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1 Introduction

First of all, we want to thank all the discussants for their very thoughtful comments,
additional illustrations, simulation studies, data analyses and much more. We agree
with Alan Agresti that regularization for categorical data is in an early stage and still
much has to be done. In particular, we confined ourselves to regression modelling.
Other areas as, for example, measurement of association and analysis of contingency
tables might call for quite different solutions. We are happy to see that the article
stimulated some research and the discussants’ contributions brought some progress
and new ideas. Once again, we want to thank the discussants for their inspiring and
encouraging comments. In this reply, we will only address some of the many points
that were raised. We will start with a joint response to the comments made by Alan
Agresti and Shepard/Liu, as they partly discussed similar issues.

2 Discussion by A. Agresti, B. Shepherd and Q. Liu

Alan Agresti argues that simple ordinal response models are very useful to obtain
information on first-order effects. This is certainly true, and in cumulative models one
might consider category-specific effects as secondary effects that mainly describe de-
partures from the overall effects. However, for sequential models, which are an impor-
tant class of ordinal response models, category-specific effects signal that transitions
between categories, given a specific category has been reached, vary across categories.
If categories refer to time, one models time-varying effects of covariates, which might
give a much more detailed and more appropriate picture than a model that assumes
that the transition between categories has the same strength everywhere. Then effects
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have a simple interpretation and one does not have to sacrifice optimality of fit for
ease of interpretation, as mentioned by Bryan Shepherd and Qi Liu. In general, we
think that, if enough data is available, it is a reasonable way to start with a more
complex model in combination with a penalty, and let the data decide which model
to choose.

Several strategies can be used to reduce the complexity of ordinal predictors.
Monotone scores can be assigned to the categories but have the drawback that it
is not obvious how to choose scores and, moreover, one uses a scale level that is not
supported by the data. The chosen scores are typically assumed to be measurements
on an interval scale. In research communities like psychology that are more sensitive
to scale levels, the underlying assumption might be considered as rather strong. Nev-
ertheless, scores are frequently used with good reasons. Also Bryan Shepherd and Qi
Liu seem to prefer the assignment of scores to categories. They propose to assign the
numbers 1 to k and then fit splines to reduce the number of parameters. If the objec-
tive is to just obtain smooth effects, the resulting curves will typically be very similar
to the ones obtained by penalizing squared distances of adjacent parameters because
the latter is just a special case of first-order P-splines, as we discussed in Section 3.2.1
of the main article. As with higher order splines and the usual roughness penalty on
the second derivative, we can also use penalties on dummy coefficients penalizing de-
viations from linearity (Gertheiss and Oehrlein, 2011). Using this approach, we might
even say that we let the data tell us which scores to use in a linear model: are the
numbers 1,2, . . . a good choice or do we need some other quantification? If, on the
contrary, the objective is not smoothing but one wants to investigate if categories dif-
fer in their effect on the response, the assignment of scores is rather damaging. Thus,
it depends on the objective of the data analysis if the assignment of scores is sensible.

An alternative strategy mentioned by Alan Agresti and others is to impose an
ordering constraint on category parameters. This is certainly attractive if monotonic-
ity of effects is known. However, as noted by Shepherd and Liu, the results using
isotonic regression will generally be different from the results when using difference
penalties. In particular, difference penalties can in some sense exploit the monotonic-
ity, too, but they do not fail if this assumption is wrong. From our point of view,
although Shepard/Liu raise doubts, difference penalties work also if relationships are
not monotone, because they do not assume monotonicity. For instance, Sweeney et al.
(2016) compare the mixed model-based restricted likelihood ratio test (RLRT) using
the ordinal smoothing penalty (see Gertheiss, 2014 and Section 3.2.2 of the main
article) to various tests assuming monotonicity (Lin et al., 2007, 2014; Pramana
et al., 2010) or linearity, and standard ANOVA. In summary, they found that ‘in the
cases of linear and monotone functions, the tests which make these assumptions may
perform better than RLRT, but usually not by a large margin. On the other hand,
when these assumptions are not true, RLRT is distinctly better. Furthermore, the
only other test (considered) not making structural assumptions, standard ANOVA,
is mostly outperformed by RLRT.’

Of course, estimated parameters will not only differ between isotonic regression
and penalty-based approaches, but also within penalty methods, such as quadratic
and L1 difference penalties. This is nicely seen, for example, from the Wisconsin
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breast cancer dataset considered in the comment by Chiquet et al., and discussed
in Section 4 of this Rejoinder. With this data, the assumption of monotonicity
appears very reasonable, and in particular the ordinal fusion penalty produces
very interesting results by clustering a lot of predictor levels; see Section 4 for
details. Concerning the comparison to isotonic regression, instead of using the pool
adjacent violators algorithm, one might use methods that allow to include various
explanatory variables in a flexible form in combination with regularization (see, for
example, Leitenstorfer and Tutz, 2007; Tutz and Leitenstorfer, 2007).

Shepherd and Liu also investigated another interesting concept, the use of
difference penalties for continuous data. They found that the relationship between
predictor and response was well captured, but at the cost of too many parameters.
Nevertheless, it might be useful if one has a discrete but metrically scaled predictor
instead of a truly continuous, for example, normally distributed predictor. In that
case, we can even use the information available on distances on the predictor scale,
by employing weights within the penalty that (inversely) depend on the distance of
two parameters. Furthermore, the number of parameters is automatically reduced
when using L1 penalties. Since typically many parameters will be fused, a step
function will be obtained; compare, for example, the so-called fused lasso signal
approximator (Hoefling, 2010).

Shepherd and Liu also comment on the regularized fixed effects model. It is
certainly legitimate to believe that the distribution of random effects is strictly
continuous, and therefore all random effects are at least slightly different. One
strength of the regularized fixed effects model is that it automatically identifies
clusters of random effects that can be considered as identical; however, the more
important strength is that the model is not based on the assumption that explanatory
variables and random effects are uncorrelated. Although this assumption may hold
in many biometrical applications, it is often doubtful in the social sciences.

3 Discussion by P. Bühlmann and R. Dezeure

Peter Bühlmann and Ruben Dezeure discussed inference tools for high-dimensional
categorical covariates that go beyond simple point estimates. Those tools, in
particular confidence intervals and p-values, have not been considered in detail in
our article. Therefore, the comment of Bühlmann and Dezeure is very important
and highly welcome. Bühlmann and Dezeure adapt recent results obtained for
high-dimensional generalized regression to categorical predictors with lasso-type
penalties. In particular, they consider a setting with nominal covariates and the
usual dummy coding with reference category and use the R package hdi (Meier
et al., 2014; Dezeure et al., 2015) to obtain confidence intervals for the dummy
coefficients. A simulation study nicely shows that this approach indeed allows to
draw conclusions about the underlying model structure.

An important point to discuss here is how this strategy can be used for ordinal
covariates. (a) If covariates are ordinal, a slight but useful modification could be
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not to use the common dummy coding, but split coding which explicitly focuses on
differences of adjacent parameters (see also the response to the comment by Chiquet
et al. below). Employing the approach of Bühlmann and Dezeure on the recoded
design matrix would directly yield confidence intervals for those differences, which
are typically the interesting ones with ordinal predictors (see also Walter et al., 1987).
We also want to mention here again that also the quadratic smoothing penalty can be
used for inference, at least if the number of predictors involved is not too large. The
key is to reformulate the penalty within a mixed models framework, compare Section
3.2 of the main article. Once this has been done, the entire mixed models methodology
for statistical inference is available, including statistical tests and confidence intervals.
For instance, the null-hypothesis known from ANOVA that the expected response
does not differ between factor levels can be tested (see Gertheiss, 2014 for details).
(b) With ordinal predictors, as discussed in the main article, there are various types of
penalties available, such as smoothing only, smoothing and selection or fusion, and
the researcher may wonder which one to choose (see also the comment by Chenlei
Leng). Bühlmann and Dezeure argue that by ‘visual inspection of confidence intervals,
one could determine for which of the ordinal categorical variables some smoothing
or clustering of categories would be expected to be beneficial’. This seems to be an
exploratory way if one has no idea at all what penalty to use. However, we want to
emphasize that from our point of view, the choice of the penalty should depend on
the specific nature of the application and, most importantly, on the objective of the
data analysis. For instance, there are cases where it does not make sense to assume
that the predictor’s influence on the response can be described by a step function (see
also our response to the comment by Chenlei Leng below). Typically, however, this
cannot be decided by statistical methods only, or the statistician alone, but together
with collaborators who are familiar with the specific field of application and can tell
us which structure behind the data they want to investigate.

Another important point discussed by Bühlmann and Dezeure is the use of tree-
based approaches, such as random forests (Breiman, 2001), for categorical covariates.
Compared to the parametric models discussed in our article, trees have the advan-
tage that different kinds of covariates, such as metric and categorical ones, can be
mixed without the need to use different penalty parameters or think about appro-
priate weights. Moreover, potential interactions are taken into account. A potential
drawback of simple trees might be that they tend to be unstable against small varia-
tions in the data and the prediction accuracy is typically not very good. A much better
choice are random forests, which are often among the most powerful methods for
prediction. However, compared to parametric statistical models, they rather act like
a ‘black box’. Therefore, results are often hard to interpret, and they should only be
used when the main focus is on prediction (compare also Bühlmann and Dezeure).

For comparison with penalty-based methods, we consider the food data and the
model for ordinal predictors with smoothing and selection penalty, see Figure 1 in the
main article. Figure 1 (left) in this Rejoinder shows the fitted values when using the
penalty approach versus results obtained with the R package randomForest (Liaw
and Wiener, 2002) on the entire dataset. It is seen that most values are very similar. To
investigate prediction accuracy, we randomly draw a test set of 100 observations; on
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Figure 1 Fitted values for the food data with smoothing and selection penalty vs. random forest (left),
prediction performance in terms of the mean absolute prediction error on randomly chosen test sets (right).

the remaining (approximately 700) observations the methods are trained. Figure 1
(right) shows prediction performance for the two methods in terms of the mean
absolute error across 100 random splits into training and test data. It seems that the
regularized linear model even produces slightly better predictions than the random
forest on the food data, suggesting that no substantial interactions were missed by
the linear model.

4 Discussion by J. Chiquet, Y. Grandvalet and G. Rigaill

Julien Chiquet, Yves Grandvalet and Guillem Rigaill raise an important point, namely
the combination of a coding scheme and a penalty. They state that ‘choosing an ap-
propriate coding is at least as important as choosing the right penalty’. We agree that
there are definitely coding/penalty combinations that work better than others, but it
is hard to say whether one aspect might be more important than the other, because
there is an interplay between penalty and coding and we always have to consider
them jointly. For instance, some coding in combination with some specific penalty
can be equivalent to some other coding/penalty choice. More specifically, let us have
a look at ordinal predictors and the usual dummy coding with reference category
in combination with the quadratic smoothing penalty (4) from Section 3.1.1 in the
main article. On the one hand, the model being estimated with this approach is in-
variant against the choice of the reference category, because the value of the penalty
does not change with the reference category, and neither does the likelihood. On the
other hand, simple dummy coding with the smoothing penalty is also equivalent to
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split coding, that is, a coding scheme parameterizing differences of adjacent cate-
gories (Walter et al., 1987; Tutz, 2012), combined with a simple ridge penalty on
those parameters; compare Gertheiss and Tutz (2009) and Gertheiss and Oehrlein
(2011). Similar statements hold for the smoothing and selection penalty (Gertheiss
et al., 2011) and the ordinal fusion penalty (8) from Section 3.1.3 in the main article.
Consequently, it is often not a matter of coding or penalty, but choosing the right
penalty for a specific coding.

The analyses presented by Chiquet et al. nicely show that the naive combination
of usual dummy coding with reference category and standard penalties is often a
bad idea. More specifically, a simple ridge or (group) lasso penalty on dummy-coded
variables may only be useful in some special cases; for instance, when the reference
category is special in some sense, such as a control level, and differences to this level
are of primary interest. Typically, however, other penalties are much more sensible for
categorical variables, which has been one of the central points in our discussion paper.

We also showed, and want to point out here again, that dummy coding with
reference category can indeed be used in regularized regression, as long as an
appropriate penalty is chosen. An important reason for using a reference category is
interpretation. Chiquet et al. mention that the use of a reference category is somewhat
an heritage from the non-regularized setup, where it ‘stabilizes the optimization pro-
cess’. We rather think the reason is identifiability, not stabilization. If one has multiple
predictors but as many parameters as categories per covariate, the parameters are
not identifiable. By using regularization methods one may obtain estimates, but these
are not identifiable either. To obtain identifiable parameters, still a side constraint is
needed, which brings us back to interpretation, which is linked to the side constraints.

The concrete choice of coding/penalty combination should be guided mainly by
interpretation and the purpose of the data analysis. This is also illustrated by the Wis-
consin breast cancer dataset. For these data, Chiquet et al. favour the coop(erative)-
lasso (Chiquet et al., 2013), which is another interesting penalty also mentioned in
the main article but not discussed in much detail. It is particularly useful under the
assumption that there is a monotonic relationship between predictor and response.
In case of the Wisconsin breast cancer dataset, one might rightfully assume that the
relationship is monotonic. Consequently, the coop-lasso performs well. However, the
penalty methods that are compared include only one method that actually uses the
ordering of categories, namely the coop-lasso. When considering some of the other
penalties from the main article that exploit the predictors’ ordinal scale level, we see
that also those penalties can do a very good job here, in particular the ordinal fusion
penalty. For illustration, Figure 2 shows the results for four out of the nine predictors
when using dummy coding with the first level as the reference in combination with
the quadratic smoothing penalty (dotted), or the ordinal fusion penalty with stan-
dard (solid) or adaptive (dashed) weights. The plots are taken from Gertheiss et al.
(2013), where also the results for the other five predictors can be found. We see that the
quadratic penalty, which does not use any assumptions about monotonicity, produces
estimates that appear less plausible. The fusion penalty, however, gives very interesting
and monotonically increasing step functions (although not exploiting monotonicity
assumptions either). Those functions can tell us whether some levels may be fused.
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Figure 2 Exemplary results for some predictors from the Wisconsin Breast Cancer dataset with
standard/adaptive fusion and quadratic smoothing penalty.

This might reveal how categories are used by the rater. Furthermore, if one goal of the
analysis is to check whether the 1–10 grading scheme might be reduced to a simpler
one with less levels, the fusion penalty is the one to choose. We hope that also Alan
Agresti appreciates this example since he was rather sceptical about fusion penalties.

5 Discussion by C. J. Flynn, C. M. Hurvich and J. S. Simonoff

Flynn, Hurvich and Simonoff address a general problem of regularized estimators
as the lasso. Although various loss bounds have been derived that support the use
of the lasso for a deterministic choice of the regularization parameter, in practice,
the tuning parameter is chosen data dependently with good reasons. As pointed out
in the work of Flynn et al. (2014), the loss of the lasso when using data-dependent
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tuning parameters and without knowing which variables have non-zero coefficients
as compared to the loss obtained for the true sparse model is much larger than sug-
gested by oracle inequalities. They demonstrate the effect for categorical predictors
in a small simulation study. It is seen that in the presence of unnecessary predictors
the model that includes all possible predictors yields much larger losses than the (un-
known) true sparse model. The encouraging result is that the use of a more structured
penalty, namely the ordinal group lasso instead of the simple lasso or the group lasso,
yields losses that deteriorate definitely lesser. It would also be interesting to see the
results for the fusion penalties discussed in the main article considering X either as
nominal or ordinal. But it can be assumed that the results would be worse than for the
ordinal group lasso, because in the true underlying model no categories are clustered.
In general, we can only agree with the general message that carefully reasoned as-
sumptions about underlying structures are helpful to obtain better estimates. Without
assumptions, one is quite flexible but performance may suffer substantially. In our
article, we tried to give an overview of penalties, and thus, in some sense, potential
assumptions that may help when modelling categorical data. Another very important
and popular way to take some prior belief about statistical models into account is
Bayesian methods. We only sketched this in our article but fortunately Helga Wagner
and Daniela Pauger considered Bayesian approaches (for categorical predictors) in
more detail in their comment (see also Section 7 of this Rejoinder).

6 Discussion by C. Leng

Chenlei Leng raised several important questions, both with respect to regularization
in general, and more concretely concerning the food spending data. In what follows,
we will try to find answers to a least some of his questions.

(1) What model to use? As a general, but rather abstract, rule, the model should
be flexible enough to take the specific characteristics of the data into account, but
simple enough to make interpretation possible. In other (Einstein’s) words, it should
be ‘as simple as possible, but not simpler’. In the case of a regression model with
a large number of categorical predictors, for instance, we think that one would
typically start with a main effects model, as interactions are difficult to interpret. As
an example, consider the food data from the main article or the ‘international classi-
fication of functioning, disability and health’ (ICF) data from the work of Gertheiss
et al. (2011). The ICF consists of various items with ordinal scale that can be used by
health professionals to document the health and functioning of patients. To evaluate
preselected, disease-specific sets of items, the so-called ICF core sets, a subjective,
well-established measure of the patients’ general well-being is regressed on those
core sets. The ICF core set for chronic widespread pain, for instance, consists of 67
categorical variables, with 5 or 9 levels each (see Gertheiss et al. (2011) for details),
making a main effects model the logical choice. With multi-categorical data, however,
we would even consider nine covariates as available for the Wisconsin breast cancer
data from Section 4 a ‘large’ number of predictors, due to the relatively large number
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of parameters involved. Also in this case, we think a model beyond the main effects
model will be hard to interpret. But of course this is not a strict rule and decisions
need to be made with respect to the specific application. For example, there can be
situations where a certain variable may act as an effect-modifying factor in a varying
coefficient model; compare, for example, Gertheiss and Tutz (2012) and Hastie and
Tibshirani (1993). Furthermore, the answer to the question about interpretability
also depends on the personal perspective and preferences. With ordinal response, for
example, as Alan Agresti pointed out, the proportional odds model may be preferred
over a model with category-specific parameters because it gives ‘first-order effects
[that] are often informative for overall summaries, explaining the most important
dimension of an effect’. Sometimes, however, the researcher only has to think about
the model to start with, and use penalties to reduce a complicated model in a
data-driven way to facilitate interpretation; which brings us to the next question.

(2) What penalty to use? As already pointed out above (see our response to the
comment by Bühlmann and Dezeure), we belief the choice of the penalty should
mainly depend on the specific nature of the application and the objective of the data
analysis. For instance, if the researcher is mainly interested in differences between
categories of categorical predictors and wondering whether some of those categories
could be fused, a fusion penalty is obviously the one to choose. If predictors are or-
dinal and it can be assumed that there is a smooth effect, the quadratic smoothing
penalty is preferable of course. In particular, when the number of predictors is large,
the latter should be combined with selection. With the ICF data mentioned above, for
instance, it hardly makes sense to assume that the influence of the ICF categories on
the response is appropriately described by a step function. We would rather assume a
smooth shape. Furthermore, it is intended to further reduce the ICF core sets. There-
fore, the smoothing and selection penalty has been chosen here. Also with the food
data, smoothing ordinal predictors makes sense, but if the researcher is particularly
interested in differences between levels, the fusion penalty would be the better choice.
This, however, depends on the objective of the analysis and the researcher’s specific
interests. Hence it is hard to give definite answers here. With nominal covariates hav-
ing a relatively large number of categories, we think the fusion penalty is often a good
choice, because the question which categories can/should be distinguished is a very
typical one in this setting; compare, for example, Bondell and Reich (2009) and Post
and Bondell (2013).

(3) What criterion to use? This question has different aspects, (a) should additional
weights within the penalty be used and (b) how to choose the penalty parameter(s)?
When talking about standard versus adaptive weights, the latter ones should only be
used when the sample size is large enough such that the initial estimates determining
the weights are sufficiently accurate. Although adaptive penalties with ‘oracle prop-
erties’ can also be problematic from a theoretical point of view (see, e.g., Pötscher
and Schneider, 2009), it has been our experience that they often produce good results
in practice when the sample size is large. When both ordinal and nominal predictors,
or predictors with a different number of levels are included in the model/penalty, we
need to choose weights that prevent us from penalizing certain terms more strongly
than others (if it is not intended to do so). Finding an answer to (b) is difficult. It seems
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that each researcher has personal preferences here, certainly with good reasons. Be-
sides the approaches mentioned by Chenlei Leng, one could also use a hyperprior for
the penalty parameters in a fully Bayesian framework or use (restricted) maximum
likelihood when reformulating quadratic penalties as a mixed model; see also the
comment by Helga Wagner and Daniela Pauger, and our response below.

7 Discussion by H. Wagner and D. Pauger

Flynn et al. already mentioned the ‘advantages that carefully-reasoned appropriate
assumptions about statistical structures’ can offer (see above). The use of penalties
can be seen as the frequentist way to incorporate, typically rather mild, prior as-
sumptions in statistical modelling. Within a Bayesian framework, this would be done
via appropriate prior distributions. In some cases, there is even a one-to-one connec-
tion to penalty methods. In our main article, however, we largely neglected Bayesian
methods. Therefore, we are very grateful that Helga Wagner and Daniela Pauger
considered those approaches in more detail.

Wagner and Pauger focus on effect fusion, which is based on parameters �j,rs =
ˇjr − ˇjs, that is, pairwise differences of (dummy) coefficients. For ordinal predictors,
it makes sense to consider differences of adjacent coefficients only, as discussed in de-
tail in our main article. In a Bayesian framework, a prior distribution is chosen for the
�-parameters, which is very similar to the concept of using penalties. With ordinal pre-
dictors and independent, mean zero normal priors with a given variance, the Bayesian
approach is even completely equivalent to the quadratic smoothing penalty (4) from
the main article if the penalty parameter is fixed at the right value (see also Gertheiss
and Tutz, 2009). However, there are also differences between Bayesian regularization
and our penalties. In a fully Bayesian framework, for instance, a hyperprior is put
on the variance/penalty parameters, and those parameters are thus estimated jointly
with the regression coefficients of interest. This is often seen as a major advantage of
Bayesian methods as ‘no cross-validation is needed [...] and [...] also uncertainty on
the regularization parameters can be assessed’ (Wagner and Pauger). However, also
the hyperprior typically depends on some parameters. This is illustrated by Wagner
and Pauger who considered the rent data from Gertheiss and Tutz (2010) and used
a normal prior for the �s, an inverse gamma prior distribution for the corresponding
variance parameters, and varied the inverse gamma’s scale parameter. The resulting
coefficient paths for the ˇ-coefficients show how those depend on the choice of the
hyperprior’s scale parameters. So also with Bayesian methods the question how to
choose those parameters remains.

An interesting intermediate between Bayesian methods and the use of penalties,
in particular for ridge-type penalties, is the use of mixed models. For instance, the
quadratic smoothing penalty for ordinal predictors can also be formulated in a mixed
models framework where �-parameters from above are specified as random effects;
compare Gertheiss and Oehrlein (2011) and Section 3.2 of the main article. In this
case, the variance parameters of the random effects can be estimated by maximum
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likelihood or restricted maximum likelihood, without the need for cross-validation.
In addition, the entire mixed models machinery for statistical inference is available,
including statistical tests and confidence intervals (compare the response to the com-
ment by Bühlmann and Dezeure).

References

Bondell HD and Reich BJ (2009) Simultane-
ous factor selection and collapsing levels in
ANOVA. Biometrics, 65, 169–77.

Breiman L (2001) Random forests. Machine
Learning, 45, 5–32.

Chiquet J, Grandvalet Y and Charbonnier C
(2013) Sparsity with sign-coherent groups
of variables via the cooperative-lasso. The
Annals of Applied Statistics, 6, 795–830.
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