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Regularized regression for categorical data
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Abstract: In the last two decades, regularization techniques, in particular penalty-based methods, have
become very popular in statistical modelling. Driven by technological developments, most approaches
have been designed for high-dimensional problems with metric variables, whereas categorical data
has largely been neglected. In recent years, however, it has become clear that regularization is also
very promising when modelling categorical data. A specific trait of categorical data is that many
parameters are typically needed to model the underlying structure. This results in complex estimation
problems that call for structured penalties which are tailored to the categorical nature of the data.
This article gives a systematic overview of penalty-based methods for categorical data developed so
far and highlights some issues where further research is needed. We deal with categorical predictors as
well as models for categorical response variables. The primary interest of this article is to give insight
into basic properties of and differences between methods that are important with respect to statistical
modelling in practice, without going into technical details or extensive discussion of asymptotic
properties.
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1 Introduction

In recent decades, regularization methods for regression and classification have
become a topic of intensive research. Regularization methods typically aim at a
sparse representation of the link between predictors and responses, particularly in
high-dimensional settings; see, for example, Hastie et al. (2009) and Bühlmann and
van de Geer (2011). Only those components that are really needed to model the
effect of explanatory variables on an outcome variable should be included in the
model. Categorical variables are often a challenge to sparsity, even in seemingly
low-dimensional models, because typically at least one parameter is needed for
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each category. As a consequence, if the number of categories in a predictor is large,
common maximum likelihood estimates tend to fail because they are not unique
or deteriorate. If the outcome variable is multi categorical, then similar problems
arise because for each level of the outcome variable, a different set of regression
parameters is needed to link the response to the covariates.

Another feature of categorical (or more generally speaking ‘discrete’) data is that
other structures beyond those for metric data are of interest. While regularization
for metric predictors often means shrinkage and/or variable selection and therefore
identification of parameters that should be set to zero, for a categorical predictor
we also want to know which categories have to be distinguished when modelling
the effect on an outcome variable. In other words, one wants to identify clusters
of categories that share the same effect. Furthermore, clustering is not restricted to
predictor variables, it is also challenging when modelling categorical outcomes or
subject-specific effects.

In this article, we will systematically review regularization methods for categorical
data. A very popular approach we will focus on is regularization or constrained
estimation by use of penalty terms in the tradition of the lasso, which was introduced
by Tibshirani (1996). The primary interest of this article is to give insight into
basic properties of and differences between methods that are important with respect
to statistical modelling in practice. For instance, which penalty is the right one
for which kind of model and which research question? Which penalty serves the
purpose of clustering categories? Should the fusion of categories be done individually
or groupwise? Which methods can be used for smoothing levels of an ordinal
covariate? etc. In order to provide such a broad overview, we will not go into
technical details or extensively discuss asymptotic properties. The article is organized
as follows: In Section 2, we will present a motivating data example on households’
food expenses and the corresponding modelling framework. In Section 3, we will
consider penalty methods for categorical covariates. Section 4 deals with models for
categorical outcomes, Section 5 with subject-specific models where individuals are
to be clustered and Section 6 with pairwise comparisons. In Section 7, we briefly
describe some alternatives to penalty methods and Section 8 concludes the article.

2 Data example and modelling framework

2.1 Data example: Spending for food

The data we consider comes from a study about marketing for food products, in
particular luxury food (Hartmann, 2015; Hartmann et al., 2016a,b). The primary
aim of this study was the segmentation of German consumers based on the perceived
dimensions of luxury food. Here, however, we will primarily focus on aspects
regarding more general behaviour when buying and consuming food products. Our
response of interest is the (approximate) amount of money a household spends
each week on groceries in stores (i.e., not in restaurants, for delivery, etc.). Table 1
gives a description of the ordinal covariates. This data set is a typical example of
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a study using a large number of Likert-type items to investigate habits, attitudes,
etc. (variables X3, . . . , X20). In many studies, the number of items will be even
larger than in our illustrative example here. However, not all of the items will be
relevant for the response. Therefore, variable selection is important. Furthermore,
the relationship between the items, coded by −2, −1, · · · ,2, or 1,2, · · · , and the
response will not necessarily be linear (even though many applied papers may assume
that). With dummy coding, however, the number of parameters to be fit becomes
very large and estimated coefficients will be erratic and thus hard to interpret, even
with a relatively large sample size of around 800 as in our case. Therefore, penalized
estimation is very attractive in studies of this type.

Table 1 Description of the ordinal covariates

Variable Coding

X1 number of persons in the household 1, 2, 3, 4, 5, 6 or more
X2 monthly household net income (in euro) 1: less than 900; 2: 900–1 300;

3: 1 300–1 500; 4: 1 500–2 000;
5: 2 000–2 600; 6: 2 600–3 600;
7: 2 600–5 000; 8: 5 000–7 600;
9: 7 600–9 000; 10: 9 000–12 600;

11: 12 600–18 000; 12: 18 000 or more

Eating habits:
X3 ‘I like to cook’. −2: not true at all
X4 ‘I frequently go to cheap restaurants’. −1: not true
X5 ‘I frequently go to expensive restaurants’. 0: partly true
X6 ‘I frequently buy convenience foods’. 1: true
X7 ‘I frequently use a delivery service’. 2: absolutely true
X8 ‘I prefer eating at home’.

Where are you buying your groceries?
X9 at a discount supermarket 1: very often
X10 at the farmer’s market 2: often
X11 at a wholefood shop 3: sometimes
X12 directly at the farm 4: rarely
X13 at the delicatessen store 5: never
X14 at a specialist shop

Time, price, etc.:
X15 ‘I like to take my time when buying groceries’. −2: I don’t agree at all
X16 ‘I want to be fast when buying groceries’. −1: I don’t agree
X17 ‘With food, a high price stands for high quality’. 0: I partly agree
X18 ‘I’d rather buy a certain food product 1: I agree

if the price is rather high’. 2: I totally agree
X19 ‘When buying food, I don’t

care about the price’.
X20 ‘Generally I like luxury food’.

In addition to the ordinal covariates in Table 1, we consider the two nominal
predictors ‘family status’ (C1) and the professional category of the main earner (C2),
see Table 2. Here, it is particularly interesting which categories differ from each other
with respect to spending behaviour when controlling for the number of persons in
the household (X1) and household income (X2).
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Table 2 Description of the nominal covariates

Variable Coding

C1 family status 1 single
2 single with child(ren)
3 in a serious relationship
4 in a serious relationship with child(ren)
5 married
6 married with child(ren)
7 widowed

C2 professional category 1 white-collar worker
of main earner 2 executive employee

3 self-employed without employees
4 self-employed with employees
5 freelancer (with university degree)
6 official
7 senior official
8 blue-collar worker
9 housewife/husband
10 unemployed
11 pensioner
12 student
13 other

2.2 Structuring categorical predictors

When categorical predictors are included in a regression model, the number of
parameters that are needed to specify the impact on the response is typically large.
With several categorical predictors and large numbers of categories, the commonly
used estimates, such as maximum likelihood or least squares, tend to become
unstable. Cases like that particularly call for a sparse representation of the effects
on the response by including only the relevant terms or imposing some constraints
that facilitate interpretation.

The framework we use here is generalized linear models (GLMs) for which the
conditional response � = E(y|x) is specified by

� = h(�) or g(�) = �

where h(·) denotes the (known) response function and g(·) = h(·)−1 the link func-
tion. The linear predictor is determined by the predictors collected in the vector x
in the form � = x�ˇ. In addition, the conditional distribution y|x is from a simple
exponential family (McCullagh and Nelder, 1989).

When predictors are categorical, x usually consists of dummy variables. So let
categorical predictors Cj, j = 1, . . . , p have values Cj ∈ {0, . . . , kj}. These predictors
can be included into a GLM by using dummy variables defined by xjr = 1 if Cj = r
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and xjr = 0 otherwise, yielding the linear predictor

� = ˛+
p∑

j=1

kj∑

r=0

xjrˇjr = ˛+
p∑

j=1

x�
j ˇj, (2.1)

where ˇj collects all parameters linked to predictor Cj. For means of identifiability,
some constraints need to be placed on ˇj. Typically some reference category is
chosen with the corresponding parameter being fixed to zero, most often the first
or last category. Here, we will use the first one yielding ˇj0 = 0 for all j. So xj and ˇj
from Equation (2.1) can be reduced to x�

j = (xj1, . . . , xjkj ) and ˇ�
j = (ˇj1, . . . , ˇjkj ),

respectively. Consequently, predictor Cj adds kj parameters to the model, and the
total number of parameters contributed by the categorical predictors is k1 + · · · + kp,
which can be very large, in particular if several categorical predictors are included.

In matrix notation, the linear predictor has the form

� = ˛+
p∑

j=1

X jˇj = Xˇ, (2.2)

where X j are (n× kj) design matrices containing the explanatory variables observed
at n individuals or sampling units; ˛ is a vector containing n times the constant
˛. Alternatively, ˛ and ˇj can be collected in a single parameter vector ˇ with
corresponding design matrix X .

Of course, some additional metric covariates z1, . . . , zq may also be included in �.
In this case, we have � = ˛+ ∑p

j=1 x
�
j ˇj + z��, where vector z collects the additional

explanatory variables and � is the associated vector of regression coefficients.
The most popular (G)LM, which we will also be using for analyzing our data from

Section 2.1, is the linear model

y = ˛+
p∑

j=1

x�
j ˇj + �, (2.3)

where the link function is just the identity, and � is a normal random variable with
mean 0 and variance �2. Sometimes, however, model (2.3) is specified without the
assumption of normality.

When selecting a model with categorical predictors, it should be distinguished
between two problems:

(A) Which categorical predictors should be included in the model?
(B) Which categories within one categorical predictor should be distinguished?

Statistical Modelling 2016; 16(3): 161–200



166 Gerhard Tutz and Jan Gertheiss

In case (A), it has to be decided whether for some variable j ‘all’ dummy coefficients
ˇjr are to be set to zero. If so, predictor Cj is excluded from the model. In case (B), the
question is whether some ˇjr and ˇjs are to be set equal. If so, categories r and s of pre-
dictorCj are fused, as one cannot distinguish their effects on the response. In Section 3,
we will discuss several approaches that can be used for answering (A), (B) or both.

Sometimes, a categorical covariate can also act as a so-called effect modifier. To
distinguish the effect modifier from categorical predictors cj above, it is denoted by u
here. In general, ‘effect modifier’ u means that the effect of the remaining predictors
may be different for different levels of u. For metric or binary predictors z1, . . . , zq,
the linear predictor then takes the form � = �(u) = ˛(u) + z1�1(u) + . . . zq�q(u), a
so-called ‘varying coefficient’ model. Whereas varying coefficient models have been
studied extensively for continuous effect modifiers (see, e.g., Hastie and Tibshirani,
1993; Hoover et al., 1998; Kauermann and Tutz, 2000; Fan et al., 2003; Lu et al.,
2008; Wang et al., 2008; Wang and Xia, 2009; Liu et al., 2014; Klopp and Pensky,
2015), literature on discrete u is relatively rare (Gertheiss and Tutz, 2012; Oelker
et al., 2014; Zhao et al., 2014; Ollier and Viallon, 2015, to name a few). With
categorical effect modifiers, issues of model selection are closely related to (B) from
above. Primarily, for which predictors zj is the effect actually varying? And for which
levels of u is the predictors’ effect on the response varying? In addition, we may ask
which predictors should be included in the model at all.

An alternative interpretation of the varying coefficient model is in terms of
interactions between two (or more) explanatory variables. A very interesting case
concerns the interaction between categorical predictors, like in a two-way Analysis
of Variance (ANOVA) model. If interactions are present, (B) becomes more difficult
because only levels whose interaction effects are all identical should be collapsed.
A penalty for solving this problem has been proposed by Post and Bondell (2013),
which will also be discussed in Section 3.

3 Regularization for categorical covariates

For answering the questions of model selection stated in Section 2.2, penalties can be
very useful tools because they can be tailored to recover, in a data-driven way, exactly
those kinds of structures that the researcher is interested in. In what follows, we will
give an overview of various penalties that can be used with categorical predictors
and discuss what those penalties are designed for from a model-building and fitting
perspective.

3.1 Penalty-based methods

Regularization methods that use penalty terms are obtained by maximizing the
penalized log-likelihood

lp(ˇ) = l(ˇ) − J�(ˇ),
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where l(ˇ) is the usual log-likelihood of the GLM and J�(ˇ) is a function that
penalizes the size and structure of the parameters ˇ1, ˇ2, etc., collected in vector
ˇ. The strength of the penalty is typically determined by a tuning parameter �,
and the penalty has the form J�(ˇ) = �J(ˇ). A classical penalty is the ridge penalty
J�(ˇ) = �

∑
j ˇ

2
j , which goes back to Hoerl and Kennard (1970). It shrinks estimates

towards zero and is able to stabilize estimates but is unable to detect structures within
or between the predictors. For the detection of interesting structures in discrete data,
other penalties are much more useful and will be discussed in the following sections.

3.1.1 Smoothing ordered categorical predictors
If the categories of the predictors Cj ∈ {0, . . . , kj} are ordered, it is often sensible to
assume that the corresponding parameters ˇj1, . . . , ˇjkj vary smoothly over the cate-
gories. A penalty which enforces that estimates of coefficients for adjacent categories
are not too far apart is

J(ˇ) =
p∑

j=1

kj∑

r=1

(ˇjr − ˇj,r−1)2, (3.1)

where ˇj0 = 0 refers to the reference category (Gertheiss and Tutz, 2009). The penalty
is a generalized ridge type penalty which can be given as a quadratic form. With Dj

denoting the matrix that generates differences of fixed order, one obtains

J(ˇ) =
p∑

j=1

ˇ�
j D

�
j Djˇj =

p∑

j=1

ˇ�
j �jˇj,

where �j = D�
j Dj. It is straightforward to use differences of higher order by building

differences of differences. It has been shown that ridge type penalties for differences
strongly reduce the mean squared error of estimates if the effect of the categorical
predictor on the dependent variable is smooth (Gertheiss and Tutz, 2009). A typical
application for this kind of penalty is rating scales (Tutz and Gertheiss, 2014). Also in
the example from Section 2.1, many covariates belong to this category of predictors
(see Table 1). With larger numbers of predictors, however, estimating of covariate
effects should be combined with variable selection, which will be discussed in the
next section.

3.1.2 Groupwise selection
Selection of categorical predictors can be obtained by the ‘group lasso’ (Yuan and
Lin, 2006), which is an extension of Tibshirani’s lasso (Tibshirani, 1996) that is able
to select groups of parameters simultaneously. It uses the penalty term
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J(ˇ) =
p∑

j=1

√
kj||ˇj||2, (3.2)

where ||ˇj||2 = (ˇ2
j1 + · · · + ˇ2

jkj
)1/2 is the L2-norm of the parameters of the jth group,

which refers to one categorical predictor. The penalty encourages sparsity such that
either ˆ̌

j = 0 or ˇjr /= 0 for all r = 1, . . . , kj. By encouraging that whole vectors ˇj
are set to zero/non-zero, it aims at the selection of entire (categorical) variables in
contrast to simple parameter selection. Instead of L2-norm ||ˇj||2, any other Lq-norm
with q > 1 could be used for groupwise selection (Zhao et al., 2009), but we will
focus on the group lasso (q = 2) here.

When using the group lasso penalty, it is typically assumed that the design matrices
for the groups X j are orthonormal. This is rarely fulfilled. However, one can obtain
an orthonormal problem by using the more general penalty

J(ˇ) =
p∑

j=1

√
kj||ˇj||Mj

, (3.3)

where ||ˇj||Mj
= (ˇ�

j Mjˇj)
1/2. For the model with linear predictor � = ∑p

j=1 X jˇj, one

uses the Gram matrix Mj = X�
j X j/n (for centred covariates). With Mj = M

T/2
j M

1/2
j

denoting the Cholesky decomposition and X̃ j = X jM
−1/2
j , ˜̌

j = M
1/2
j ˇj the pre-

dictor is transformed to � = ∑p
j=1 X̃ j

˜̌
j. Then the penalty (3.3) has the form

(ˇ�
j Mjˇj)

1/2 = (ˇ�
j M

T/2
j M

1/2
j ˇj)

1/2 = ( ˜̌ �
j

˜̌
j)

1/2. Therefore, maximization of the
log-likelihood for the model with design matrices X j, parameters ˇj and penalty
components ||ˇj||Mj

is equivalent to maximization of the usual penalized log-

likelihood for the model with predictors X̃ j = X jM̃
−1/2
j and parameters ˜̌

j = M
1/2
j ˇj.

Use of the Gram matrix means that the predictors are groupwise standardized. It
allows considering the simpler Euclidean norm because the problem can always be
transformed into this simpler penalty problem.

Meier et al. (2008) showed that under sparsity, the resulting estimates are con-
sistent even when the number of predictors is larger than the sample size. Selection
consistency under various conditions has been investigated by Nardi and Rinaldo
(2008) and Bach (2008).

Extensions of the group lasso are the ‘sparse’ and the ‘adaptive’ group lasso. The
sparse group lasso proposed by Simon et al. (2013) uses the penalty

J�(ˇ) = �1

p∑

j=1

√
kj||ˇj||2 + �2||ˇ||1,
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where ˇ� = (ˇ�
1 , . . . ,ˇ

�
p ) collects all the parameters, and ||ˇ||1 denotes the L1-norm.

The penalty aims at enforcing sparsity of groups ‘and’ within each group. It
was developed with a focus on high-dimensional metric predictors, such as gene
expressions. With categorical covariates, however, direct application of this penalty
often does not make sense because the parameters collected in ˇj are typically dummy
coefficients specifying differences to the reference category. With theL1-norm penalty,
some of those differences are set to zero, whereas others may not. This is only sensible,
however, if the reference category is not arbitrarily chosen but special in some sense,
for example, a control group. A more appropriate penalty enforcing sparseness
within categorical predictors is the fusion penalty discussed in Section 3.1.3.

The adaptive lasso has been proposed by Zou (2006); a group version has been
considered by Wang and Leng (2008) and Wei and Huang (2010). It uses the
penalty

J�(ˇ) = �

p∑

j=1

wj||ˇj||2,

with adaptive weight wj =
√
kj/‖ ˘̌

j‖, where ˘̌
j is a preliminary estimate of ˇj, for

example, an maximum likelihood (ML) estimate or a ridge estimate. The oracle
properties that Zou (2006) derived for the adaptive lasso use that for growing
sample size the weights for zero coefficients get inflated, whereas the weights for
non-zero coefficients converge to a finite constant.

Besides the group lasso, groupwise selection can be obtained by various other
penalties as Huang et al. (2012) showed in their overview on available models.
A general form of penalty uses for the jth group of variables �(t; vj�, �), where
�(t; vj�, �) is a concave function in t, and � is an additional tuning parameter. The
corresponding penalty is

J�(ˇ) =
p∑

j=1

�(||ˇj||Mj
; vj�, �).

A special case is the function �(t; vj�) = vj�|t|, which yields the (group) lasso,
where vj =

√
kj. Alternatives are grouped versions of the smoothly clipped

absolute deviation (SCAD; Fan and Li, 2001; Wang et al., 2007; Wang
et al., 2008) or the minimax concave penalty (MCP; Zhang, 2010; Huang
et al., 2012), given by �(t; �, �) = �

∫ |t|
0 min{1, (� − s/�)+/(� − 1)}ds, � > 2 and

�(t; �, �) = �
∫ |t|

0 (1 − s/(��))+ds, � > 1, respectively.
The penalties considered so far can be used for categorical predictors in general.

However, they are recommended for ‘nominal predictors’ only. Given ‘ordinal
categorical predictors’, they ignore the information contained in the ordering of
categories. When dealing with ordinal covariates, and when the focus is on selection,
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the group lasso penalty above should be replaced by

J(ˇ) =
p∑

j=1

√
kj||Djˇj||2,

where Dj is a matrix that generates differences of fixed order from the parameters
linked to the jth predictor as discussed in Section 2.2. In the simplest case of first-

order differences, we obtain ||Djˇj||2 =
√∑

r(ˇjr − ˇj,r−1)2 as proposed by Gertheiss
et al. (2011). This penalty enforces selection of the whole group of parameters that
belong to the same categorical predictor and simultaneously smoothes over the
ordered categories. It has already been used in several applications (see, e.g., Cieza
et al., 2014; Leissner et al., 2014; Oberhauser et al., 2013).

For illustration, we consider the example from Section 2.1 with covariates
from Table 1. Figure 1 shows the estimated coefficients for a subset of nine
predictors for different values of � ∈ {10−1,10−0.5, . . . ,105}. With increasing �,
coefficients are smoothed and shrunk, and at some point, the entire group of
dummy coefficients belonging to one variable is set to zero, which means that
the corresponding variable is excluded from the model. It is seen, for example,
that for X5 (expensive restaurants), estimates with small � are wiggly and thus
hardly interpretable, but with larger �, the coefficients indicate that people who
often go to expensive restaurants also tend to spend more on food in stores.
However, the most influential variables are, not surprisingly, the number of persons
in the household (note, the response is the household’s spending on food) and the
household’s net income. For one to five persons, the increase in spending is virtually
linear, but for the last category, increase seems to be stronger. This makes perfect
sense since in the last category, households with six ‘or more’ people are collected.
With increasing income, spending for food typically increases too, but not linearly
across levels. Furthermore, for the top categories, the effect seems to be slightly
reversed.

To obtain one final model, an adequate � needs to be chosen, which can
be done via cross-validation. The corresponding coefficients are drawn in solid
black in Figure 1. In this case, 10 variables are removed from the complete set
of 20 covariates, and 10 are selected (X1, X2, X3, X5, X9, X10, X11, X13, X15,
X16). Moreover, coefficients are much easier to interpret than with low or no
penalty. Here, this is mainly because most of the solid black coefficients appear
to be monotone within factors. A penalty which explicitly favours monotonicity
within groups of coefficients is the so-called ‘cooperative’ lasso (Chiquet et al.,
2013). This penalty is designed to select sign-coherent groups of coefficients
and thus, if applied to differences of adjacent dummy coefficients, it favours
monotonicity. In general, selection penalties applied to differences of dummy
coefficients can be used to fuse categories, which will be discussed in more detail
below.
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Figure 1 Estimated coefficients for some (ordinal) covariates for different values of � when applying the
smoothing and selection penalty; results for final � as chosen via 5-fold cross-validation are given in solid
black.

3.1.3 Fusion penalties: the clustering of categories
The group lasso penalty selects predictors, but typically, if a predictor is in the model,
all the parameter estimates differ and no clustering is obtained. A penalty that enforces
the building of clusters of categories that share the same effect is (cf. Bondell and
Reich, 2009; Gertheiss and Tutz, 2010)

J(ˇ) =
p∑

j=1

∑

r<s

w(j)
rs |ˇjr − ˇjs|, (3.4)

where the sum is over all categories r, s ≥ 0 and implicitly the reference category
zero has been chosen by setting ˇj0 = 0 ∀j. The w(j)

rs are additional, appropriately
chosen weights (Bondell and Reich, 2009; Chiquet et al., 2015). By using the
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L1-penalized differences between all pairs of parameters that are linked to one
categorical predictor, the penalty tends to form clusters of categories that have the
same effect. Since the parameter for the reference category (ˇj0 = 0) is included in
the sum, the penalty also enforces variable selection. In the extreme case, for � → ∞,
all parameter estimates become zero and the categorical predictors are excluded.

A possible choice for the weights in Equation (3.4) is w
(j)
rs = (kj + 1)−1

√
(n(j)
r + n

(j)
s )/n (Bondell and Reich, 2009), where n(j)

r and n
(j)
s are the numbers of

observations in category r and s of predictor cj, respectively. When multiplying w(j)
rs

by the additional term | ˘̌ jr − ˘̌
js|−1, with initial/unpenalized estimates ˘̌

jr (compare
Section 3.1.2), an adaptive version in the lines of Zou (2006) is obtained, for which
oracle properties like selection and fusion consistency can be derived (Bondell and
Reich, 2009; Gertheiss and Tutz, 2010). On the other hand, the adaptive lasso be-
haves poorly if true parameters (or differences thereof) are close to zero (Pötscher
and Schneider, 2009). It has been our experience though that the adaptive version
often yields good results in practice if n is large compared to the number of regression
parameters. If not, however, the standard approach omitting | ˘̌ jr − ˘̌

js|−1 is typically
superior.

When searching for clusters of categories for ordered predictors, it is natural
to assume that clusters of categories refer to adjacent categories. Thus, the penalty
should enforce the fusion of adjacent categories, which is obtained by using (cf.
Gertheiss and Tutz, 2010; Tutz and Gertheiss, 2014)

J(ˇ) =
p∑

j=1

kj∑

r=1

w(j)
r |ˇjr − ˇj,r−1|. (3.5)

The effect of the penalty is that one obtains step functions for the ordered predictor:
categories that have the same effect are fused. For the weights w(j)

r , we can choose
the same as above, but divided by 2 and omitting factor (kj + 1)−1 (Gertheiss and
Tutz, 2010).

For illustration, Figure 2 shows the estimated coefficients for the same variables as
shown in Figure 1 for different values of fraction s/smax ∈ {0.1,0.15,0.2, . . . ,0.9},
with s denoting the actual value of the penalty J( ˆ̌ ) and smax denoting the s value for
the (unpenalized) ordinary least squares estimates. The solid black line corresponds
to the optimal fraction as chosen via 5-fold cross-validation. With this s, as before,
10 predictors are completely removed from the model, while 10 are selected (X1, X2,
X5, X9, X11, X13, X14, X15, X16, X17). Compared to the smoothing and selection
penalty from Section 3.1.2, this yields an overlap of eight predictors (X1, X2, X5, X9,
X11, X13, X15, X16). Besides variable selection, however, with the fusion penalty, it is
also possible to fuse adjacent categories, which means that the corresponding dummy
coefficients are equal. When looking at Figure 2, one sees that with small s coefficients
are not only shrunk towards each other, but also more and more categories are fused.
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Figure 2 Estimated coefficients for some (ordinal) covariates for different values of fraction s/smax when
applying the fusion penalty; results for final s/smax as chosen via 5-fold cross-validation are given in solid black.

At some point, all categories are fused, which means that the predictor is implicitly
removed from the model, because no distinction is made between the categories. Due
to the restriction that the coefficient for the reference category is zero, all coefficients
are zero when all levels are fused. For variables that were selected, one clearly sees
differences in the results for the smoothing penalty from Figure 1, see in particular the
solid black lines in Figure 2. Within variable X5 (expensive restaurants), for instance,
coefficients are not strictly monotone but a step function with only one jump between
the negative and the, at least partly, consenting categories. In the case of the household
net income, we do not find the inverse u-effect for the top categories but all those
levels are fused.

If nominal predictors are also considered, not only differences between adjacent
categories are penalized but all pairwise differences of dummy coefficients belonging
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Figure 3 Coefficient path for nominal predictors ‘family status’ and ‘professional category’ as well as ordinal
covariates ‘number of persons’ and ‘income’ (labels, see Tables 1 and 2), dashed gray line refers to the
intercept; results for final s/smax as chosen via 5-fold cross-validation are marked by the dotted vertical line.

to the same covariate, compare Equation (3.4). For illustration, we consider variables
C1 and C2 from Table 2 while controlling for the ordinal variables number of persons
in the household (X1) and the household’s net income (X2). Since now only four
covariates are in the model and hence the number of dummy variables is much
smaller than before, we can use the adaptive penalty taking the ordinary least squares
estimates into account. Figure 3 shows the corresponding coefficient paths, that is,
the estimated dummy coefficients as a function of s/smax. The dashed gray line refers
to the intercept; results for final s as chosen via 5-fold cross-validation are marked
by the dotted vertical line. We see that, for instance, singles, singles with kid(s) and
people in a serious relationship show comparable behaviour, as well as couples with
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children (married or not) and married couples without kids. With respect to the
professional category of the main earner, we see three clusters of different size, plus
freelancers (category 5), who tend to spend much more on food than other people.

When looking at Figure 3, we see that categories that are fused at some point
remain fused for smaller s/smax as well, that is, the path contains no splits. This
is what Chiquet et al. (2015) call a ‘tree structure’. With weights w(j)

rs as used so
far, however, this is not always the case. Therefore Chiquet et al. (2015) propose
alternative weights, such as wrs = nr · ns (with p = 1), to make sure that the path
contains no splits.

With penalty (3.5), the focus is on fusing categories, but as a by-product, variables
may also be completely removed from the model. If the focus is rather on variable
selection, but some categories of ordinal predictors may also be collapsed, we can
apply a sparse group lasso (Simon et al., 2013) to differences of adjacent dummy
coefficients. Also, with the cooperative lasso (Chiquet et al., 2013), some (adjacent)
levels may be fused. In general, any selection penalty placed on differences of dummy
coefficients can be used for level fusion, see also Oelker et al. (2015).

As already mentioned in the Introduction, a model with more than one categorical
predictor becomes challenging if interactions of predictors are allowed, like in a multi-
factorial ANOVA model. An appropriate penalty for handling such settings has been
proposed by Post and Bondell (2013), with the idea being ‘that only levels whose
interaction effects are all identical should have the possibility of their main effects
also declared identical’. This is similar to the concept of heredity, which says that in
a regression model with continuous predictors z1 and z2, for instance, the interaction
term z1z2 should only appear in the model if both z1 and z2 are present as well. That
is why Post and Bondell (2013) call their approach GASH-ANOVA, for ‘Grouping
And Selection using Heredity in ANOVA’. To ensure heredity, they form groups of
parameters where each group contains a main effect difference between two levels
of a categorical predictor along with all interaction differences that involve the same
two levels, and place an infinity norm penalty on those groups. To simplify notation,
let us consider a model with two categorical predictors A and B only, and let the
dummy coefficients belonging to A and B be denoted by ˛1, . . . , ˛k1 and ˇ1, . . . , ˇk2 ,
respectively. As before, category 0 is taken as the reference category for both factors.
Interaction effects are denoted by (˛ˇ)rs, r = 1, . . . , k1, s = 1, . . . , k2. Then groups
are built in terms of 	˛,rs = (|˛s − ˛r|, |(˛ˇ)s1 − (˛ˇ)r1|, . . . , |(˛ˇ)sk2 − (˛ˇ)rk2 |)�, 1 ≤
r < s ≤ k1; to penalize differences to the reference category, one additionally has
	˛,0s = (|˛s|, |(˛ˇ)s1|, . . . , |(˛ˇ)sk2 |)�, 1 ≤ s ≤ k1. Groups 	ˇ,rs are defined analogously.
Using those groups, the GASH-ANOVA penalty is

J(˛,ˇ) =
∑

0≤r<s≤k1

w(A)
rs max{	˛,rs} +

∑

0≤r<s≤k2

w(B)
rs max{	ˇ,rs},

where w(A)
rs and w(B)

rs are adequately chosen weights (Post and Bondell, 2013). If an
entire group 	˛,rs or 	ˇ,rs is set to zero, corresponding levels of A or B are collapsed.
Instead of the max/infinity norm, any other groupwise penalty as discussed in
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Section 3.1.2 could be used. If factor levels are ordered, the penalty can be modified
to only include differences between adjacent levels. For instance, if factor A is ordinal,
one would have 	˛,r−1,r only. A situation like this is often found in practice, for exam-
ple, in crop sciences when the yield for different genotypes or locations and (ordered)
fertilizer levels are analyzed. If more than two factors are considered, groups 	 can
be augmented to include differences of higher order interactions as well. Another
advantage of GASH-ANOVA is that it can also be used when only one observation
is available for each level combination; see Post and Bondell (2013) for details.

3.1.4 Combined penalties
It should be noted that the given penalty terms can be seen as basic components to
obtain sparsity in terms of variables and clusters. In applications, they can apply to
main effects but also to interaction terms. Moreover, it is often useful to combine
several penalties including simple smoothing penalties as the ridge or extended ridge
penalties. For example, if the model contains continuous predictors that are modelled
as additive but not necessarily linear effects, one may want to include penalties that
ensure that the effects are sufficiently smooth by using P-splines (Eilers and Marx,
1996), see also Section 3.2.1. Another exemplary complex modelling problem that
calls for combinations of penalties is discrete survival. As shown in Section 4.2, one
typically needs a generalized ridge penalty that smoothes the baseline hazard and a
penalty that accounts for the time-varying effects of covariates.

3.1.5 Categorical effect modifier
So far we have considered categorical predictors directly influencing a response vari-
able in a (generalized) linear model. However, the influence can also be indirect
by modifying the effect of other covariates on the response. That means the effect
�j of covariate zj (potentially) varies across values of categorical ‘effect modifier’
u ∈ {1, . . . , k} in terms of

� = �(u) = �0(u) + z1�1(u) + . . .+ zq�q(u). (3.6)

In general, a model like (3.6) is called a ‘varying-coefficient model’ (Hastie and
Tibshirani, 1993). Here, we will focus on models with metric or binary zj; interactions
of categorical covariates have already been discussed in Section 3.1.3. For categorical
u, the varying functions then have the form �j(u) = ∑k

r=1 �jrI(u = r), which means
that k parameters have to be estimated for each zj (plus the intercept). Another
interpretation of model (3.6) is that for each level of u a regression model with q+ 1
parameters needs to be fit, with q being the number of covariates being considered in
model (3.6). Even with moderate q and k, the number of regression parameters thus
may become large and some sort of regularization might be necessary when fitting the
model. Depending on the background and objective of the data analysis, the presumed
structure of the model and the type of effect modifiers, different penalties have been
proposed.
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Gertheiss and Tutz (2012) and Oelker et al. (2014) distinguished nominal and
ordinal u and proposed fusion penalties in the tradition of the fused lasso (Tibshirani
et al., 2005) and the penalties discussed in Section 3.1.3. For nominal u, one can use

J(�; ) =  

q∑

j=0

∑

r>s

|�jr − �js| + (1 −  )
q∑

j=1

k∑

r=1

|�jr|. (3.7)

The main difference to penalty (3.4) is that J(�; ) now consists of two parts, the
‘fusion’ and the ‘selection’ parts, which might be differentially weighted using addi-
tional tuning parameter . The first one, the fusion part, enforces collapsing categories
of the effect modifier. The second term steers selection/exclusion of covariates zj. In
Equation (3.4) above, the selection part was implicitly contained in the fusion part
because if the expected value of the response does not vary across the levels of the cate-
gorical predictor (given the other covariates), the latter is implicitly excluded from the
model. With effect modifying u, by contrast, effect �j being constant across u-levels
does not mean that zj is irrelevant. If u is ordinal, the fusion part is modified such that
only differences of adjacent coefficients are penalized (as done in Equation [3.5]):

J(�; ) =  

p∑

j=0

k∑

r=2

|�jr − �j,r−1| + (1 −  )
p∑

j=1

k∑

r=1

|�jr|. (3.8)

The idea of penalties (3.7) and (3.8) is (a) to identify those levels of u where
the effect of zj on the response is the same/different and (b) to select those zj that
are relevant. It may also be the case that a predictor zj is important on some levels
of u only. Furthermore, when interpreting the results, it should be kept in mind
that intercept �0 is contained (only) in the fusion term at penalties (3.7) and (3.8),
analogously to categorical predictors at penalties (3.4) and (3.5), respectively. The
intercept tells us how the mean response changes across levels of u if zj = 0 for all
(relevant) j. So if zj = 0 is not plausible/of interest, centring/standardizing zj before
fitting the model is highly recommended. Alternatively, if the direct influence of u
on the response is not of (primary) interest and k is not very large compared to the
sample size, the intercept might be excluded from the penalty.

Penalties (3.7) and (3.8), however, are not the only way to handle categorical effect
modifiers. Ollier and Viallon (2015), for instance, consider the situation where for
most categories of u the effect of covariate zj is the same. They decompose �jr into a
‘global’ effect �̄j and ‘effect variations’ ıjr around �̄j and place (differentially weighted)
L1-penalties on both types of parameters. This yields a group of u-categories that are
fused, those with global effect only, and some categories with effects differing from
the global effect. The latter categories, however, cannot be fused among each other.
If for a variable zj both the global effect and each effect variation is set to zero, zj is
removed from the model.
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If primary interest lies in excluding irrelevant predictors from the model, that is,
identifying those zj with no effect on any level of u, a groupwise penalty as described
in Section 3.1.2 can be put on vectors � j = (�j1, . . . , �jk)� (Negahban and Wainwright,
2011). If it can be assumed that relevant covariates have an effect on some levels of
u only, a sparse group lasso (Simon et al., 2013; see Section 3.1.2) can be used. As a
generalization of this, Jalali et al. (2013) considered a high-dimensional setting, that
is, with large q, where—translated in our framework of varying coefficients models—
many zj have no effect at all, some have an effect on all u-levels and some have an
effect on some u-levels only. Here, the matrix� = (�1, . . . , �q)

� is split into a matrix B
of ‘shared rows’ and a matrix S of ‘non-shared rows’. That means for B, it is assumed
that rows are entirely zero or non-zero, whereas S is sparse in terms of having a few
non-zero entries only, but without any further structure. Now a groupwise penalty
(compare Section 3.1.2) is put on B for selecting rows, and a lasso-type penalty on S
for selecting single elements. With those penalties, however, no fusion of u-categories
is possible.

If it is only important to distinguish varying coefficients �j(u) from constant ones
(cf. Leng, 2009), but not to select variables, the appropriate choice is a groupwise
selection penalty (like the group lasso) on pairwise differences �jr − �js, r > s. If levels
of u are ordered, we may consider differences ıjr = �j,r+1 − �jr of adjacent coefficients
only. If primary interest is in collapsing u-levels, that is, to find clusters of u-levels
where regression models (not single coefficients) are identical, a variant of GASH-
ANOVA by Post and Bondell (2013) could be used (compare Section 3.1.3). Then
groups 	rs would contain all pairwise differences �jr − �js, j = 0, . . . , q of regression
parameters on levels r and s.

As a generalization of model (3.6), one may consider the case of multiple (categori-
cal) effect modifiers u1, . . . , um, that is, � = �(u) = (�1(u), . . . , �q(u))� is a function of
u = (u1, . . . , um)�. For estimating �(u), Li et al. (2013) proposed a kernel approach
using a variant of the kernel function of Aitchison and Aitken (1976). In a very
recent manuscript, Peng et al. (2015) used a group lasso-type penalty for selecting
relevant predictors zj in this setting. Also, the fusion and selection penalty (3.7) can
be extended to multiple effect modifiers (Gertheiss and Tutz, 2012), but if m > 2 the
penalty becomes very complicated.

3.2 Another perspective on smoothing ordinal predictors

One may suggest treating ordinal predictors like metric ones and fitting flexible
regression functions to circumvent the problem of (non)linearity in the group labels.
In what follows, we will consider ordinal predictors in generalized additive models
(GAMs) and show how the quadratic smoothing penalties considered so far can be
interpreted as a basis function approach suited to the discrete nature of categorical
covariates. Furthermore, we will sketch how mixed models methodology can be
used to estimate penalty parameters and to develop an ANOVA procedure tailored
to factors with ordered levels.
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3.2.1 Ordinal predictors in generalized additive models
Suppose we have ordinal predictors C1, . . . , Cp and (potentially) some continuous
covariates z1, . . . , zq. A GAM has the form (Hastie and Tibshirani, 1990)

� = ˛+ f1(C1) + . . .+ fp(Cp) + s1(z1) + . . .+ sq(zq), (3.9)

where the conditional mean of the response is given (as before) by � = h(�),
with known response function h. Functions f1(.), . . . , fp(.), s1(.), . . . , sq(.), however,
are unknown and need to be estimated. With continuous predictors, a popular
approach is to expand s1, . . . , sq in basis functions Br(x), such as B-splines, to
obtain sj(x) = ∑

r 
rjBr(x), with basis coefficients 
rj. When estimating those co-
efficients, a smoothing penalty is typically applied; see, for example, Eilers and
Marx (1996). With ordinal predictor Cj ∈ {0, . . . , kj}, we could proceed in the
same way. However, usual bases for continuous variables, such as B-splines, may
not be the best choice for discrete covariates. Given ordinal Cj, we know all
possible values. Hence, there is no need to fit a function outside of {0, . . . , kj}. So,
a suitable basis for fj(.) is Ar(x) = 1, if x = r, and zero otherwise, r = 0, . . . , kj. If
Cj is an ordinal variable, one can use a quadratic difference penalty, in analogy
to Eilers and Marx (1996). Since basis functions Ar(x) correspond exactly to the
dummy coding as used so far, one ends up with the same approach as discussed in
Section 3.1.1.

A very useful tool when fitting GAMs is the close link between quadratic
penalties and mixed models. With an adequately chosen covariance matrix, pe-
nalized estimates of basis coefficients can typically be interpreted as predictions
of random effects in a mixed models framework; see, for example, Ruppert et al.
(2003) for details. The appropriate choice to obtain the smoothing penalty (3.1),
for instance, is to specify differences ıjr = ˇj,r − ˇj,r−1 of adjacent dummy/basis
coefficients as independent identically distributed (iid) normal random effects with
mean zero and variance �2

j . For higher-order differences, the procedure is similar;
see Gertheiss and Oehrlein (2011) for details. In the mixed models framework, the
penalty parameter �j used for predictor Cj is proportional to 1/�2

j , and variance
parameters �2

j can be estimated by (restricted) maximum likelihood (see, e.g.,
Ruppert et al., 2003; Jiang, 2007; Wood, 2011, and references therein). This
offers a very convenient way to determine penalty parameters, in particular when
each ordinal predictor may have its own �j, resp. �2

j , and cross-validation over a
multi-dimensional grid becomes expensive. In high-dimensional settings with a large
number of ordinal covariates, however, the standard approach with a single � is
recommended. Nevertheless, generalized additive and mixed models offer a great
framework for fitting regression models with some covariates being ordinal. In the
R package mgcv (Wood, 2006), for instance, only the appropriate basis functions
for ordinal predictors need to be defined to have the entire GAM machinery
available.
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3.2.2 ANOVA with ordinal factors
Mixed models also provide tools for further statistical inference, such as testing
for constancy or linearity of a function (Claeskens, 2004; Crainiceanu et al.,
2005; Scheipl et al., 2008). In the case of ordinal predictors, this can be used to
develop an ANOVA procedure that takes the factor levels’ ordering into account.
Ordinal factors are often found in practice, for example, fertilizer levels in agri-
cultural sciences, dose levels in pharmaceutical research or ordinal phenotypes
(such as tumor stages) in medicine. Standard ANOVA as known from statistical
textbooks, however, does not use this additional information provided by the levels’
ordering.

Let us first consider one-way ANOVA with one ordinal factor having levels
r = 1, . . . , k. Then the usual model is yri = �r + �ri, with yri denoting the ith observa-
tion of the response on factor level r, r = 1, . . . , k, i = 1, . . . , nr. The error terms �ri are
assumed to be iid normal with mean zero and variance �2. The parameters of interest
are the level-specific means �r, and the null hypothesis to be tested is H0: �1 = . . . =
�k.

To use the factor’s ordinal scale level, we proceed by imposing a discrete
smoothing penalty within a mixed models framework. Instead of level-specific means
�r, we consider differences ır = �r+1 − �r between adjacent means, in analogy to
dummy/basis coefficients above. As above, ır are specified as iid normal random
effects with mean zero and variance �2 (Gertheiss, 2014). By using this specification,
as sketched above, a penalty is implicitly imposed on the squared differences of adja-
cent means. Of course, such a penalty shrinking adjacent means towards each other
is only reasonable when factor levels are ordered, as in this case we may assume that
jumps in the means �r and �r+1 between adjacent levels r and r+ 1 are not extremely
large. With the ı-parameterization, testing the null hypothesis, H0: �1 = . . . = �k
corresponds to testing H0: ı1 = . . . = ık−1 = 0. Since ır are specified as random
effects with mean zero and variance �2, the latter null hypothesis is also equivalent to
H0: �2 = 0.

This test problem, however, is nonstandard because under the null hypothesis, the
parameter of interest (�2) is on the boundary of the parameter space. Nevertheless,
a likelihood ratio test (LRT) or restricted likelihood ratio test (RLRT) can be used
for testing, with the finite sample null distribution derived by Crainiceanu and
Ruppert (2004); see Gertheiss (2014) for details. Unfortunately, the (R)LRT null
distribution cannot be used directly to obtain p-values. However, Crainiceanu and
Ruppert (2004) also give a fast algorithm for simulating from it. This algorithm is
implemented in R package RLRsim (Scheipl et al., 2008; Scheipl and Bolker, 2013).
A convenient wrapper for ordinal ANOVA as presented here is included in the R
package ordPens (Gertheiss, 2015). Extensive simulation studies and real data
analyses (Gertheiss, 2014; Sweeney et al., 2016) indicate that RLRT is preferable to
LRT, and that an appropriate RLRT as discussed here is often superior to standard
ANOVA when factor levels are ordered. If more than one ordinal factor is present
(see Gertheiss, 2014), the distributions given by Crainiceanu and Ruppert (2004)
cannot be used anymore, but approximate solutions exist (Greven et al., 2008).
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4 Categorical response variables

In what follows, we will discuss penalty methods for categorical responses. For a
categorical response variable, regularization to obtain sparsity has to be adapted to
the multivariate nature of the response.

4.1 Multinomial models

The classical model for response categories Y ∈ {1, . . . , K} is the multinomial model,
which can be seen as a multivariate GLM. In its generic form, it specifies

�r = P(Y = r|x) = exp(ˇr0 + x�ˇr)∑K
s=1 exp(ˇs0 + x�ˇs)

= exp(�r)
∑k

s=1 exp(�s)
, (4.1)

where ˇ�
r = (ˇr1, . . . , ˇrp). Since parameters ˇ10, . . . , ˇK0, ˇ1, . . . ,ˇK are not identi-

fiable, additional constraints are needed. Typically, one of the response categories is
chosen as reference category, for example, by setting ˇK0 = 0, ˇK = 0.

In the multinomial logit model, the effect of covariates is specified by the linear
predictors �r, r = 1, . . . , K−1, which correspond to the log odds between category
r and the reference category K. Here, we will consider a more general version of the
model that allows for category-specific variables. For example, when the response is
the choice of transportation mode, the attributes could be price and duration, which
vary across the alternatives and therefore are category-specific. Then, in addition to
the global predictors x, a set of category-specific predictors w1, . . . ,wK is available,
wherewr contains the attributes of category r. The set of linear predictors generalizes
to

�ir = ˇr0 + x�ˇr + (wir −wiK)�˛, r = 1, . . . , K − 1. (4.2)

The second term specifies the effect of the global variables, and the third term spec-
ifies the effect of the difference wir −wiK on the choice between category r and the
reference category. When choosing a transport mode, it can be the difference in price
that has an effect on the choice.

If the simple lasso is used by penalizing all parameters by a sum over |ˇrj| (Friedman
et al., 2010), one does not necessarily obtain variable selection but parameter selection
because if one of the parameters ˇrj is not deleted, the whole variable xj is still in the
model. To select variables, one has to group all the parameters that correspond to
one variable and penalize them simultaneously. This is obtained by the categorically
structured (CATS) penalty

J(ˇ) =  

p∑

j=1

	j ||ˇ.j|| + (1 −  )
L∑

l=1

ϕl |˛l|, (4.3)
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where ˇ�
.j = (ˇ1j, . . . , ˇK−1,j) collects all parameters linked to predictor xj;  is an

additional tuning parameter that balances the penalty on the global and the category-
specific variables. The parameters 	j and ϕl are weights that assign different amounts
of penalization to different parameter groups. Typically, they are chosen by 	j =√
K − 1 and ϕl = 1.
The penalty enforces variable selection, that is, all the parameters in ˇ.j are si-

multaneously shrunk towards zero. It is strongly related to the classical group lasso
(Yuan and Lin, 2006; see Section 3.1.2). However, in the group lasso, the grouping
refers to the parameters that are linked to a categorical predictor within a univariate
regression model, whereas in the present model, grouping arises from the multivariate
response structure.

By representing the logit model as a multivariate GLM (Fahrmeir and Tutz, 1997;
Tutz, 2012), the score function and the Fisher matrix have similar forms as in uni-
variate GLMs. However, specific software is needed when penalties are included. The
R package MRSP (Pössnecker, 2014) for the fitting of multinomial regression models
with a structured penalization uses the fast iterative shrinkage thresholding algorithm
(FISTA; Beck and Teboulle, 2009).

Early suggestions for regularization in multinomial logit models (Krishnapuram
et al., 2005; Friedman et al., 2010) used L1-type penalties that shrink all the
parameters individually. They do not use the natural grouping of coefficients and
cannot directly promote variable selection (see above). Grouped variable selection
was used in general multivariate regression, among others, by Turlach et al. (2005)
and Argyriou et al. (2007). Preliminary versions of the group lasso within the
multinomial regression framework have been considered by Tutz (2012), Vincent
and Hansen (2014), Chen and Li (2013) and Simon et al. (2013). The version
with category-specific variables was proposed by Tutz et al. (2015). They also
consider the case with categorical predictors, in which the penalty also has to
account for grouping of the parameters linked to covariates. Simple lasso-type
penalties for multinomial regression with category-specific variables were considered
by Mauerer et al. (2015).

As an example, we consider the choice of travel mode of n=210 passengers in
Australia. The data has been used by Greene (2003) and is available from the R
package Ecdat (Croissant, 2006). The alternatives of travel mode were air, train,
bus and car, which have frequencies of 0.276,0.300,0.142 and 0.280, respectively.
Here, car serves as the reference category. As the global variables, which do not vary
over categories, we consider household income (income) and size of the travel group
(size); as category-specific variables, we consider terminal waiting time (wait), the
vehicle cost component (vcost), the total cost (tcost) and the travel time in the vehicle
(timevcl). All variables have been standardized to have variance one. Figure 4 shows
the coefficient build-ups for the coefficients as a function of the tuning parameter with
the weight fixed at = 0.5. For the global variables, one has three coefficient paths,
one for each response category; for the category-specific variables, only one path is
given. The category-specific parameter estimates of the global variables obtained by
using the CATS penalty are given in Table 3; the estimates for the category-specific
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Figure 4 Coefficient build-ups for travel mode data; estimates chosen via BIC are marked by the vertical
dashed line.

Table 3 Estimated category-specific coefficients for travel mode data

intercept income size

air 3.954 0.109 0
train 3.351 −0.621 0
bus 2.963 −0.156 0

variables are given in Table 4. It is seen that the size as well the costs are excluded
from the model. With income in the predictor, the travel costs seem to be negligible.

In the modelling of choice data, sometimes also for category-specific predictors,
category-specific effects are assumed. If one assumes that latent utilities that char-
acterize alternatives are given by Ur = ur + εr, ur = x�� r +w�

r ˛r and alternatives
are determined by the principle of maximum random utility, that is, Y = r ⇔ Ur =
maxj=1,...,K Uj, one obtains the logistic model if the ε1, . . . , εK are iid variables with
distribution function F(x) = exp(− exp(−x)) (e.g., McFadden, 1973; Yellott, 1977).
The predictors are obtained as differences of utilities and have the form

�r = ur − uK = x�ˇr +w�
r ˛r −w�

K˛K,

Table 4 Estimated global coefficients for travel mode data

wait vcost tcost timevcl

−2.242 0 0 −0.844
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where ˇr = (� r − �K). The total set of parameters that defines the total vector now
contains the K − 1 ˇ-parameters ˇ1, . . . ,ˇK−1 and the K ˛-vectors ˛1, . . . ,˛K. If
˛1 = · · · = ˛K = ˛, one obtains the special model (4.2). As far as the coefficients
˛1, . . . ,˛K are concerned, one has to distinguish between the cases of category-
specific parameters ˛r, global effects, that is, ˛1 = · · · = ˛K = ˛ and no effect, that is,
˛1 = · · · = ˛K = 0. Appropriate penalties for this effect type selection are the same as
considered in the next section for ordinal response data. For multinomial responses,
however, the corresponding penalties seem not to have been used before and no soft-
ware seems yet available.

4.2 Ordinal regression and discrete survival models

As before with predictors, categorical responses can be distinguished into nominal
and ordinal variables. Typically, different types of models are used for those two,
with model (4.1) from above being the typical one for nominal variables. In what
follows, we will consider models for ordinal response and discrete survival models,
which are closely related.

4.2.1 Basic models
If the categorical response has ordered levels, the multinomial model (4.1) is often
replaced by the cumulative model

P(Y ≤ r|x) = F(ˇr0 + x1ˇr1 + . . . xpˇrp), (4.4)

where F(·) is a fixed distribution function. The most widespread model uses the logistic
function F(�) = exp(�)/(1 + exp(�)) yielding

log
(
P(Y ≤ r|x)
P(Y > r|x)

)
= ˇr0 + x1ˇr1 + . . . xpˇrp. (4.5)

Although the left-hand side only makes sense if levels are ordered, the model still
has the same complexity as the multinomial model. So to actually take the ordinal
nature of the response into account, it is typically assumed that ˇrj is constant over r,
that is, ˇrj = ˇj for all j, r. This leads to the so-called proportional odds model. While
the general model uses the predictor �r = ˇr0 + x�ˇr with ˇ�

r = (ˇr1, . . . , ˇrp), in the
proportional odds model, the predictor is simplified to �r = ˇr0 + x�ˇ, where ˇ� =
(ˇ1, . . . , ˇp). The strength of the proportional odds model is that two populations
characterized by the covariate values x and x̃ can be compared by

P(Y ≤ r|x)/P(Y > r|x)
P(Y ≤ r|x̃)/P(Y > r|x̃)

= exp((x − x̃)��).

Since the proportion of the ‘cumulative odds’ P(Y ≤ r|x)/P(Y > r|x) does not depend
on the category, interpretation of parameters is much easier than in the general model,
see also, for example, Agresti (2010).
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Alternative ordinal regression models are the adjacent categories model

P(Y = r+ 1|x)/P(Y = r|x)] = F(ˇ0r + x�ˇr), r = 1, . . . , K − 1,

and the sequential model

P(Y = r|Y ≥ r,x) = F(ˇ0r + x�ˇr), r = 1, . . . , K − 1,

where F(·) is again a fixed distribution function, see Agresti (2010) and Tutz (2012).
In particular, the sequential model is interesting because it is equivalent to models
used in the modelling of discrete survival data. Let the response Y refer to discrete
time, for example, to months of unemployment or days spent in the hospital. Then
the conditional probability �(r|x) = P(Y = r|Y ≥ r,x) is called the ‘discrete hazard’
and corresponds to the probability that a transition takes place, for example, from
unemployment to employment given the individual is still unemployed at time r.
In the corresponding discrete hazards model �(r|x) = F(ˇ0r +

∑
j xjˇjr) the ˇjr are

time-varying coefficients. That means, for example, that the effect of covariates
like gender or age on the conditional probability of finding a job varies over the
time of unemployment, which is often a realistic assumption. In the case of survival
models, the parameters ˇ0r represent the baseline hazard, which is shared by all
individuals. Estimation of discrete survival (including censored data) can be obtained
by considering the conditional survival given fixed time, that is, one considers
the binary events Y = r|Y ≥ r and Y > r|Y ≥ r. Then discrete time is an ordered
categorical predictor and the time-varying effects can be seen as an interaction
between the x-predictors and time. For details on estimation including censored data,
see, for example, Fahrmeir and Tutz (1997), Chapter 9, and Tutz and Schmid (2016).

For the adjacent categories and sequential models, the same holds as for the
cumulative models. If the weight parameters depend on the category, the models have
the same complexity as the multinomial model. Therefore, reduction of parameters
is desirable to obtain sparser models with parameters that are easier to interpret.

4.2.2 Penalization
Although the assumption that parameters do not vary over response categories (such
as the proportional odds assumption in cumulative models) is very popular and
reduces model complexity, it is quite restrictive and sometimes not reasonable. On
the other hand, the number of parameters ˇjr to estimate with non-proportional odds
models can be large, which makes estimation and interpretation more challenging.
As before with categorical predictors, penalties can help here.

Smooth effects. An assumption that is often reasonable is that effects ˇrj and ˇr+1,j
do not change drastically between two adjacent categories r and r+ 1. A potential
penalty to stabilize estimates is J(ˇ) = ∑p

j=1

∑
r(ˇr+1,j − ˇrj)2. In discrete hazard mod-

els, it means that the time-varying effect is smooth over time. Here, the same penalty
is often used for the baseline hazard. By using J(ˇ) = ∑

r(ˇr+1,0 − ˇr0)2 and appro-
priate choice of the smoothing parameter, one enforces that the baseline hazard is
smooth.
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Structural breaks in sequential and discrete survival models. In particular for
discrete hazard models, the fusion penalty J(ˇ) = ∑p

j=1

∑
r |ˇr+1,j − ˇrj| is attractive.

Then some coefficients would be fused, giving us groups of (time) categories for
which the effect of a covariate is stable. It might be used to find structural breaks in
the effect of covariates.

Effect type selection. In many applications, one wants to distinguish between three
forms of effects. For variable j, the most general is the category-varying effect ˇrj, the
more parameter sparse effect ˇj, which does not vary over categories, and the no-effect
case in which ˇrj = ˇj = 0. A penalty that is able to distinguish between these hierar-

chically nested effect types is J(ˇ) = ∑p
j=1 �1

√∑K−1
r=1 ˇ

2
rj + �2

√∑K−1
r=1 (ˇr+1,j − ˇr,j)2 =

∑p
j=1 �1||ˇj|| + �2||Djˇj||, where ˇ�

j = (ˇ1j, . . . , ˇK−1,j) again collects all parameters
linked to predictor xj, and Dj generates the differences between adjacent cate-
gories. The second part of the penalty is of the group-lasso type and enforces that
parameters of specific variables are set equal. For large enough �2, one obtains
ˇ1j = · · · = ˇK−1,j = ˇj for some variables xj. The first term enforces that parameters
linked to the same variable are set to zero simultaneously and therefore the respective
variable can be excluded from the model. If for a specific covariate all coefficients are
set equal, the effect of this variable is time-constant in the discrete survival model. For
the cumulative logit model, it means that the covariate has proportional odds across
all categories, which gives a partial proportional odds model (Peterson and Harrell,
1990). For further properties of these penalties, see Pössnecker and Tutz (2016).

5 Subject-specific models

In this section, models for repeated measurements are considered. For repeated
measurements, penalty methods provide an alternative to random effects models
with good performance in terms of estimation accuracy. Repeated measurements
can be represented by (yij,xij), i = 1, . . . , n, j = 1, . . . , ni, where yij denotes the
response of unit i at measurement occasion j, and xij is a vector of covariates that
potentially varies across measurements. A common approach to model heterogeneity
across units is to use random effects models. In a ‘generalized linear mixed effects
model’ (GLMM), the structural assumption specifies that the conditional mean,
�ij = E(yij|bi,xij, zij), has the form

g(�ij) = x�
ij ˇ + z�

ij bi, (5.1)

where g is a monotonic and continuously differentiable link function, x�
ij ˇ is a

linear parametric term with parameter vector ˇ� = (ˇ0, ˇ1, . . . , ˇp) that includes an
intercept and zij is a covariate vector associated with random effects. The second
term contains the random effects that model the heterogeneity of the units. For the
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random effects, one assumes a distributional form, typically a normal distribution,
bi ∼ N(0,Q).

The focus of the random effects models is on the fixed effects; the distribution
of the random effects is mainly used to account for the heterogeneity of the units.
Although it is the most popular model that accounts for heterogeneity, it has several
drawbacks. The assumption of a specific distribution for the random effects may
affect the inference, see, for example, Agresti et al. (2004) and Litière et al. (2007). In
particular, if the distributional assumption is far from the data generating distribution,
inference can be strongly biased. Moreover, assuming a continuous distribution means
that the effects of units cannot be identical. Therefore, by assumption, no clustering
of units is available. One further aspect is that it is assumed that the random effects
and the covariates observed per second level unit are independent, a criticism that
has a long tradition, particularly in the econometric literature. If random effects and
covariates are correlated, the estimates obtained from random effects models can be
poor. For an overview on the choice between fixed and random effects models, see,
for example, Townsend et al. (2013).

As an alternative, we consider the ‘fixed effect or subject-specific model’

g(�ij) = x�
ij ˇ + z�

ij ˇi. (5.2)

The model specifies that each unit has its own coefficient ˇi, i = 1, . . . , n.
The problem with these models is that the large number of parameters can render

the estimates unstable and encourage overfitting. Typically, there is not enough infor-
mation available to distinguish among all the units; but under the assumption that
observations form clusters with respect to their effect on the response, the number of
parameters can be reduced and estimates are available. The tool to obtain sparsity of
subject-specific parameters and clusters is the use of the penalty

J(ˇ,ˇ1, . . . ,ˇn) =
∑

r>m

||ˇr − ˇm||. (5.3)

If � = 0, one obtains the unpenalized estimates of ˇ1, . . . ,ˇn and each unit has its
own parameter. If � → ∞, the penalty enforces that the estimates of all subject-specific
parameters are the same. It has been demonstrated in Tutz and Oelker (2016) that the
method outperforms the random effects model, particularly if correlation between
the random intercept and the random effect, the so-called level 2 endogeneity, is
present. The model is also compared to alternative approaches as the discrete mixture
model (Aitkin, 1999).

As an example, we consider the modelling of the effect of beta blockers on
mortality after myocardial infarction, see also Aitkin (1999). In a 22-centre clinical
trial, for each centre, the number of deceased/successfully treated patients in
control/treatment groups was observed. The binary response (1 = deceased/0 = not
deceased) suggests a mixed logit model of the form

logit P(yij = 1) = ˇ0 + ˇi0 + ˇT · Treatmentij, i = 1, . . . ,22 Centres, (5.4)
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where Treatmentij codes the treatment in hospital i for patient j. If ˇi0 is replaced by a
random effect bi with normal distribution, implicitly the hospitals are considered as
a random sample and all the effects of hospitals are assumed to differ. In contrast, the
fixed effects model with regularization assumes that some of the hospitals have the
same treatment effect. Figure 5 shows the coefficient build-ups against regularization,
where the vertical line refers to the cross-validated choice of the tuning parameter.
Apparently, there are essentially five clusters of hospitals with comparable effect
sizes within clusters (but two clusters only consisting of a single hospital).
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Figure 5 Coefficient path for beta blocker data showing the estimated fixed effects of hospitals; vertical line
shows the estimates for cross-validated choice of the tuning parameter.

6 Paired comparison models

In what follows, we briefly consider paired comparisons, which is a well-established
method to measure the relative preference or dominance of objects or items. The aim
is to find the underlying preference scale by presenting the items or objects in pairs
(Bradley, 1976). Paired comparisons have been extensively used in psychometrics and
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marketing, see, for example, David (1988) and Moore and Lehmann (1989). They
are also found in sports whenever two players or teams compete in a tournament
(Fahrmeir and Tutz, 1994; Glickman and Stern, 1998). The non-observable scale
to be found refers to the strengths of the competitors. Paired comparison data for
binary or ordinal responses can be seen as special repeated measurements with a
multinomial response, typically modelled as fixed effects models. As in multinomial
models, regularization helps to identify relevant structures in the data. Overviews on
paired comparison modelling are found in the reviews of David (1988) and Cattelan
(2012).

A concrete example of a paired comparison model for ordinal responses is the
cumulative Bradley-Terry-Luce (BTL) model. Let {a1, . . . , am} denote the set of objects
or items to be compared in a paired comparison experiment and Y(r,s) ∈ {1, . . . , K}
denote the ordinal response when objects ar and as are compared. The response
Y(r,s) = 1 corresponds to a strong preference of ar over as and Y(r,s) = K corresponds
to a strong preference of as over ar. The cumulative model (Tutz, 1986) has the form

P(Y(r,s) ≤ k) = exp(
k + �r − �s)
1 + exp(
k + �r − �s)

, (6.1)

with the restriction
∑m

r=1 �r = 0. The parameters �1, . . . , �m contain the attractive-
ness or strength of the objects. With increasing �r, the probability for low response
categories, and therefore the strong preference of ar over as, increases while the prob-
ability for large response categories denoting dominance of as decreases. The thresh-
old parameters determine the preference for specific categories. The threshold for the
last category K is 
K = ∞ so that P(Y(r,s) ≤ K) = 1 holds. Further restrictions on the
threshold parameters are useful to ensure equal probabilities for corresponding cat-
egories if the order of the paired comparison is reversed (see Tutz, 1986). If an order
effect is required, for example, to model the home advantage in sport competitions,
an additional parameter can be included. Formally, model (6.1) is a cumulative logit
model, also called a proportional odds model (compare Section 4.2). Alternatives
with different link functions also exist (see, e.g., Agresti, 1992).

If model (6.1) is used to model the strengths of competitors, one obtains for
each competitor, for example, a football team, a strength parameter �r. By using a
difference penalty that contains all the differences |�r − �s|, one can identify clusters
of competitors that share the same strength. Penalties of this type have been used
by Masarotto and Varin (2012) and Tutz and Schauberger (2015) to model the
strengths of teams in sports tournaments.

In extended versions of the BTL model, heterogeneity of respondents can be mod-
elled by including explanatory variables. Let Yi(r,s) denote the response of person i for
a given pair of items (r, s) and x�

i = (xi1, . . . xip) be a person-specific covariate vector.
It is assumed that the strength of the preference of item ar for person i is determined by
�ir = ˇr0 + x�

i ˇr. That means there is a global strength parameter ˇr0 but the effective
strength is modified by the covariates. The parameter ˇ�

r = (ˇr1, . . . , ˇrp) contains the
effect of the covariates on item ar. The corresponding model has the form
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P(Yi(r,s) ≤ k | xi) = exp(
k + ˇr0 − ˇs0 + x�
i (ˇr − ˇs))

1 + exp(
k + ˇr0 − ˇs0 + x�
i (ˇr − ˇs))

, (6.2)

with the sum-to-zero constraints
∑m

r=1 ˇrj = 0, j = 0,1, . . . , p for identifiability. Since
each item has its own parameter ˇr, one typically has too many parameters to obtain
stable maximum likelihood estimates. A penalty that yields clusters of items which
share the same effect of covariates is given by

J(ˇ) =
p∑

j=1

∑

r<s

wrsj|ˇrj − ˇsj|.

The penalty ensures stable estimates and helps to find clusters. Schauberger and Tutz
(2015) used it to model the preference of political parties in Germany.

It is much more difficult to include item or team-specific explanatory variables.
Letw1, . . . ,wm denote the vectors of explanatory variables linked to item or team ar.
In sports tournament data, it can be, for example, the budget of a club, which should
be influential because the budget determines if a club is able to get the best and most
expensive players. In a model that accounts for team-specific variables, the strength
of the teams �r is replaced by �r +wT

r ˇ yielding the linear predictor

�rst = ˛r + 
t + �r − �s + (wr −ws)Tˇ.

However, in this model, parameters are not identifiable because the parameters �r
cannot be distinguished from the parameters �̃r = �r +wT

r ˇ. Therefore, additional
constraints are needed to obtain unique estimates.

One way to constrain estimates is to use a random effects model. By assuming that
the strengths are random effects, for example, by assuming �r ∼ N(0, �2), parameters
can be estimated within a random effects model, see Turner and Firth (2012) who
used random effects models to account for correlations between responses. An alter-
native approach is to use penalized estimation procedures within a fixed effects model
framework. Assuming that teams are clustered, one can again use the penalty that
contains all the differences |�r − �s|. It penalizes the abilities that are not explained
by covariates, �r, r = 1, . . . ,m, but not the parameter ˇ. If the tuning parameter
gets large, � → ∞, all strength parameters �r are estimated as identical and the total
strength is determined solely by wT

r ˇ. By using a regularization term with positive
tuning parameter, the parameters are defined and estimable, compare also Friedman
et al. (2010), where this procedure has been used in overparameterized multinomial
regression models.

7 Alternative methods

The focus of this article is on penalty methods for categorical variables. Penalty-based
methods, however, are not the only way to regularize when fitting and selecting models
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with categorical variables. In this section, we hence briefly discuss some alternative
regularization approaches that can be used to model categorical data.

7.1 Boosting

Boosting is an algorithmic regularization method that also allows selecting predic-
tors. Statistical theory of boosting was developed by Friedman (2001), Friedman et al.
(2000) and Bühlmann and Yu (2003), among others. An overview on gradient boost-
ing is found in Bühlmann and Hothorn (2007), likelihood-based boosting was consid-
ered, for example, by Tutz and Binder (2006); for a brief introduction, comparison of
both approaches and discussion, also see Mayr et al. (2014a), Mayr et al. (2014b) and
Bühlmann et al. (2014). The basic principle of boosting to use weak learners to itera-
tively improve selected regression coefficients together with early stopping yields vari-
able selection and has been successfully applied in high-dimensional settings. If one
uses blockwise boosting, which updates blocks of coefficients, for example, all the co-
efficients that are connected to a categorical predictor, an alternative to the group lasso
with similar properties is obtained. For example, when selecting ordinal predictors,
the smoothing penalty-discussed here (Gertheiss and Tutz, 2009; see Section 3.1.1)
can also be incorporated in a boosting procedure (Gertheiss et al., 2011; Hofner et al.,
2011a; Hofner et al., 2011b). The selection of covariates in multinomial regression
models by boosting techniques was considered by Zahid and Tutz (2013). For the clus-
tering of categories as considered in Section 3.1.3, however, penalty-based estimation
seems preferable since boosting algorithms that identify clusters are hard to obtain.

7.2 Finite mixtures

Another method to identify clusters of subjects with the same tendency to respond,
which has been used in particular for repeated measurement, is finite mixture
models. In finite mixtures of GLMs, it is assumed that the density or mass function
of observation y given x is a mixture

f (y|x) =
K∑

k=1

�kfk(y|x,ˇk, 	k), (7.1)

where fk(y|x,ˇk, 	k) represents the kth component of the mixture that follows a
simple exponential family parameterized by the parameter vector from the model
�k = E(y|x, k) = h(x�ˇk) with response function h(·) and the dispersion parameter
	k. The unknown component weights follow

∑K
k=1 �k = 1, �k > 0, k = 1, . . . , K.

For hierarchical settings like repeated measurements on persons, the components
can be linked to the second level units represented by persons. Let C = {1, . . . , n}
denote the set of units that are observed. Then, one specifies for the mean of the jth
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measurement of the ith unit in the kth component

g(�ij) = ˇk(i) + x�
ij ˇ,

where ˇk(i) denotes that the component membership is fixed for each second level
unit, that is, ˇk(i) = ˇk for all i ∈ Ck, where C1, . . . , CK is a disjunct partition of C.
Therefore, the units are clustered into subsets with identical intercepts with the total
vector of coefficients being given by (ˇ1, . . . , ˇK,ˇ

�).
Mixture models were, for example, considered by Follmann and Lambert (1989),

Aitkin (1999) and Fruehwirth-Schnatter (2006). Grün and Leisch (2008) consider
identifiability for mixtures of multinomial logit models and provide the R package
flexmix (Leisch and Grün, 2012) with various applications.

For the estimation of mixture models with a fixed number of mixture components,
typically, the EM-algorithm is employed. In simulation studies (Tutz and Oelker,
2016), it has been shown that mixture models tend to underestimate the number of
clusters; regularization methods as considered in Section 5 showed better performance
here.

7.3 Tree-based approaches

Penalization is a useful tool to identify relevant categorical predictors and clusters
of categories but becomes computationally demanding if the number of categories is
very large. In this case, approximations or alternative procedures have to be used. An
alternative is recursive partitioning methods, also called trees. The big advantage of
classical trees or recursive partitioning procedures as CART (Breiman et al., 1984)
and C4.5 (Quinlan, 1993) is that they automatically find interactions. The concept of
interactions is at the core of recursive partitioning. However, if one uses just the first
splits in nominal or categorical ordered predictors accounting for the other variables,
one can use recursive partitioning to identify clusters. First approaches that use this
method have been considered by Tutz and Berger (2014) for generalized regression
models and Bürgin and Ritschard (2015) in varying coefficient regression.

7.4 Dirichlet processes

An alternative Bayesian approach to model clustered random effects is based on
Dirichlet processes. Dirichlet processes were proposed by Ferguson (1973) and
studied, for example, by Sethuraman (1994) and Hjort et al. (2010). The main
advantage of Dirichlet processes is their cluster property, which allows flexibly
modelling discrete distributions. Assuming a Dirichlet process for the distribution of
random effects creates ties among the random effects. The resulting Dirichlet process
mixture yields clusters of units. Dirichlet process priors have been used within the
linear mixed models framework by Bush and MacEachern (1996) and Müller and
Rosner (1997). A frequentist approach to linear mixed models with Dirichlet process
mixtures was given by Heinzl and Tutz (2013); a combination of Dirichlet processes
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and fusion penalties was considered in Heinzl and Tutz (2014, 2016). Although an
interesting tool for linear models, extensions to generalized mixed models seem not
to have been considered so far.

7.5 Bayesian approaches with spike and slab priors

Bayesian approaches to effect fusion may also be based on the spike and slab distri-
bution (George and McCulloch, 1993). A general framework of structured additive
regression with spike and slab priors was proposed by Scheipl et al. (2012). They
propose a Markov chain Monte Carlo approach with good mixing and convergence
properties. Sparse Bayesian modelling of the effects of nominal and ordinal categori-
cal predictors within a regression framework was considered more recently by Pauger
and Wagner (2014). Instead of the fusion penalty discussed in Section 3.1.3, a spike
and slab prior is placed on appropriate differences of regression coefficients. The ap-
proach is attractive and competes directly with the fusion penalties considered here.
Evaluation of the method is certainly an interesting topic for future research.

7.6 Kernel methods

In Section 3.1.5, we already mentioned the use of kernel methods in varying coefficient
models with categorical effect modifiers. The strategy sketched there can also be
useful when having categorical predictors in a more general framework. Racine and Li
(2004), for instance, presented a kernel-based approach for nonparametric estimation
of regression functions with both continuous and categorical predictors. The use of
regression splines for the continuous predictors under the presence of categorical
covariates has been considered by Ma and Racine (2013) and Ma et al. (2015). Each
of those methods use a variant of the Aitchison and Aitken (1976) kernel for the
categorical predictors; more precisely,

K(Cj, cj, �j) =
{

1 if Cj = cj,

�j otherwise.

Here, �j ∈ [0,1] is the smoothing parameter for predictor Cj, but complexity can be
reduced by setting �s = � for all j. Using those kernels, the weight of each observa-
tion in the nonparametric estimation procedure is determined by the product kernel∏
j K(Cj, cj, �j). For ordinal predictors, kernels can be replaced by K(Cj, cj, �j) = �dj ,

with d = |Cj − cj|. This makes sure that a higher weight is assigned to observations
that are ‘close’ with respect to the levels’ ordering. For kernel-based smoothing of cat-
egorical data in contingency tables, see, for example, Simonoff (1996) and Simonoff
and Tutz (1999). So far, kernel- and penalty-based methods for categorical data have
developed rather independently of each other. A thorough comparison of both strate-
gies is still lacking.
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8 Concluding remarks

In this article we presented various penalty methods that can be used when fitting
statistical models with categorical variables involved. The use of penalty methods
for qualitative data is relatively new and gained much less attention than penalty
methods for quantitative variables, which are particularly useful and popular in
high-dimensional models. With categorical data, the number of parameters often
becomes large even for a moderate number of covariates due to the parametriza-
tion typically used: dummy variables in the case of categorical predictors and
category-specific parameters for categorical responses. So it is not surprising that
penalty-based methods can also be very helpful when modelling categorical data;
increased use can be expected for the future.

We mainly distinguished between models with categorical predictors and models
with categorical response, and in each case, between nominal and ordinal variables.
We saw that with the right penalty being chosen, not only variability of estimates
reduces, but also structures in the data can be revealed, making interpretation of
results much easier. Interestingly, the same type of penalty, such as groupwise or
fusion penalties, can often be used with both categorical predictors and response,
but in a different way and with different results and interpretation. In this article,
we wanted to illustrate the potential of penalty methods in statical modelling with
categorical data. Certainly not all penalties that have ever been used or could be used
for categorical variables were mentioned—any substantial gap will hopefully be filled
by the discussants.

A variety of alternative approaches for regularizing models with categorical
variables has been proposed. We sketched only some of them very briefly. Sometimes
there is even a very close connection between methods. The choice of a certain penalty
that drives estimates into a certain direction, for instance, might also be interpreted
as some kind of ‘prior belief’, and in some cases, such as quadratic penalties, there is
even a one-to-one connection to Bayesian methods. So we do not want to promote
penalization as the one and only approach, but definitely as a very useful one.
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