partitioning method avoids the

problem that reference and focal groups have to be specified a priori. By recursive

splitting, the method itself identifies the groups that induce DIF if they are present.

The general concept of recursive partitioning has its roots in automatic inter-

action detection. The most popular modern version is due to Breiman, Friedman,

Olshen, and Stone (1984) and is known by the name classification and regression

trees. An alternative approach is the recursive partitioning framework based on

conditional inference proposed by Hothorn, Hornik, and Zeileis (2006). The

basic method is conceptually very simple. By binary recursive partitioning, the

feature space is partitioned into a set of rectangles, and on each rectangle, a

simple model (e.g., a constant) is fitted. An easily accessible introduction into

basic concepts is found in Hastie, Tibshirani, and Friedman (2009); an overview

with a focus on psychometrics was given by Strobl, Malley, and Tutz (2009). It

should be noted that the method proposed here is based on the same idea, but

there is one crucial difference. When fitting a model, we do not fit two separate

models within the rectangles obtained by partitioning. We fit one closed model

and only the intercept is partitioned into rectangles. This yields item-focused

trees (IFT) in contrast to global trees as used by conventional Rasch trees.

Building a tree means to successively find a partition of the predictor space,

where each node represents a subset of the predictor space. The terminal nodes of

the tree build a disjoint partition of the predictor space and correspond to the

relevant subregions of interest. When growing a tree, one typically splits one

node A into two subsets A1 and A2. The split is determined by exactly one

variable and the construction of the split depends on the scale of the variable.

In the following considerations, we will focus on metrically scaled and ordinal

variables. In this case, the partition into two subsets has the form

A1 ¼ A \ fxj � cg and A2 ¼ A \ fxj > cg;

with regard to threshold c on variable xj. Given the covariates xp, one can account

for UDIF by building a partition of the respondents with differing intercepts. The

first split with regard to the j th variable and corresponding split point cj means to

fit the model with predictor

hpi ¼ Spbi þ
h
g½1�il Iðxpj � cjÞ þ g½1�ir Iðxpj > cjÞ

i
; ð4Þ
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where Ið�Þ denotes the indicator function with IðaÞ ¼ 1 if a is true and IðaÞ ¼ 0

otherwise. The parameter g½1�il denotes the intercept in the left node ðxpj � cjÞ and

g½1�ir the intercept in the right node ðxpj > cjÞ. For example, one split with regard to

the binary covariate gender yields the intercepts

g½1�il ¼ gi;male for males and g½1�ir ¼ gi;female for females:

This parametrization is an equivalent representation of (2). The main

difference is that the two subgroups of interest are not predefined but deter-

mined by a split in variable j at split-point cj. To determine the first split, one

examines all the null hypotheses H0 : g½1�il ¼ g½1�ir . If H0 cannot be rejected for

any combination of variable and split point, the item is considered to be free

of DIF. In the proposed algorithm, LR tests are used to examine the null

hypotheses. In the very first step, one chooses the combination of item,

variable, and split point with the smallest p value of the corresponding test.

If a significant effect is found, the first split into left and right node is carried

out for the selected item. In Section 1, the splitting criterion is described in

more detail.

One further split, for example, in the right node ðxpj > cjÞ, with regard to the

sth variable at split point, cs yields the two daughter nodes Iðxpj > cjÞIðxps � csÞ
and Iðxpj > cjÞIðxps > csÞ. The new nodes are both defined by the product of two

indicator functions. In general, each node can be represented by a product of

several indicator functions, namely,

nodeðxpÞ ¼
YB

b¼1

Iðxpjb > cjbÞ
ab Iðxpjb � cjbÞ

1�ab ;

where B is the total number of indicator functions or branches, cjb is the

selected split point in variable j
b
, and ab 2 f0; 1g indicates which of the

indicator functions, below or above the threshold, is involved. The resulting

predictor of the model for Item i after several splits with terminal nodes

l ¼ 1; . . . ; Li is then given by

hpi ¼ Spbi þ
XLi

l¼1

gil nodeil ðxpÞ ¼ Spbi þ triðxpÞ; ð5Þ

where triðxpÞ is the tree component containing subgroup-specific intercepts rep-

resented by the terminal nodes nodelðxpÞ. The proposed algorithm yields an

individual tree for each item that was selected to carry DIF. If an item is never

chosen for splitting, it is assumed to be free of DIF, and the fitted ‘‘tree’’ is a

constant triðxpÞ ¼ b0i.

We use the abbreviation IFT for item-focused trees based on the logistic

regression framework.

Detection of Uniform

564



3. An Illustrative Example

The procedure is now first illustrated by the use of artificial data. We consider

data Ypi; p ¼ 1; . . . ; 800; i ¼ 1; . . . ; 20 that are generated by a two-parameter

model (2PL) with DIF. The basic 2PL model has the form

PðYpi ¼ 1jyp; bi; aiÞ ¼
expðaiðyp � biÞÞ

1þ expðaiðyp � biÞÞ
;

where yp denotes the person ability, bi the item difficulty, and ai the item

discrimination. We first generate person parameters yp and item difficulties

bi from a standard normal distribution and item discriminations ai from a uni-

form distribution. However, instead of generating data from the 2PL model, we

assume that the difficulties of 2 of the 20 items depend on covariates in a

complex pattern.

In detail, we consider three covariates, two binary variables x1; x2*Bð1; 0:5Þ
and one standard normal distributed variable x3*Nð0; 1Þ. In Item 1, DIF is induced

by x1 and x3, and the modified value of the difficulty is determined by the step

functions b1;mod ¼ b1 þ 0:8 � Iðx3 > 0Þ þ 0:8 � Iðfx3 > 0g \ fx1 ¼ 0gÞ; in

Item 2, DIF is induced by x2 and x3, and we use the step functions

b2;mod ¼ b2 þ 0:8 � Iðx3 > 0Þ þ 0:8 � Iðfx3 > 0g \ fx2 ¼ 0gÞ, which repre-

sents an interaction between variables x2 and x3. In order to evaluate the fitting

procedure, 100 data sets were generated.

Figure 1 shows one exemplary estimation result of the 2 items with DIF (Items

1 and 2) when fitting IFT. The estimation in this example is quite perfect because

the true underlying tree structure is detected for both items and no further item is

falsely identified as DIF item. It can be seen from the trees that there are three

groups represented by three terminal nodes, respectively. For Item 1, it is dis-

tinguished between fx3 � 0:01g and fx3 > 0:01g, and within this group between

fx1 ¼ 0g and fx1 ¼ 1g. The corresponding intercepts ĝ1l and ĝ2l; l ¼ 1; :::; 3,

Item 1

−2.884

−3.892 −3.115

2

4 5

x3<=0.01 x3>0.01

x1=0 x1=1

Item 2

−1.235

−2.363 −1.628

2

4 5

x3<=0.01 x3>0.01

x2=0 x2=1

FIGURE 1. Estimated trees of Items 1 and 2 for the illustrative example. Estimated

coefficients gil are given in each leaf of the trees.
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of the estimated Model 5 are given in each leaf of the trees. According to Model

5, the probability to solve the item correctly increases with increasing intercepts.

From the estimates in Figure 1, one can derive that Item 1 is most difficult

for region fx3 > 0:01g \ fx1 ¼ 0g and Item 2 is most difficult for

fx3 > 0:01g \ fx2 ¼ 0g. These results are exactly in line with the true simu-

lated effects. In the simulations in Section 1, these artificial data are, inter alia,

again considered in more detail.

4. Fitting Procedure

In this section, we give details about the fitting procedure for our proposed

IFT to investigate UDIF.

4.1. Concepts

When building trees for single items in each step, one has to identify the best

split due to an optimality criterion and decide if there is a relevance to perform

the split or not. The second determines when to stop and therefore at the same

time determines the size of the trees.

Since the approach is based on logistic regression models, it is quite natural to

use test-based splits. In each step of the fitting procedure, one obtains p values for

the two parameters that are involved in the splitting. In our previous notation, one

examines all the null hypotheses H0 : gil ¼ gir for each combination of item,

variable, and split point. One simply selects the combination as the optimal one

that has the smallest p value. As a test statistic, we use the LR test statistic.

Computing the LR test statistic requires us to estimate both models, the full

model and the restricted model under H0. We nevertheless prefer the LR statistic

because it corresponds to selecting the model with minimal deviance. This cri-

terion on the other hand is equivalent to minimizing the entropy, which belongs

to the family of impurity measures that were already introduced as splitting

criteria by Breiman et al. (1984).

In order to decide whether the split should be performed or not, we use a

concept based on maximally selected statistics. The idea is to perform a test that

investigates the null hypotheses of independence of the response and one of the

covariates at the global variable level. For one fixed item i and variable j, one

simultaneously considers all LR test statistics Tjcj
, where cj are from the set of

possible split points and computes the maximal value statistic Tj ¼ maxcj
Tjcj

. The

p value that can be obtained by the distribution of Tj provides a measure for the

relevance of variable j. The result is not influenced by the number of split points,

since it has already taken into account (see Hothorn & Lausen, 2003; Shih, 2004;

Shih & Tsai, 2004; Strobl, Boulesteix, & Augustin, 2007). As the distribution of

Tj in general is unknown, we use a permutation test to obtain a decision on the

null hypothesis. The distribution of Tj is determined by computing the maximal
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value statistics based on random permutations of variable j. A random permuta-

tion of variable j breaks the relation of the covariate and the response in the

original data. By computing the maximal value statistics for a large number of

permutations, one obtains an approximation of the distribution under the null

hypothesis and a corresponding p value. All computations in the present article

are based on 1,000 permutations. Given overall significance level a, the local

significance level of one permutation test for fixed item and variable is chosen as

a=m. Using this adaption, the probability for each item without DIF of being

falsely classified as DIF item is controlled by a. As usual in DIF detection, one

controls for the Type I error that is also known as false alarm rate. However, on

the item level, one should adapt for multiple testing. Choosing a=m ensures that

the probability of falsely identifying at least one variable as responsible for DIF is

controlled by a.

It should be noted that, in general, the number of permutations should

depend on the number of covariates m. In our simulations and applications,

the maximal number of covariates is 3. Therefore, with a sample of 1,000

permutations, the p values are determined with sufficient accuracy. From our

experience, it is recommended to use at least 200 permutations for settings

with one covariate and to increase the number of permutations by 200 per

covariate. Thus, lower bound for settings with three covariates are 600

permutations.

4.2. The Basic Algorithm

The basic algorithm for UDIF is the following.

Basic Algorithm—UDIF

Step 1 (Initialization)

Set counter n ¼ 1

(a) Estimation

For all items i ¼ 1; . . . ; I , fit all the candidate logistic models with

predictor

hpi ¼ Spbi þ gi1Iðxpj � cijkÞ þ gi2Iðxpj > cijkÞ;
j ¼ 1; . . . ;m; k ¼ 1; . . . ;Kj:

(b) Selection

Select the model that has the best fit. Let ci1;j1;k1
denote the best split,

which is found for item i1 and variable xj1
.
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(c) Splitting decision

Select the item and variable with the largest value of Tj. Carry out

permutation test for this combination with significance level a=m. If

significant, fit the selected model yielding estimates b̂i, ĝi1 ;1, ĝi1 ;2

and nodes nodei1 ;1; nodei1 ;2, set n ¼ 2. If not, stop, no DIF detected.

Step 2 (Iteration)

(a) Estimation:

For all items i ¼ 1; . . . ; I and already built nodes l ¼ 1; . . . ;Lin,

fit all the candidate logistic models with new intercepts

gi;Linþ1nodeilIðxpj � cijkÞ þ gi;Linþ2nodellIðxpj > cijkÞ

for all j and remaining, possible split points cijk .

(b) Selection

Select the model that has the best fit yielding the split point cin;jn;kn ,

which is found for item in in nodein;ln and variable xjn .

(c) Splitting decision

Select the node and variable with the largest value of Tj. Carry out

permutation test for this combination with significance level a=m. If

significant, fit the selected model yielding the additional estimates

ĝin;Lin ;nþ1; ĝin;Lin ;nþ2, set n ¼ nþ 1. If not, stop.

5. Simulations

In the following, we consider data Ypi; p ¼ 1; . . . ;P; i ¼ 1; . . . ; I that are

generated according to the 2PL, which is a dichotomous IRT model of the form

PðYpi ¼ 1jyp; ai; biÞ ¼
expðaiðyp � biÞÞ

1þ expðaiðyp � biÞÞ
; ð6Þ

where yp are the person abilities, bi are the item difficulties, and ai are the item

discrimination parameters.

We consider several simulation scenarios where in a first step, the person

parameters yp and the item difficulties bi are independently drawn from a stan-

dard normal distribution and the item discrimination parameters ai are uniformly

distributed, ai*Uð0; 1Þ. If an Item i is assumed to show UDIF, the correspond-

ing parameter bi is subsequently transformed by specific step functions in each

scenario. A detailed description is given in the respective section.
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In each simulation scenario, we vary the number of persons,

P 2 f400; 800g, the number of items, I 2 f20; 40g, and the percentage of

DIF items, which is 0%, 10%, or 20%. In the cases with DIF, we additionally

consider three different strengths of DIF, defined by a constant c 2
f0:4; 0:8; 1:6g for the simulations with UDIF and c 2 f0:3; 0:6g for the simu-

lations with NUDIF. More details are given in the respective sections. In

total, this results in 28 different settings (4 without DIF and 24 with DIF),

respectively. In each setting, 100 data sets were generated. During estima-

tion, each permutation test is based on 1,000 permutations.

In order to evaluate the performance of the proposed tree-based Model 5, we

compute true positive rates (TPR), also named hit rates, and false positive rates

(FPR), which correspond to the Type I error rates if no DIF is present. We

distinguish between TPR and FPR on the item level and for the combination

of item and variable. Let each item be characterized by a vector

�T
i ¼ ðdi1; . . . ; dimÞ, where m denotes the number of covariates, with dij ¼ 1 if

item i has DIF in variable j and dij ¼ 0 otherwise. An item is a non-DIF item if

�T
i ¼ ð0; . . . ; 0Þ; if one of the components is 1, it is a DIF item. With indicator

function Ið�Þ, the criteria to judge the identification of items with DIF are:

– TPR on the item level:

TPRI ¼ 1

#fi : �i 6¼ 0g
X

i:di 6¼0
Ið�̂i 6¼ 0Þ:

– FPR on the item level:

FPRI ¼ 1

#fi : di ¼ 0g
X

i:di¼0
Ið�̂i 6¼ 0Þ:

– TPR for the combination of item and variable:

TPRIV ¼ 1

#fi; j : dij 6¼ 0g
X

i;j:dij 6¼0
Iðd̂ij 6¼ 0Þ:

– FPR for the combination of item and variable:

FPRIV ¼ 1

#fi; j : dij ¼ 0g
X

i;j:dij¼0
Iðd̂ij 6¼ 0Þ:

The methods that are considered in the simulations are:

– Logistic which denotes the classical regression method proposed by Swami-

nathan and Roges (1990) and Magis et al. (2011). If the predictor is a vector

with possibly continuous variables, it denotes the extended logistic model.

– IFT based on the logistic model which describes the recursive partitioning

method proposed here.
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5.1. Results

First we consider data with two or more groups defined by one covariate. The

main objective here is to compare the proposed IFT approach to the classical

logistic approach, which is well established for the comparison of multiple

groups. Later, we give detailed results of the proposed IFT, considering more

complex data constellations with several predictors.

5.1.1. One binary predictor. We start with one binary covariate x 2 f0; 1g. In this

simple case, the investigations reduce to the comparison of two groups. UDIF is

present if the item difficulties bi differ between the two groups. The difference is

simulated by bi;mod ¼ bi þ c � Iðx ¼ 0Þ for one half of the DIF items and bi;mod ¼
bi þ c � Iðx ¼ 1Þ for the other half of the DIF items. The strength of DIF is

determined by the constant c 2 f0:4; 0:8; 1:6g. A difference in difficulties of

0:4 is very small, whereas a difference of 1:6 between the two groups is quite

large. DIF is generated symmetrically because one half of DIF items favor the

first group (x ¼ 1) and the other DIF items favor the second group (x ¼ 0). For

illustration, Figure 2 shows the item characteristic curves (ICC) of the 2 items

with DIF for the setting with P ¼ 800, I ¼ 20, 10% DIF items, and c ¼ 1:6.

From the probabilities, it can be seen that Item 1 is more difficult for x ¼ 0 and

Item 2 is more difficult for x ¼ 1. The item locations (value of yp with probability

0.5) differ between the two groups, but the item discriminations (steepness at the

item location) are the same for both groups.

For the comparison of the results, we use receiver operating characteristic

(ROC) curves, which have also been used by Magis et al. (2015) and Schauberger

and Tutz (2015) to evaluate the performance of DIF detection methods. TPRs and
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FIGURE 2. Item characteristic curves of Items 1 and 2 for one setting in the simulation

with one binary predictor.
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FPRs on the item level were computed for increasing significance level

a 2 ½0; 1�. The corresponding ROC curve is then obtained by plotting

ðFPRI ; TPRIÞ as a function of a. Figure 3 shows the ROC curves for six of

24 settings with DIF as the average over 100 repetitions, respectively. The upper

panels show the settings with P ¼ 400; I ¼ 40; 20% DIF; and varying DIF

strength c ¼ 1:6 (solid line), c ¼ 0:8 (dashed line), and c ¼ 0:4 (dotted line).

The lower panels show settings with the same DIF strength c ¼ 0:8 and P ¼ 800,

I ¼ 20, 20% DIF (solid line); P ¼ 800, I ¼ 20, 10% DIF (dashed line); and

P ¼ 400, I ¼ 40, 10% DIF (dotted line). The resulting curves for IFT are given

in the left panel, and the resulting curves for the classical logistic method are

given in the right panel. From Figure 3, it can be seen that the DIF strength (value
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FIGURE 3. Average receiver operating characteristic curves for six settings in the simu-

lation with one binary predictor. The upper panel shows the curves for three settings with

fixed components and varying differential item functioning (DIF) strength (different line

types) and the lower panel shows the curves for three settings with the same DIF strength.
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of c) and the sample size P have a strong effect on the detection performance,

whereas the percentage of DIF items does not have a strong impact.

Although the global performance strongly varies over the different settings,

there are only minor differences between the two methods as far as their perfor-

mance is concerned. All settings we considered, not only the one presented in

Figure 3, showed nearly no differences between the two methods. This result is

not really surprising. After one split in to the binary predictor x, the obtained

Model 5 for 1 item is exactly the same as Model 3, which is used for testing when

using the classical logistic approach. In this case, the only remaining difference is

the use of different test statistics to obtain a decision. Nevertheless, the classical

and the new approach obviously show the same performance. This is important

because the tree-based approach, which can also be used in more complex set-

tings with many variables, can also be used in the case of two groups without loss

of efficiency.

The construction of ROC curves is an efficient tool but is informative only if

DIF is present. Therefore, we separately consider the case without DIF. The

average FPRs with significance level a ¼ :05 for the four settings without DIF

are given in Table 1. The absence of DIF is a baseline situation to check a

possible inflation of FPRs. According to the obtained results, this is not the case.

The IFT approach (approximately) holds the significance level as does the clas-

sical logistic approach. Again, the two approaches nearly yield the same results.

5.1.2. One ordered predictor. Here, we consider an ordered factor x 2
f1; . . . ; 6g. The difference in item difficulties is simulated by bi;mod ¼ bi þ c �
Iðx > 3Þ for one half of DIF items and bi;mod ¼ bi þ c � Iðx � 3Þ for the other

half of DIF items. Hence, there are only two groups that show a true difference,

respectively. All the other specifications remain the same as in the previous

Section 5.1.1. The ROC curves of six selected examples are given in Figure 4.

The chosen settings are the same as in Figure 3. The left panel now refers to the

settings with varying DIF strength and fixed I, P, and percentage of DIF items.

The right panel refers to the three settings with constant DIF strength.

TABLE 1.

Average FPR on the Item Level at Significance Level a¼ .05 for the Four Settings Without

Differential Item Functioning in the Simulation With One Binary Predictor

FPRI

I ¼ 20 I ¼ 40

P ¼ 400 P ¼ 800 P ¼ 400 P ¼ 800

IFT .050 .051 .049 .050

Logistic .052 .048 .051 .050

Note. FPR ¼ false positive rate; IFT ¼ item-focused trees.
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In contrast to the comparison of two groups, now there are visible differences

between the performances of the two methods. The ROC curves show that IFT

(black lines) outperforms the classical logistic (gray lines) across the whole range

of a. The ROC curves of the new approach are everywhere above the ROC

curves of the classical approach. These findings are consistent throughout all

settings. The differences are strongest for the settings with medium DIF

ðc ¼ 0:8Þ. The reason for the better performance of IFT is that it is able to use

the ordering of the categories. Since DIF is linked to the ordinal scale of the

factor, a method that is able to exploit the ordering should perform better than the

classical method that just distinguishes between the groups. It is noteworthy that

in Figure 4, the performance of the settings with a large number of persons and

medium DIF strength (solid and dashed line in the right panel) is fairly similar to

the performance with a small number of persons and strong DIF (solid line in the

left panel). This underlines that an increase of sample size strongly contributes to

improve the detection performance.

5.1.3. Several predictors. In the following simulations, we consider three cov-

ariates, two binary variables x1; x2*Bð1; 0:5Þ, and one standard normal distrib-

uted variable x3*Nð0; 1Þ. Since IFT allows for determining the variables that

are responsible for DIF, true positive and FPRs for the combination of item and

variable can be computed. In the following, all the presented results are based on

computations with significance level a ¼ :05. To account for the three covariates

in the model, the local significance level for one permutation test is :05=3.

Before simulating items with DIF, we first investigate the baseline situa-

tion without DIF. The average FPRs for the four settings (varying number of
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FIGURE 4. Average receiver operating characteristic curves for six settings in the simu-

lation with one ordered predictor. The left panel shows the curves for three settings with

fixed components and varying differential item functioning (DIF) strength (different line

types) and the right panel shows the curves for three settings with the same DIF strength.

Berger and Tutz

573



persons and items) without DIF are given in Table 2. It is seen that IFT

yields small FPRs. The procedure is conservative and does not fully use the

specified significance level. On average, only 1 item is misleadingly identi-

fied as DIF item. FPRs for the combination of item and variable are much

smaller. With 40 items, the value 0:008 means that only one split with regard

to a variable that was not inducing DIF was falsely executed during

estimation.

DIF in the First Variable. In the settings with DIF, first DIF is simulated as in the

simulation with one binary predictor only (Section 5.1.1). If DIF is present, the

item difficulties bi differ between the two groups defined by the binary covariate

x1. Hence, the underlying true model is defined by one split in x1. Boxplots of

true positive and FPRs of the 24 settings with DIF are given in Figure 5. The

results on the item level are in light gray and are given on the left of each panel,

and the results for the combination of item and variable are in dark gray and are

given on the right of each panel. In addition, the significance level a ¼ :05 is

marked as a reference by dashed lines. It is seen from Figure 5 that IFT shows

good overall performance for medium and strong DIF, in particular if the number

of persons is large. For small DIF effects, the number of persons definitely has to

be large. TPRs are high in the settings with P ¼ 800 and c ¼ 1:6. Here, a clear

separation between DIF and non-DIF items is seen. For the setting in the lower

left of Figure 5 with P ¼ 400, I ¼ 40, 20% DIF items, and c ¼ 1:6, one observes

a TPR of 0:5 in 68 of the 100 data sets, and therefore the box reduces to one

value. In the settings with small DIF ðc ¼ 0:4Þ and a small number of persons

ðP ¼ 400Þ, the method is hardly able to detect the corresponding items. How-

ever, as is seen from Figure 4, alternative methods also show poor performance if

DIF is weak. FPRs are very small throughout all settings, in particular the global

significance level holds (with a tendency of the method to be conservative). It is

noteworthy that the TPRs for the combination of item and variable in all settings

are very similar to the TPRs for items. Therefore, IFT is able to simultaneously

identify the items and variables that are responsible for DIF. Similar pictures

resulted if the covariates x1, x2, and x3 were correlated with medium-sized

TABLE 2.

Average FPR at Significance Level a ¼ .05 for the Four Settings Without DIF in the

Simulation With Three Covariates.

I ¼ 20 I ¼ 40

P ¼ 400 P ¼ 800 P ¼ 400 P ¼ 800

IFT FPRI .027 .021 .024 .022

FPRIV .009 .007 .008 .007

Note. FPR ¼ false positive rate; DIF ¼ differential item functioning; IFT ¼ item-focused trees.
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FIGURE 5. Boxplots of true positive rate and false positive rate at significance level

a¼ .05 (marked by dashed lines) in the simulation with three covariates and differential

item functioning in x1. Results on item level are given in light gray and results for the

combination of item and variable are given in dark gray.
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correlation r ¼ :6 (not shown). It should be noted that in classical approaches for

fixed groups, the simultaneous detection of DIF item and responsible variable is

not investigated. If one considers more than one categorical variable, for exam-

ple, gender and race, typically DIF induced by gender and race are investigated

separately with significance levels fixed to the same value separately for the two

investigations. However, it should be mentioned that in the extended logistic

model, one could also investigate the effect of both variables by including both

variables, and possibly an interaction term, in the linear predictor.

DIF in Two Covariates. In the following, we consider again the complex DIF

structure considered in the illustrative example and use two DIF items. In Item 1,

DIF is induced by x1 and x3 and determined by the step functions b1;mod ¼
b1 þ c � Iðx3 > 0Þþ c � Iðfx3 > 0g \ fx1 ¼ 0gÞ, and in Item 2, DIF is induced

by x2 and x3 and we use the step functions b2;mod ¼ b2 þ c � Iðx3 > 0Þ þ c �
Iðfx3 > 0g \ fx2 ¼ 0gÞ. The strength of DIF again is determined by the addi-

tional parameter c 2 f0:4; 0:8; 1:6g. By choosing these values for c, the differ-

ences between the individual groups remain the same as in the previous

simulations.

In the same way as in Figure 5, the TPRs and FPRs of the 12 settings (with

varying I , P, and c) based on 100 replications are given in Figure 6. The TPRs on

the item level (given in light gray) are very high for all settings with c ¼ 0:8 and

c ¼ 1:6. Especially for the settings with P ¼ 800, the selection of items is quite

perfect. However, for small DIF (c ¼ 0:4, first row), the detection of responsible

items remains quite challenging. It is also seen that the hit rates for the combi-

nation of item and variable (given in dark gray) are not much smaller than the hit

rates for items. Since here DIF is generated by two variables, IFT cannot detect

both variables in all the cases. However, the small FPRs show that the procedure

does not tend to perform splits with regard to variables that are not responsible

for DIF. If a significant effect is found, the corresponding split is always in the

right variable.

6. Investigation of NUDIF

A strength of the logistic framework for DIF detection proposed by Swami-

nathan and Rogers (1990) is that it can be extended to detect NUDIF. We first

consider the classical and extended approach and then the tree-based method.

6.1. Logistic Regression for NUDIF

Let us again first consider the comparison of multiple groups. To account for

NUDIF, Model 1 has to be extended by group-specific slopes and has the form

hpi ¼ b0i þ Spbi þ gig þ Spaig; ð7Þ
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where aig are the additional group-specific slopes. The first group is chosen

as reference group by setting gi1 ¼ ai1 ¼ 0, see, for example, Magis et al.

(2011). The model can be extended to account for NUDIF that is generated

by a vector of covariates in a similar way as for UDIF. Then, one uses

the model

hpi ¼ b0i þ Spbi þ x>p gi þ Spx>p �i; ð8Þ

which contains an interaction between the person characteristics xp and the test

score Sp. The new slope parameters in Model 8 are contained in Spðbi þ x>p �iÞ.
Model 8 reduces to the logistic model used in Section 2 if �i ¼ 0. Thus, UDIF is

present if �i 6¼ 0 given �i ¼ 0. However, the item shows NUDIF if �i 6¼ 0,

whether �i 6¼ 0 or not.

6.2. Logistic Regression Trees for NUDIF

When using the proposed tree-based model, NUDIF means that splits are not

only admissible in the variables xp1; . . . ; xpm but also in the interaction terms
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a ¼ .05 (marked by dashed lines) in the simulation with three covariates and differ-
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Spxp1; . . . ; Spxpm. A (first) split with regard to the interaction between the test

score and the j th variable yields the model with predictor

hpi ¼ b0i þ Sp

h
a½1�il Iðxpj � cjÞ þ a½1�ir Iðxpj > cjÞ

i
;

where the parameter a½1�il denotes the slope in the left node ðxpj � cjÞ and a½1�ir

denotes the slope in the right node ðxpj > cjÞ.

6.3. Test Strategies

In the literature, different strategies were proposed how to test for the sig-

nificance of DIF by means of Model 7 (see, e.g., Zumbo, 1999; Magis et al.,

2011). We will use similar strategies when testing for DIF in the extended

logistic regression Model 8 and the tree-based approach.

6.3.1. Testing for DIF. The first strategy is to test for both types of DIF effects

simultaneously. The corresponding null hypothesis given in Model 7 is

H0 : gi2 ¼ . . . ¼ giG ¼ ai2 ¼ . . . ¼ aiG ¼ 0. For Model 8, the corresponding

null hypothesis is given by H0 : �i ¼ �i ¼ 0. That means DIF is investigated by

using a global test for the whole parameter vector ðgi;aiÞ. DIF is considered as

being present (in any form) if the test rejects the null hypothesis, meaning that at

least one of the parameters gij; aij; j ¼ 1; . . . ;m, differs from zero.

For IFTs, the equivalent is that at least one split is performed in one of the

components. When selecting the optimal split in each step of the algorithm, one

has to consider all combinations of item, variable, split point, and component

with regard to intercept and slope. The final model consists of one or two separate

trees, one referring to the intercept and one referring to the slope. In general, the

trees will be different but can also have the same structure. The resulting tree is

given by

hpi ¼ triðxpÞ þ triðSp; xpÞ; ð9Þ

where triðxpÞ is the tree component containing subgroup-specific intercepts and

triðSp; xpÞ is the tree component containing subgroup-specific slopes. In contrast

to the tree in Model 5 for UDIF, now one has two possible trees. If there is only a

significant effect in one of the two components, a constant triðxpÞ ¼ b0i or

triðSp; xpÞ ¼ Spbi is fitted in the other component.

In comparison to the classical and extended logistic method, the tree-based

model has two advantages:

– The obtained tree(s) distinguishes between items with uniform and NUDIF. The

trees themselves show which form of DIF is present. Thus, both types of DIF can

be detected simultaneously within one fitting procedure.

– The obtained tree(s) identifies the variables that induce uniform and/or NUDIF. In

particular, both types of DIF can be caused by different variables.
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6.3.2. Testing for NUDIF. A second strategy is to explicit test for NUDIF. Using

the extended logistic Model 8, one investigates the null hypothesis H0 : �i ¼ 0

for each item. NUDIF is considered as being present if the hypothesis is rejected,

meaning that at least one parameter aij differs from zero.

For IFT, the detection of NUDIF means that a significant split in the slope

component is found. Consequently, during estimation, only the models with

simultaneous splits in the intercepts and the slopes are considered as potential

candidates. Therefore, one split in item i with regard to variable j corresponds to

the model with predictor

hpi ¼
h
g½1�il Iðxpj � cjÞ þ g½1�ir Iðxpj > cjÞ

i
þ Sp

h
a½1�il Iðxpj � cjÞ þ a½1�ir Iðxpj > cjÞ

i
; ð10Þ

which contains two intercepts
�
g½1�il ; g

½1�
ir

�
and two slopes

�
a½1�il ; a

½1�
ir

�
with respect

to the same subgroups. To select the optimal split and to determine the splitting

decision, one compares the likelihoods of Models 4 and 10. The procedure is

continued in each step of the algorithm, considering all combinations of item,

variable, and split point.

If NUDIF is present, the final model consists of two trees containing

subgroup-specific intercepts and subgroup-specific slopes that are determined

by the same splits.

For the different strategies, we will use the same terminology as Magis et al.

(2011) in his investigation of the case in which DIF is induced by multiple

groups:

– UDIF means testing for UDIF, H0 : �i ¼ 0, given Model 3 within the logistic

regression approach. For trees, it refers to testing the corresponding splits.

– DIF means simultaneous tests for uniform and NUDIF, H0 : �i ¼ �i ¼ 0, given

Model 8 for logistic regression. For trees, it refers to testing the corresponding

splits for both types of DIF.

– NUDIF means tests for NUDIF, H0 : �i ¼ 0, given Model 8 for logistic regression.

For trees, it refers to testing the corresponding splits.

6.4. Illustrative Example

As in Section 3, we consider data Ypi; p ¼ 1; . . . ; 800; i ¼ 1; . . . ; 20, that

are generated by a 2PL model with DIF. As before the item discrimination,

parameters ai are first drawn from a uniform distribution. However, in order to

simulate NUDIF, we do not generate data from the 2PL model but assume that

the item discrimination parameters depend on covariates. The same strategy for

generating NUDIF was also used by Rogers and Swaminathan (1993), Naraya-

nan and Swaminathan (1996), or Jodoin and Gierl (2001).

Again, we consider 100 data sets with three covariates, two binary variables

x1; x2*Bð1; 0:5Þ and one standard normal distributed variable x3*Nð0; 1Þ. We
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simulate data where 2 of the 20 items show NUDIF and 2 of the 20 items only

show UDIF. The modified values of the discrimination and difficulty parameters

are determined by step function given in Table 3. In Items 1 and 3, DIF is induced

by x1; and in Items 2 and 4, DIF is induced by x2. Hence, in all four cases, two

groups have to be distinguished. The resulting ICCs of the 2 items with NUDIF

(Items 1 and 2) are given in Figure 7 separately for the two groups. It can be seen

from the curves that the item locations are equal for both groups, but the item

discriminations (as it was simulated) differ between the groups. When fitting

IFT, the NUDIF structure is detected correctly if there is one split in the slope

component of the model of Item 1 in x1 and Item 2 in x2.

DIF. Figure 8 shows one exemplary estimation result obtained by IFT when

testing for both types of DIF simultaneously. In this example, Items 1–4 are

correctly identified as DIF items. All items are split once yielding trees with two

terminal nodes, respectively. Items 1 and 2 (upper panel) are split with regard to

the slopes indicating NUDIF. In Item 1, the (simulated) item discrimination is

higher for fx1 ¼ 1g, yielding a higher slope for the corresponding subgroup

(â1;x1¼1 ¼ 0:328). Whereas, in Item 2, the item discrimination is larger for

fx2 ¼ 0g, which results in a larger slope for this subgroup (â2;x2¼0 ¼ 0:298).

In Items 3 and 4 (lower panel), one split is performed with regard to the inter-

cepts, indicating UDIF. The results are also in line with the true simulated effects.

The model provides an identification of DIF items together with the responsible

covariates and a classification by type of DIF.

NUDIF. When using IFT, which explicitly tests for NUDIF, only Items 1 and 2,

which were simulated as NUDIF items, are detected. The corresponding trees are

given in Figure 9. The subgroup-specific slopes (left panel) are defined by the

same splits as in the DIF framework considered previously. Due to the construc-

tion of the model, the estimated coefficients ai1;ai2; i ¼ 1; 2, however, differ

slightly. If splits are significant, the same splits are performed in the intercepts

yielding trees with subgroup-specific intercepts. Since they are not of main

interest, they are displayed a little smaller (right panel of Figure 9).

TABLE 3.

Modified Values of Item Discrimination and Item Difficulty Parameters in the Illustrative

Example With Nonuniform DIF.

Item Nonuniform DIF Item Uniform DIF

1 a1;mod ¼ a1 þ 0:6 � Iðx1 ¼ 1Þ 3 b3;mod ¼ b3 þ 0:8 � Iðx1 ¼ 1Þ
2 a2;mod ¼ a2 þ 0:6 � Iðx2 ¼ 0Þ 4 b4;mod ¼ b4 þ 0:8 � Iðx2 ¼ 0Þ

Note. DIF ¼ differential item functioning.

Detection of Uniform

580



6.5. Simulations

In the following, we briefly illustrate the properties of the models for the DIF

and NUDIF framework by means of a small simulation. The structure of the

simulated data sets we consider here is the same as in Section 5. We limit the

discussion to the comparison of two groups defined by one binary covariate

x 2 f0; 1g. According to Model 6, NUDIF is present if the item discriminations
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0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Item 1

θp

P
(Y

p1
=

1)

x1=0
x1=1

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Item 2

θp

P
(Y

p 2
=

1)

x2=0
x2=1

FIGURE 7. Item characteristic curves of Items 1 and 2 for the illustrative example with

nonuniform differential item functioning.

Item 1, slope

0.205 0.328
2 3

x1=0 x1=1

Item 2, slope

0.298 0.214
2 3

x2=0 x2=1

Item 3, intercept

−2.394 −2.897
2 3

x1=0 x1=1

Item 4, intercept

−3.828 −2.932
2 3

x2=0 x2=1

FIGURE 8. Estimated trees for the illustrative example with nonuniform differential item

functioning (DIF), testing for both types of DIF. Estimated coefficients ail (upper) and gil
(lower) are given in each leaf of the trees.
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ai differ between the two groups. The difference in item discriminations is

simulated by the equation ai;mod ¼ ai þ c � Iðx ¼ 0Þ for one half of DIF items

and by the equation ai;mod ¼ ai þ c � Iðx ¼ 1Þ for the other half of DIF items,

with constant c 2 f0:3; 0:6g. From our experience, the values 0:3 and 0:6 rep-

resent medium DIF effect sizes. Boxplots of true positive and FPRs on the item

level for the setting with P ¼ 800, I ¼ 20, and 20% DIF obtained by IFT (left of

each panel) and the classical logistic model (right of each panel) are given in

Figure 10. The results when testing for both types of DIF are shown in the left

panel and the results when testing for NUDIF are shown in the right panel. Within

the DIF framework, the classical logistic model outperforms the proposed tree-

based approach. The average hit rate in the setting with c ¼ 0:6 (lower left) is 0:66

for logistic, but only 0:43 for IFT. This was to be expected because the test on the

whole parameter vector ðgi; aiÞ obviously has a stronger power than the tests on

single splits. However, in the NUDIF framework, the two methods almost yield the

same results. The average hit rate in the settings with c ¼ 0:6 (lower right) for both

models is 0:44. Due to the construction of the models, the main difference in the

case of two groups is the use of different test statistics to obtain a decision. As we

already illustrated for UDIF, our proposed IFT approach can also be used to detect

NUDIF without loss of efficiency. The findings presented here can be confirmed

by the results of all other settings considered in our simulation.

7. Empirical Applications

Finally, we will illustrate and compare the proposed approaches on real data

examples.

Item 1, slope

0.202 0.412
2 3

x1=0 x1=1

Item 1, intercept

−1.435 −2.201
2 3

x1=0 x1=1

Item 2, slope

0.39 0.181
2 3

x2=0 x2=1

Item 2, intercept

−2.816 −1.389
2 3

x2=0 x2=1

FIGURE 9. Estimated trees for the illustrative example with nonuniform differential item

functioning (NUDIF), testing for NUDIF. Estimated coefficients ail (left) and gil (right)

are given in each leaf of the trees.
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7.1. Intelligence-Structure-Test 2000 R (I-S-T 2000 R)

We use data from the I-S-T 2000 R (Testzentrale Göttingen Göttingen,

www.testzentrale.de). The test was developed by Amthauer, Brocke, Liepmann,

and Beauducel (2001) and Beauducel, Liepmann, Horn, and Brocke (2010) and is

a revised version of its predecessors I-S-T 70 (Amthauer, Brocke, Liepmann, &

Beauducel, 1973) and I-S-T 2000 (Amthauer, Brocke, Liepmann, & Beauducel,

1999). The available study was conducted at the Phillips University in Marburg

(Bühner, Ziegler, Krumm, & Schmidt-Atzert, 2006). There were 273 participants

from 40 different subject areas. The second module of the test contains 20 items

(Items 21–40) in which analogies play the major role. There are three predefined

terms with a certain relation between the first two. This relationship needs to be

recognized to find the fourth term. From five possible answers, the respondent is

asked to choose the term that relates to the third term, as the second term relates

to the first term. One example is

dark : bright wet : ?

ðaÞ rain; ðbÞ day; ðcÞ moist; ðdÞ wind; ðeÞ dry:

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

IFT Logistic

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

IFT Logistic

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

IFT Logistic

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

IFT Logistic

TPR/FPR

c=0.3

c=0.6

DIF NUDIF

FIGURE 10. Boxplots of true positive rate and false positive rate for the simulation with

nonuniform differential item functioning (NUDIF) and one binary predictor ( P ¼ 800,

I ¼ 20, 20% DIF), testing for both types of DIF (left) and testing for NUDIF (right).
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Therefore, one has to select that alternative that relates to wet as bright relates

to dark.

For the investigation of DIF in these items, we incorporate the covariates

gender (male: 0, female: 1) and age. The summary statistics of the resulting test

scores of Items 21–40 and the two covariates are given in Table 4.

When using IFT for UDIF, 3 of the 20 items showed DIF. The algorithm

performs only three splits before stopping, and therefore, each item is split only

once. All permutation tests were based on 1,000 permutations at local signifi-

cance level :05=2.

The estimated trees for 3 items detected as DIF items are given in Figure 11. It

is seen that both covariates gender and age seem to induce DIF because both are

used for splitting at least once. The second and third item show DIF induced by

gender, whereas the first item shows DIF induced by age. According to the

estimated coefficients, the second item is easier for females (gender ¼ 1), the

third item is easier for males (gender ¼ 0), and the first item is easier for all

students who are rather young (age � 23).

An overview of the detected DIF items obtained by the six strategies discussed

in this article is given in Table 5. When using IFT which tests for both types of

DIF, one obtains very similar results. As in the UDIF framework, the first,

second, and third items are also identified as DIF items with the same variables

TABLE 4.

Summary Statistics of the Test Score of the Second Module (Items 21–40) of the I-S-T 2000

R and the Two Considered Covariates.

Variable
Summary Statistics

xmin x0:25 xmed �x x0:75 xmax

Test score 6 12 14 13.87 16 19

Age 18 20 22 22.88 24 39

Gender Male: 97 Female: 176

Note. I-S-T 2000 R ¼ Intelligence-Structure-Test 2000 R.

First Item

−3.79 −4.774
2 3

age<=23 age>23

Second Item

−6.68 −5.677
2 3

gender=0 gender=1

Third Item

−3.778 −5.221
2 3

gender=0 gender=1

FIGURE 11. Trees of the three detected differential item functioning (DIF) items of the

second module of the Intelligence-Structure-Test 2000 R using the model for uniform DIF.

Estimated intercepts gil are given in each leaf of the trees.
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that induce DIF. The estimated models for the first and second items are even

identical. A difference occurs for the third item, where the split in gender is not

performed in the intercept but in the slope component. The model gives the

estimated intercept b0;third ¼ �4:993. The resulting tree of slopes ail is given

in Figure 12. The estimated coefficients again mean that the item favors males

(gender ¼ 0), but the difference slightly increases for participants with a higher

test score. Interestingly, the splits in the intercept (UDIF, Figure 11) and in the

slope (DIF, Figure 12) result in very similar estimated probabilities. As a con-

sequence, it is not surprising that the third item is not detected by the model

within the NUDIF framework.

The evaluation of the data set by the extended logistic Model 3 for UDIF

yields 5 DIF items (fourth column in Table 5). Based on the results in the

simulations, it seems that the fourth and fifth item might be falsely identified

as items with UDIF. Concerning the identification of items, the results within the

DIF and NUDIF framework are equal to those of IFT. However, when testing

NUDIF for the third item, one obtains the p value :052 indicating an almost

TABLE 5.

Comparison of Detected DIF Items of the I-S-T 2000 R Using IFT and the Extended

Logistic Approach for Uniform and Nonuniform DIF.

Item

IFT Extended Logistic

UDIF DIF NUDIF UDIF DIF NUDIF

First � � (u) � �
Second � � (u) � �
Third � � (non) � �
Fourth �
Fifth �

Note. FPR¼ false positive rate; DIF¼ differential item functioning; IFT¼ item-focused trees; UDIF

¼ uniform DIF; NUDIF ¼ nonuniform DIF; I-S-T 2000 R ¼ Intelligence-Structure-Test 2000 R.

Third Item, slope

0.574 0.448
2 3

gender=0 gender=1

FIGURE 12. Tree of the third detected differential item functioning (DIF) item of the

second module of the Intelligence-Structure-Test 2000 R using the model for both types of

DIF. Estimated slopes ail are given in each leaf of the trees.
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significant effect. Table 6 shows a detailed overview of the estimated DIF effect

sizes when using the two approaches for UDIF. For IFT (left columns), the given

values correspond to the (norm of the) differences of the estimated values in the

nodes of the trees in Figure 11. For the third item, one observes the difference

1:443, which is quite large. The extended logistic approach does not explicitly

provide information about the variables that are responsible for DIF, but the

estimates and corresponding standard errors given in Table 6 indicate which

ones might be relevant.

It is noteworthy that in summary, the test seems not to be strongly

affected by DIF. From the 20 items that use analogies, only 3 are suspect

of DIF and the effects are not overly strong. This was to be expected of a

carefully designed test.

7.2. California Testing Bureau (CTB) Science Data

In a second application, we consider a data set from CTB-McGraw Hill. For a

description of the original data, see also De Boeck and Wilson (2004). The data

include the results of 1,500 Grade 8 students from 35 schools. The students had to

respond to 76 items, measuring different objectives and subskills related to

mathematics and science. In our investigation, we restrict to the 25 multiple-

choice items from subject area science.

To test for DIF in these items, we incorporate the three covariates gender

(male: 0, female: 1), type of the school (1: catholic, 2: private, 3: public),

and size of the school (number of students in hundreds). The summary

statistics of the test scores for the 25 items and the three covariates are given

in Table 7.

When fitting IFT for UDIF, 14 of the 25 items are identified as DIF items.

Altogether, the algorithm performs 27 splits until further splits are no longer

TABLE 6.

Overview on Estimated Effect Sizes of the I-S-T 2000 R Using IFT and the Extended

Logistic Approach for Uniform DIF.

Item-Focused Trees Extended Logistic

Item Age Gender Age Gender

First .984 � �.943 (.152) �.026 (.154)

Second � 1.002 .091 (.165) .507 (.174)

Third � 1.443 .485 (.212) �.583 (.225)

Fourth � � .175 (.200) �.455 (.237)

Fifth � � .088 (.133) .367 (.138)

Note. For IFT, the differences of the effects in the nodes are given, and for the logistic approach, the

estimates and standard errors are given. DIF ¼ differential item functioning; IFT ¼ item-focused

trees; I-S-T 2000 R ¼ Intelligence-Structure-Test 2000 R.
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significant. With three covariates, each permutation test is performed at local

significance level :05=3. The p value in the 28th iteration was :02 and thus

not significant on level :01�6. All splits refer to covariates type and size, whereas

no significant splits were found for variable gender. There does not seem to be

any difference between males and females.

TABLE 7.

Summary Statistics of the Test Score of the 25 Multiple-Choice Items From Subject Area

Science of the CTB Data and the Three Considered Covariates.

Variable
Summary Statistics

xmin x0:25 xmed �x x0:75 xmax

Test score 7 14 16 16.01 18 23

Size 100 500 900 868.3 1,300 1,600

Type Catholic: 105 Private: 84 Public: 1,311

Gender Male: 761 Female: 739

Item 10

−1.384

−2.153 −1.728

2

4 5

size<=400 size>400

size<=900 size>900

Item 21

−1.317 −2.262
2 3

type<=2 type=3

Item 25

−3.444

−2.592 −2.07

−2.844

2

6 7

5

type=1 type>1

size<=1000 size>1000

size<=500 size>500

FIGURE 13. Trees of Items 10, 21, and 25 of the CTB data using the model for uniform

differential item functioning. Estimated intercepts gil are given in each leaf of the trees.
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The trees for three selected items are given in Figure 13. In Item 10, DIF is

induced by size and one has to distinguish between three subgroups. The item is

easiest for students in small schools (size� 400) but most difficult for students in

medium-sized schools (400 < size � 900). Item 21 is easier for students in a

catholic or private school (type �2) compared to students in public schools (type

¼3). An interesting partition is received for Item 25. For all students in a catholic

school (type¼1), the question is very difficult. By contrast, the question is easier

for all students in a private or public school (type > 1) in particular for those in

medium-sized schools (500 < size � 1,000).

To obtain DIF effect sizes, we computed the maximal difference of estimated

effects between any two nodes for each tree. The obtained values vary over a

wide range from 0:458 to 2:985. This also confirms that large DIF effects such as

1:6 might occur in real data sets.

An overview of the detected DIF items by the six evaluated models is given in

Table 8. It shows only items that were found to be DIF items by at least one of the

models. Within the DIF framework (second column), 11 DIF items are identified.

TABLE 8.

Comparison of Detected DIF Items of the CTB Data Using IFT and the Extended Logistic

Approach for Uniform and Nonuniform DIF.

Item

IFT Extended Logistic

UDIF DIF NUDIF UDIF DIF NUDIF

21 � � (non) � � � �
3 � � (u) � �
4 � � (u) � �
8 � � (u) � �
9 � � (u) � �
14 � � (non) � �
16 � � (non) � �
25 � � (u) � �
11 � � �
13 � � �
19 � � (u) �
5 � � (u)

10 � � (u)

24 � �
1 �
6 �
15 �
17 �

Note. DIF ¼ differential item functioning; IFT ¼ item-focused trees; UDIF ¼ uniform DIF; NUDIF

¼ nonuniform DIF.
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These are the same items as with the restricted model for UDIF discussed above

but without Items 6, 15, and 17. Unlike above, there are 3 items that are classified

as NUDIF items by the more general model. Here, for example, in Item 21, the

split regarding the type of school is not performed in the intercept but in the slope

component. According to the model testing for NUDIF (third column), the 2

items, 13 and 21, carry NUDIF. In contrast to Item 13, Item 21 is also detected

within the UDIF and DIF framework.

The comparison to the extended logistic approach shows a strong overlap.

Within the UDIF framework (first and fourth column), there is an agreement in

9 items. In the DIF framework, this is the case for 8 items. However, it should

again be mentioned that the extended logistic approach within the DIF frame-

work does not distinguish between uniform and NUDIF. When testing for

NUDIF (sixth column), one obtains four significant results. In contrast to Items

1 and 11, Items 13 and 21 are also found by IFT. In total, Item 21 is the only item

that shows DIF according to all six models, and 4 items are only identified as DIF

items by one of the six models.

8. Concluding Remarks

The proposed recursive partitioning approach, in short IFT, is an extension of

the basic logistic regression model for the detection of uniform and NUDIF. In

contrast to the classical approach, IFT allows to incorporate several covariates on

different scales, including ordinal and continuous covariates, that potentially

induce DIF. The method leads to simultaneous selection of items and (interac-

tions of) variables that cause DIF. The result typically is a small tree for each DIF

item, and therefore the DIF structure is easy accessible.

The results of the simulations including uniform as well as NUDIF show

that IFT has the same performance as the classical approach in the simple

case of two groups but also works quite well in more complex settings with

various covariates. Nevertheless, it should be noted that in the latter case, the

method is conservative and does not exploit the significance level fully. The

applications demonstrate the flexibility and interpretability of IFT, also com-

pared to the extended logistic model that tests DIF by a vector of covariates.

In particular, within the framework that tests for both types of DIF, the

obtained trees show which type of DIF is present. The results shown in the

article were obtained by an R program that was written by one of the authors

and is available in the R add-on package DIFtree (Berger, 2016; R Core

Team, 2015).
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