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Abstract

We introduce three different approaches for decision making under uncertainty if (I) there is only
partial (both cardinally and ordinally scaled) information on an agent’s preferences and (II) the
uncertainty about the states of nature is described by a credal set (or some other imprecise prob-
abilistic model). Particularly, situation (I) is modeled by a pair of binary relations, one specifying
the partial rank order of the alternatives and the other modeling partial information on the strength
of preference. Our first approach relies on decision criteria constructing complete rankings of the
available acts that are based on generalized expectation intervals. Subsequently, we introduce dif-
ferent concepts of global admissibility that construct partial orders between the available acts by
comparing them all simultaneously. Finally, we define criteria induced by suitable binary relations
on the set of acts and, therefore, can be understood as concepts of local admissibility. For certain
criteria, we provide linear programming based algorithms for checking optimality/admissibility of
acts. Additionally, the paper includes a discussion of a prototypical situation by means of a toy
example.

Keywords: partial preferences; decision making under uncertainty; ordinality; cardinality; utility
representation; imprecise probabilities; credal set; stochastic dominance; admissibility; linear
programming.

1. Introduction

One of the constantly recurring topics discussed in the community of researchers working with
imprecise probabilities (and on ISIPTA conferences in particular) is defining meaningful criteria for
decision making under complex uncertainty, finding persuading axiomatic justifications for these
criteria and providing efficient algorithms capable to deal with them. Examples for such works
are ranging from rather early IJAR and ISIPTA contributions by, e.g., Jaffray (1999); Augustin
(2001); Schervish et al. (2003); Smets (2005) to more recent ones by, e.g., Troffaes (2007); Utkin
and Augustin (2007); Jaffray and Jeleva (2008); Loquin (2013); Bradley (2015).

However, in the vast majority of works in this field, the complexity underlying the decision
situation is assumed to solely arise from the fact that the decision maker’s beliefs on the mechanism

IA preliminary version of this paper was presented at the Tenth International Symposium on Imprecise Probability:
Theories and Applications (ISIPTA), 10-14 July 2017 in Lugano, see Jansen et al. (2017b).
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generating the states of nature are expressed by an imprecise probabilistic model. In contrast,
the cardinal utility function adequately describing the decision maker’s preference structure is
often unquestioned and assumed to be precisely given in advance.1 Unfortunately, also this can be
problematic. Wrongfully pretending to have perfect information on the level of utilities might lead
to bad decision making just as doing the same on the level of beliefs: What’s worth a decision that
is derived on the basis of an inadequate utility function?

For this reason, our paper generalizes both the classical setting of decision making under risk
as well as the generalized setting of decision making under ambiguity to situations in which the
assumption of a known cardinal utility structure is no longer justified. Particularly, we consider
the case that the (information on the) decision maker’s preference structure is both of partially
ordinal and of partially cardinal scale and, therefore, no longer can be characterized by (a set of
positive linear transformations of) one cardinal utility function. Instead, we model the decision
maker’s utility by the set of all utility representations that are compatible with both the ordinal
and the cardinal information concerning her preferences.

The paper is structured as follows: In Section 2, we give a brief overview on the background
of our work and show how our approach naturally fits into this picture. Moreover, we discuss
related literature and discuss the connections to our work. In Section 3, we introduce the crucial
concept of a preference system over a set of alternatives that allows for modeling partially ordinal
and partially cardinal preference structures. Section 4 introduces three different approaches for
decision making with acts taking values in a preference system by proposing decision criteria based
on generalized expectation intervals (Section 4.2), on global comparisons of acts (Section 4.3) and
on pairwise comparisons of acts (Section 4.4). For certain criteria, we give linear programming
driven algorithms for checking feasibility of acts in finite decision settings. Section 5 is devoted to
an application of the theory. There, we illustrate all the concepts developed in the paper in an
example and thereby also show a class of situations in which our approach seems natural: The case
where the consequences that acts can attain belong to some product space with both ordinal and
cardinal dimensions. Section 6 concludes the paper.

2. Fundamentals underlying our Approach and Related Literature

In classical subjective expected utility theory (SEUT), the decision maker (synonymously called
agent in the following) is assumed to be able to specify (I) a real-valued cardinal utility function u
(unique up to a positive linear transformation) representing his preferences on a set A of alternatives
and (II) a unique and precise subjective probability measure π on the space S of states of nature
adequately specifying his beliefs on the occurrence of the different states s ∈ S. Once these two
ingredients are specified, according to SEUT, the decision maker should choose any act X : S → A
that maximizes the expected utility Eπ(u◦X) with respect to his utility function u and his subjective
probability measure π among all other available acts.

However, as is well known, in practice both assumptions (I) and (II) often turn out to be
systematically too restrictive. In particular, (I) demands the decision maker to act in accordance
with the axioms of von Neumann and Morgenstern, i.e. to be able to specify a complete preference

1Exceptions include Montes (2014, Section 4.2.1), who uses set-valued utility functions, Landes (2014) who ax-
iomatically characterizes preferences over utility intervals and Troffaes and Sahlin (2017), who propose elicitation
procedures for partially specified utility functions. These references, among others, are discussed in some more detail
at the end of Section 2.
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ranking of all simple lotteries on the set A that is both independent and continuous (see, e.g.,
Fishburn (1970, Ch. 8) for details), whereas (II) requires that the decision maker can completely
order the resulting utility-valued acts by preference in accordance with the axioms of de Finetti,
i.e. continuous, additive and monotone (see, e.g., Gilboa (2009, Ch. 9) for details).

Consequently, there exists plenty of literature relaxing these assumptions. If only (II) is vi-
olated in the sense that there is only partial probabilistic information on the occurrence of the
states of nature together with a perfectly cardinal preference structure (represented by a cardinal
utility function u), the common relaxation is to allow for imprecise probabilistic models for repre-
senting the probabilistic information (for instance one could use the credal setM of all probability
measures that are compatible with the given probability constraints). In this case, one can de-
fine optimality of acts, for instance depending on the attitude of the decision maker towards the
ambiguity underlying the situation, in terms of some imprecise decision criterion such as:

• Γ-maximin (Γ-maximax ): Choose any arbitrary act X yielding maximal expected utility
with respect to the worst (best) compatible probability measure, i.e. that maximizes the
value infπ∈M Eπ(u ◦X) (the value supπ∈M Eπ(u ◦X)) among all available acts.

• Maximality : Dismiss each act X for which there is available another act Y that dominates
it in expectation with respect to all compatible probability measures, i.e. for which it holds
that Eπ(u ◦X) < Eπ(u ◦ Y ) for all π ∈M.

• E-admissibility : Dismiss each act X that does not maximize expected utility Eπ(u ◦ X)
among the available acts with respect to at least one compatible probability measure π ∈M,
i.e. where for all π ∈M there exists an act Yπ with Eπ(u ◦X) < Eπ(u ◦ Yπ).

The original sources of the criteria just discussed are given in Kofler and Menges (1976); Levi (1974,
1983); Gilboa and Schmeidler (1989); Walley (1991). Further criteria for the case of cardinal utility
and imprecise probabilities, each in its own way taking into account the whole setM of compatible
probability measures, are reviewed in, e.g., Huntley et al. (2014). Additionally, there exists a variety
of efficient and powerful algorithms to deal with this kind of violation of the classical assumptions
(see, e.g., Utkin and Augustin (2005); Kikuti et al. (2011); Hable and Troffaes (2014); Jansen et al.
(2017a)). However, note that the assumption of a cardinal utility function u is essential for all
these criteria in order to be applicable. The situations where these imprecise decision criteria are
appropriate are illustrated as one of the horizontal edges in the schematic cube given in Figure 1.

If it is the case that (I) is violated in the sense that the decision maker has complete ordinal
preferences but no cardinal information (for instance in form of a complete and transitive binary
relation R on A) and (II) is violated in the sense that there is no probabilistic information at all,
it is nearly unanimously favored to define optimality of acts based on Wald’s classical maximin
criterion (see Wald (1949) for details), which reads here as

• Maximin criterion: Choose any act X receiving highest possible rank under the worst possible
state of nature, i.e. with (infs∈S X(s), infs∈S Y (s)) ∈ R for every other available act Y .

However, note that the completeness of the involved ordinal ranking is essential, since, otherwise,
the worst consequences of two distinct acts might be incomparable and, therefore, an optimal act
with respect to the maximin criterion simply does not exist. Even more severe, also the vacuousness
assumption concerning the information on probabilities is crucial: Applying the maximin criterion
in the presence of (partial) probabilistic information means willingly ignoring information. This
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seems not reasonable at all (cf. also Example 1 for an illustration). Situations in which Wald’s
maximin criterion appears to be appropriate are illustrated as one of the vertical edges in the
schematic cube given in Figure 1.

Finally, if only (I) is violated in the sense that there is no cardinal information at all and
the available ordinal information is possibly incomplete (meaning that the relation R from above
might not be complete), however, (II) holds true in the sense that beliefs about the states can be
described by a precise probability measure π, one common criterion to be applied is the concept of

• (First oder) Stochastic dominance: An act Y is said to weakly stochastically dominate an-
other act X, if it holds that Eπ(u ◦ Y ) ≥ Eπ(u ◦X) for every measurable utility function u
that is monotone with respect to R (meaning (a, b) ∈ R implies u(a) ≥ u(b) for arbitrary
a, b ∈ A). We denote the stochastic dominance relation by ≥SD. This induces the following
choice rule: Dismiss an act X if it is strictly stochastically dominated by another available
act, i.e. if there exists an act Y such that Eπ(u ◦Y ) ≥ Eπ(u ◦X) for every measurable utility
function u that is monotone with respect to R and such that Eπ(u0 ◦ Y ) > Eπ(u0 ◦X) for at
least one such function u0.

Also for this case there exist well-established theory as well as efficient algorithms for computation
(see, e.g. Lehmann (1955); Kamae et al. (1977); Mosler and Scarsini (1991); Tarp and Osterdal
(2007); Range and Osterdal (2013); Schollmeyer et al. (2017)). Situations for which first order
stochastic dominance should be the decision criterion of choice are indicated as one of the horizontal
edges in the schematic cube drawn in Figure 1.

Further, note that there exists a fair amount of work on generalizing the notion of first order
stochastic dominance to situations where the underlying uncertainty is characterized by a credal
set of probability measures or situations where the utility function is only partially specified in
terms of a multi-valued mapping: In Montes et al. (2014a, Section 5) the authors introduce and
study a generalization where an act X is said to dominate another act Y whenever it stochastically
dominates it with respect to every distribution from the underlying credal set. Moreover, in Montes
et al. (2014a, Sections 3 and 4) the authors study different possibilities to extend the notion of
stochastic dominance (with respect to a precise probability measure) to suitable binary relations
on sets of random variables. These approaches can be viewed as generalizations of stochastic
dominance to imprecise utilities. In Montes et al. (2014b) this framework is further investigated
and applied to a real world example. The interrelations of these works and the present one are
discussed in some more detail at the end of Section 4.4 when the required concepts are formulated.

Beyond the connections to the literature already mentioned, other related work exists: In De-
noeux (2009) the author also studies generalizations of stochastic dominance to imprecise proba-
bilistic models, however, for the special case of belief functions on the real line. More precisely, the
paper studies how different orderings between intervals on the real line induce different orderings
between belief functions and the mass function associated with them. Afterwards, the paper stud-
ies how these orderings relate to the notion of stochastic dominance. Some more details on the
connection between Denoeux (2009) and the present work are provided in the discussion directly
following the proof of Proposition 6 in Section 4.4.

Of course, there is also related work on non-fully specified utilities: In Landes (2014) the author
considers the situation of decision making under complete uncertainty (i.e. with a credal set M
containing all possible probability distributions on the state space) with acts taking values in some
linearly ordered space. To each such act it is then associated an utility interval. Afterwards, the
author axiomatically characterizes desirable properties of binary relation on such utility intervals
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and shows that these axioms uniquely determine a particular binary relation, the so-called Min-Max
Relation (see Landes (2014, Corollary 3) in particular).

In Troffaes and Sahlin (2017) the authors consider the case of decision making with acts tak-
ing values in some multi-attribute space. For such problems they propose a two-step elicitation
procedure for utility functions, where the first step consists in precisely eliciting the marginal util-
ity functions on the different attributes and the second step consists in imprecisely eliciting the
weights with respect to which these marginal utilities are extended to an utility function on the
whole multi-attribute space.

Finally, in Danielson and Ekenberg (1998) and Danielson et al. (2003) and Danielson (2005) the
authors study decision making problems where both the utility values assigned to the consequences
and the probability values assigned to the states are allowed to be only imprecisely known. In
particular, they investigate situations where the statements about probability and utility values
can be formed by one of three types of sentences, so-called vague sentences, interval sentences
and comparative sentences. The set of available acts together with the sets of probability and
utility sentences then forms the so-called information frame. For such decision problems they then
propose a decision criterion, the so-called t-admissibility, which relies on the idea to prefer an act
X to another act Y whenever it holds that Eπ(u ◦ X) − Eπ(u ◦ Y ) ≥ t for all pairs (π, u) that
are compatible with both the set of utility sentences and the set of probability sentences, that is
with the information frame (see Danielson and Ekenberg (1998, Section 2.2)). For evaluating this
criterion the authors then propose bilinear as well as linear optimization approaches and apply
their theory to a real world problem.

Furthermore, in Danielson (2005) the framework developed in Danielson and Ekenberg (1998)
is generalized to the case where the pairwise comparison between the acts X and Y is no longer
made by considering solely the differences of the expected values, but where it can be made by
arbitrary functionals f depending besides of the acts under consideration also on π and u as well
as additional parameters (see Danielson (2005, Section 3)). Their work is also implemented in the
decision user interface DecideIt, which is introduced and described in Danielson et al. (2003). Note
that our relation R∀∀ that is introduced in Equation (9) and our concept of local R∀∀-admissibility
from Definition 8 that is based on it are closely related to the concept of t-admissibility from the
works by Danielson et al.. This is discussed in some more detail at the end of Section 4.4.

In the following sections of the paper, we introduce and discuss different concepts for decision
making in situations in which simultaneously both assumptions (I) and (II) are violated (i.e. situ-
ations corresponding to inner points of the gray-shaded prism from Figure 1) and thus none of the
concepts just recalled can be applied. Therefore, the contribution of the present paper consists in
filling up the gray-shaded prism in the schematic cube drawn in Figure 1.

3. Preference Systems

In this section we start by defining the concept of a preference system, which is essential for what
follows throughout the rest of the paper. The intuition behind this concept is very simple: In many
practically relevant decision problems, the (available information on the) agent’s preferences are (is)
incomplete. More precisely, it often will be the case that certain pairs of possible decision outcomes
are incomparable for the agent, whereas others can be ordered by preference. Additionally, for some
pairs there might even be an idea of the strength of the preference, that is an idea of how much
the one outcome is preferred to the other.
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Figure 1: Schematic illustration of the approaches recalled in Section 2: The points on the black dotted arrows indicate
situations in which classical criteria exist, whereas the points in the filled gray-shaded prism indicate situations that
are captured by our approach.

There are several circumstances that could give rise to this type of incomplete preferences. For
example, if a company wants to analyze the choice behavior of their (potential) customers, the
information on the customer’s preferences will often be given in form of observed binary choices
and/or survey data. Obviously, usually such data won’t be sufficient to specify the full preference
structure of the customer, since this require too many observations. In this case, incompleteness
is a missing data problem and originates in lacking information about the choice behavior.

However, also the agent herself might have incomplete preferences. Suppose she knows (e.g.
from earlier choice experience) certain potential decision outcomes better than others. Then for
pairs involving better known outcomes, she might be able to specify a preference ranking and even
some intuition for the strength of the preference, whereas for pairs involving unfamiliar outcomes,
she might be able to specify only a ranking or even can’t make a comparison at all. The following
definition captures the intuition just described.

Definition 1. Let A be a non-empty set and let R1 ⊆ A × A denote a pre-order (i.e. reflexive
and transitive) on A. Moreover, let R2 ⊆ R1 × R1 denote a pre-order on R1. Then the triplet
A = [A,R1, R2] is called a preference system on A.

The interpretation of the relations R1 and R2 contained in a preference system A in the sense
of Definition 1 is in perfect accordance with the intuition that should be captured by it: If some
pair (a, b) ∈ R1, we interpret that as a is at least as desirable as b, that is a and b can be ordered by
preference. If both (a, b) /∈ R1 and (b, a) /∈ R1, then a and b are incomparable. Moreover, if a pair
of pairs ((a, b), (c, d)) ∈ R2, we interpret this as exchanging alternative b by alternative a is at least
as desirable as exchanging alternative d by alternative c, that is a is more strongly preferred over
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b than c is over d. Again, if both ((a, b), (c, d)) /∈ R2 and ((c, d), (a, b)) /∈ R2, then the exchange of
b by a is incomparable with the exchange of d by c.

Except from transitivity, Definition 1 makes no rationality and/or compatibility assumption
regarding the relations R1 and R2. Accordingly, a preference system in the sense of the above
Definition 1 needs by no means to be reasonable or rational. In Krantz et al. (1971, Chapter 4),
an axiomatic approach for characterizing consistent preference systems is provided for the case
that the involved relations are complete. The corresponding axioms then imply the existence of
a real valued function representing both relations simultaneously that is unique up to a positive
linear transformation. Another axiomatization that uses quaternary relations instead of pairs of
relations is established in Pivato (2013), where it is shown that under some quite strong conditions
(like, e.g., solvability) there exists a multi-utility characterization of the corresponding quaternary
relation.

A weaker consistency condition that still applies to settings in which conditions like solvability
no longer can be expected is given in the following definition, for which we need some further
notation: If R is a pre-order on A, we denote by IR and PR its indifference and its strict part,
respectively. More precisely, for (a, b) ∈ A×A, we have (a, b) ∈ IR ⇔ ((a, b) ∈ R ∧ (b, a) ∈ R) and
(a, b) ∈ PR ⇔ ((a, b) ∈ R ∧ (b, a) /∈ R).

Definition 2. Let A = [A,R1, R2] be a preference system. Then A is said to be consistent if
there exists a function u : A → [0, 1] such that for all a, b, c, d ∈ A the following two properties
hold:

i) If (a, b) ∈ R1, then u(a) ≥ u(b) with equality iff (a, b) ∈ IR1.

ii) If ((a, b), (c, d)) ∈ R2, then u(a)− u(b) ≥ u(c)− u(d) with equality iff ((a, b), (c, d)) ∈ IR2.

Every such function u is then said to (weakly2) represent the preference system A. The set of all
(weak) representations u of A is denoted by UA. The set of all u ∈ UA satisfying infa∈A u(a) = 0
and supa∈A u(a) = 1 is denoted by NA.

We will call a preference system non-trivial if there exists a pair (a, b) ∈ PR1 , that is if there is
at least one alternative that is strictly preferred to another one. In the rest of the paper we will
throughout consider non-trivial preference systems and, therefore, drop the prefix non-trivial from
now on. Note that trivial preference systems are represented by arbitrary maps c : A→ [0, 1].

The idea behind the setNA of normalized representations in the above definition is the following:
For the special case, that the preference system A is in accordance with the axioms in Krantz et al.
(1971, Chapter 4), the representation is unique up to a positive linear transformation. Hence,
the conditions infa u(a) = 0 and supa u(a) = 1 guarantee a unique representation for that special
case. For the general case of a consistent preference system A with non complete relations R1

and R2, restricting analysis to the set NA ensures that comparison will not be made with respect
to equivalent representations which only measure utility on a different scale. Specifically, if u ∈
UA, we have also λ · u ∈ UA for arbitrary λ ∈ (0, 1). This means that both functions u and
λ · u represent the preference system A, however, they measure utility on different scales, namely
[mina∈A u(a),maxa∈A u(a)] and [mina∈A λ ·u(a),maxa∈A λ ·u(a)]. By restricting analysis to the set

2Here, the term weakly refers to the fact that the representation is meant in the if and not in the if and only if
(short: iff) sense.
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NA we therefore ensure that all considered representations measure utility on a [0, 1]-scale. The
restriction on NA, together with the concept of granularity from Definition 3, will prove crucial
when comparing acts by means of the numerical representation in Section 4.2.

Further, note that for finite A, the boundedness condition on the utility function in Definition 2
implies the existence of alternatives in A that attain a greatest and a lowest utility value, but not
necessarily of worst and best alternatives in A with respect to the relation R1: An element of
A attaining the highest utility value for a certain representation u : A → [0, 1] might indeed be
incomparable to all other elements of A.

Obviously, for a preference system A = [A,R1, R2] to be consistent, certain compatibility
criteria between the relations R1 and R2 have to be satisfied. For example it cannot be the case
that, for some elements a, b, c ∈ A, it simultaneously holds that (c, a) ∈ PR1 and ((a, b), (c, b)) ∈ R2,
since any element u ∈ UA would have to satisfy u(c) > u(a) and u(a) − u(b) ≥ u(c) − u(b). We
now provide an algorithm for checking the consistency of a finite preference system.

Proposition 1. Let A = [A,R1, R2] be a preference system, where A = {a1, . . . , an} is a finite
and non-empty set. Consider the linear optimization problem

ε = 〈(0, . . . , 0, 1)
′
, (u1, . . . , un, ε)

′〉 −→ max
(u1,...,un,ε)∈Rn+1

(1)

with constraints 0 ≤ (u1, . . . , un, ε) ≤ 1 and

i) up = uq for all (ap, aq) ∈ IR1 \ {(a, a) : a ∈ A}

ii) uq + ε ≤ up for all (ap, aq) ∈ PR1

iii) up − uq = ur − us for all ((ap, aq), (ar, as)) ∈ IR2 \ {((a, b), (a, b)) : (a, b) ∈ R1}

iv) ur − us + ε ≤ up − uq for all ((ap, aq), (ar, as)) ∈ PR2

Then A is consistent if and only if the optimal outcome of (1) is strictly positive.

Proof. First, note that (0, . . . , 0) ∈ Rn+1 defines an admissible solution of (1). Thus, the set of
admissible solutions of (1) is non-empty. Since it is also bounded due to 0 ≤ (u1, . . . , un, ε) ≤ 1,
we can deduce the existence of an optimal solution of (1) by utilizing that linear programming
problems with a bounded and non-empty set of admissible solutions always possess an optimal
solution. Let (u∗1, . . . , u

∗
n, ε
∗) denote such an optimal solution.

If: Assume ε∗ > 0. Define u : A → [0, 1] by setting u(ai) := u∗i for all i ∈ n := {1, . . . , n}. One
then straightforwardly verifies that conditions i) to iv) imply that u ∈ UA. Hence, A is consistent.

Only if: Assume ε∗ = 0 and, for contradiction, that there exists v ∈ UA. Define the values
vi := v(ai) for all i ∈ n and δ := min{m1,m2}, where m1 := min{vi − vj : aiPR1aj} and
m2 := min{(vi − vj) − (vk − vl) : (ai, aj)PR2(ak, al)}. Then, since v ∈ UA and it therefore holds
that m1 > 0 due to Definition 2 i) and that m2 > 0 due to Definition 2 ii), we have δ > 0. One
then straightforwardly verifies that (v1, . . . , vn, δ) is an admissible solution to (1) with δ > ε∗,
contradicting the optimality of (u∗1, . . . , u

∗
n, ε
∗). �

The linear programming problem (1) possesses |R2| + n + 2 constraints. Thus, the number of
constraints increases with the preciseness of the available information on the agent’s preferences.
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In applications, typically the relation R2 will be rather sparse (i.e. contain few comparable pairs of
pairs), whereas the relation R1 will be rather dense (i.e. contain many comparable pairs). This is
intuitive: While R1 is directly observable in the choice behavior of the agent, edges in R2 need to
be gained by hypothetical comparisons in interviews and polls by asking questions like: “Imagine
you have objects a and b. Would you rather be willing to accept the exchange of a by c or the
exchange of b by d?”

In order to reduce the number of constraints of the problem, note that (weak) representability of
a preference system A = [A,R1, R2] automatically implies transitivity of the represented relations.
Therefore, in the constraints of the above optimization problem (1) it actually suffices to quantify
only over (the corresponding indifference parts IR∗1 , IR∗2 and strict parts PR∗1 , PR∗2 of) some transitive
reductions R∗1, R∗2 of the relations R1 and R2. However, note that this makes necessary to compute
the corresponding transitive reductions which, again, raises the complexity of the problem to some
extent.

Before turning to decision theory with preference system valued acts, we need one further
concept, which will be of particular relevance in Section 4.2.

Definition 3. Let A = [A,R1, R2] be a consistent preference system. Moreover, for δ ∈ (0, 1), let
N δ
A denote the set of all u ∈ NA satisfying u(a) − u(b) ≥ δ for all (a, b) ∈ PR1 and u(a) − u(b) −

u(c) + u(d) ≥ δ for all ((a, b), (c, d)) ∈ PR2. Then, N δ
A is called the (weak) representation set

of granularity (at least) δ. Moreover, the decision system A is called δ-consistent if N δ
A 6= ∅.

On the one hand, the granularity δ from Definition 3 can be given a similar interpretation as
the just noticeable difference in the context of psychophysics (see Luce (1956) for details): It is the
minimal difference in utility that the specific decision maker under consideration is able to notice
given that utility is measured on a [0, 1]-scale. On the other hand, the granularity can also be
given a more constructive interpretation, namely as a controlling device for the specific decision
maker: Choosing a granularity parameter δ > 0 ensures that an act will not be labeled superior to
another based solely on some utility function that involves utility differences that are practically
not noticeable at all and, accordingly, should not influence the decision to be made.

The restriction of the analysis to utility functions that reflect the fact that utility differences
below some threshold are not distinguishable empirically will play a crucial role when it comes
to defining generalized expectations (and the decision criteria based on these) in Section 4.2. For
now, it is sufficient to note that the algorithm given in Proposition 1 straightforwardly extends to
checking whether a preference system A = [A,R1, R2] δ-consistent. This is the statement of the
following proposition.

Proposition 2. Let A = [A,R1, R2] be a preference system, where A = {a1, . . . , an} is a finite
and non-empty set and let δ ∈ (0, 1). Then A is δ-consistent if and only if the optimal outcome
of (1) is at least δ.

Proof. Let (u∗1, . . . , u
∗
n, ε
∗) denote an optimal solution to problem (1) and define u : A → [0, 1]

by setting u(ai) := u∗i for all i ∈ n. First, note there have to exist elements a+, a− ∈ A such
that u(a−) = 0 and u(a+) = 1, since otherwise normalizing u to [0, 1] would induce a solution
to (1) with objective value strictly greater than ε∗. Thus, u ∈ NA. If ε∗ ≥ δ, then the constraints
of (1) guarantee that u(a) − u(b) ≥ δ for all (a, b) ∈ PR1 and u(a) − u(b) − u(c) + u(d) ≥ δ for
all ((a, b), (c, d)) ∈ PR2 . Hence, u ∈ N δ

A and A is δ-consistent. If conversely A is δ-consistent,
we can choose u+ ∈ N δ

A and we know from the proof of Proposition 1 that (u+1 , . . . , u
+
n , δ) with
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u+i := u+(ai) for i ∈ n defines an admissible solution to (1). Since ε∗ is the optimal outcome of (1),
we know that ε∗ ≥ δ. �

4. Decision Theory with ps-valued Acts

Differently from axiomatic approaches followed in, e.g., Seidenfeld et al. (1995); Nau (2006);
Galaabaatar and Karni (2013), where (multi-)utility and (imprecise) probability representations
are obtained by different axiomatic characterizations of preferences over acts, the aim of the present
paper is to go the opposite direction and to obtain preferences on acts given a preference system and
some additional, commonly partial, probabilistic information about the occurrence of the states of
nature.

As already discussed in more detail in Section 2, most existing criteria for decision making un-
der uncertainty are not applicable in such situations, since they require either a perfectly cardinal
preference structure (like, e.g., maximizing expected utility or Γ-maximin) or, complementary, a
precise probability measure representing the beliefs on the states of nature (like, e.g., first order
stochastic dominance3). Therefore, we now propose and discuss three different approaches for de-
cision making under uncertainty when the considered acts take values in some arbitrary preference
system (abbreviated by ps-valued acts in the following) and when there is partial probabilistic
information on the occurrence of the states available.

4.1. Basic Setting

We start by defining the central concepts of the theory for the most general case. Let S denote
some non-empty set equipped with some suitable σ-algebra σ(S). The elements of S are interpreted
as all possible states of nature about whose occurrence the decision maker under consideration is
uncertain. Moreover, let M denote some credal set on the measurable space (S, σ(S)), which is
interpreted as the set of all probability measures on (S, σ(S)) that are compatible with the available
(partial) probabilistic information and thus describing the uncertainty about the occurrence of the
states. For a given consistent preference system A, a state space S and a credal setM, a ps-valued
act is a mapping X : S → A assigning states of nature to elements of the preference system.

Given this, define the set F(A,M,S) ⊆ AS := {X|X : S → A} by setting

F(A,M,S) :=
{
X ∈ AS : u ◦X is σ(S)-BR-measurable for all u ∈ UA

}
(2)

where BR denotes the Borel sigma field on R. By construction, the space F(A,M,S) consists of
exactly those acts X : S → A whose expectation exists with respect to all pairs (u, π) ∈ UA×M of
compatible probability measure and utility representation (since bounded and measurable random
variables have finite expectation). We can now define our main object of study:

Definition 4. In the situation above, call every subset G ⊆ F(A,M,S) a decision system (with
information base (A,M)). Moreover, call a decision system G finite, if both |G| <∞ and |S| <∞,
that is if both the set of states and the set of available acts are finite.

3For approaches directly generalizing stochastic dominance to credal sets, see Denoeux (2009); Couso and Dubois
(2012); Montes et al. (2014b); Couso and Destercke (2015).
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The elements of a decision system G are interpreted as those elements of the space F(A,M,S)

that are available in the specific choice situation under consideration. Given a decision system G,
we are interested in the following question: How can we utilize the information base (A,M) best
possibly in order to define meaningful and reasonable choice criteria on the set G? In the following
sections, we propose three different approaches that address exactly this question.

4.2. Criteria based on Generalized Expectation Intervals

We start by introducing and studying decision criteria that are based on the analysis of gener-
alized expectation intervals of the available acts. Depending on the attitude of the agent of interest
towards the ambiguity underlying the situation (for instance she could be ambiguity seeking or
ambiguity averse or something inbetween), such intervals can give rise to a variety of different op-
timality criteria for decision making. Specifically, for a ps-valued act X and a decision maker with
a granularity parameter δ > 0, the corresponding interval will range from the lowest to the highest
possible expected value that choosing the act X can lead to under some pair (u, π) ∈ N δ

A ×M
that is compatible with the preference system A and the probabilistic information M. This leads
to the definition of the basic concept of this section.

Definition 5. Let X ∈ F(A,M,S) and δ ∈ (0, 1). With Dδ := N δ
A ×M, we call

EDδ(X) :=
[
EDδ(X),EDδ(X)

]
:=
[

inf
(u,π)∈Dδ

Eπ(u ◦X), sup
(u,π)∈Dδ

Eπ(u ◦X)
]

(3)

the generalized interval expectation of X with respect to A,M and granularity δ.

Examples for how the generalized interval expectation is computed in concrete decision situa-
tions are given in the second part of Example 1 in Section 4.3 and in the application example in
Section 5.2. Note that, in the spirit of the theory of imprecise probabilities, the set EDδ(X) can be
given an epistemic or an ontologic interpretation (see Walley and Fine (1982) or Augustin et al.
(2014, p. 143)): If the imprecision/ambiguity in the sets arises from lack of information in the
sense of e.g. partially observed choice behavior and/or partially known precise probabilities, the
set EDδ(X) is the set of all expectations arising in at least one situation that is compatible with
the data. In contrast, if both sets N δ

A andM have an ontologic interpretation, i.e. are interpreted
as holistic entities of their own, the same holds true for the set of expectations EDδ(X).

Of course, all decision theory that is based on comparisons of the set EDδ(Xi) of different acts
Xi should reflect the underlying interpretation. The following definition gives three criteria rather
relying on an ontologic interpretation of the set Dδ. Note that all of them are straightforward
generalizations of the (complete order inducing) decision criteria commonly used in the theory of
imprecise probabilities and reviewed, e.g., in Huntley et al. (2014).

Definition 6. Let G ⊆ F(A,M,S) be a decision system and δ ∈ (0, 1). An act X ∈ G is called

i) Dδ-maximin iff ∀Y ∈ G : EDδ(X) ≥ EDδ(Y )

ii) Dδ-maximax iff ∀Y ∈ G : EDδ(X) ≥ EDδ(Y )

iii) Dαδ -maximix iff

∀Y ∈ G : αEDδ(X) + (1− α)EDδ(X) ≥ αEDδ(Y ) + (1− α)EDδ(Y )

where α ∈ [0, 1] is some fixed parameter.
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We denote by Gδ, Gδ and Gαδ the sets of Dδ-maximin, Dδ-maximax and Dαδ -maximix acts in G.

Independent of its interpretation, we need ways for computing the set EDδ(X) in concrete
situations. The following proposition gives a linear programming based algorithm for doing so in
finite decision systems. However, note that applying the proposition requires the extreme points
of the underlying credal set M and, therefore, is ideal for situations where the number of extreme
points is moderate and where closed formulas for computing the extreme points are available. For
credal sets induced by 2-monotone lower/ 2-alternating upper probabilities such formulas exist (cf.,
Shapley (1971, Theorem 3, p.19)). While generally the number of extreme points could be very high
(maximally |S|! for lower probabilites, cf. Derks and Kuipers (2002) and Wallner (2007)), convenient
cases exist where furthermore efficient enumeration procedures are available (such special cases
include ordinal probabilities (cf., Kofler (1989, p. 26)), comparative probabilites (cf., Miranda and
Destercke (2015)), necessity measures (cf., Schollmeyer (2015)), p-boxes (cf., Montes and Destercke
(2017)), probability intervals (cf., Weichselberger and Pöhlmann (1990, Chapter 2) or de Campos
et al. (1994)) or pari-mutuel models (cf., Montes et al. (2017))).

Proposition 3. Let A = [A,R1, R2] be a consistent preference system, where A = {a1, . . . , an}
such that (a1, b), (b, an) ∈ R1 for all b ∈ A and let ε∗ denote the optimal outcome of problem (1).
Moreover, let S = {s1, . . . , sm} be finite, M be some polyhedral credal set on (S, 2S) with extreme
points E(M) := {π(1), . . . , π(T )} and let X ∈ G. For ε∗ ≥ δ > 0, consider the collection of linear
programs LPδ1, ... , LPδT given by:

n∑

i=1

ui · π(t)(X−1({ai})) −→ min
(u1,...,un)∈Rn

/ max
(u1,...,un)∈Rn

(LPδt )

with constraints 0 ≤ (u1, . . . , un) ≤ 1, u1 = 1, un = 0 and i) to iv) as given in Proposition 1 (with
ε := δ fixed). Let v(t, δ) and v(t, δ) denote the optimal outcomes of problem LPδt in minimum and
maximum form. Then, we have EDδ(X) = [mint v(t, δ),maxt v(t, δ)].

Proof. Let X ∈ G and ε∗ ≥ δ > 0. Then, the set N δ
A is non-empty and we can define the function

f : Dδ → R, (u, π) 7→ Eπ(u ◦X). For any representation u ∈ N δ
A fixed, the function π 7→ f(u, π)

is linear in π and, therefore, both convex and concave. By utilizing the facts that the pointwise
infimum of any family of concave functions is a concave function and that the pointwise supremum
of any family of convex functions is a convex function, we know that the functions π 7→ infu f(u, π)
and π 7→ supu f(u, π) have to be concave and convex, respectively. But concave functions on
polyhedral set attain their minimum and convex functions on polyhedral set attain their maximum
on the set of extreme points. Hence, in order to find global maximum and minimum of the function
f , it suffices to check for it on the set N δ

A × E(M).

Now, let (u∗1, . . . , u
∗
n) denote an optimal solution to problem LPδt in maximum form for fixed

t ∈ {1, . . . , T}. One then easily verifies that the constraints imply u∗ ∈ N δ
A, where u∗ : A→ [0, 1],

u∗(ai) := u∗i and v(t, δ) = Eπ(t)(u∗ ◦X) = sup
{
Eπ(t)(u◦X) : u ∈ N δ

A
}

. Analogous reasoning for the
problem in minimum form yields v(t, δ) = infu∈N δA Eπ(t)(u ◦X). Thus, applying our considerations

from before yields EDδ(X) = [mint v(t, δ),maxt v(t, δ)]. �

Another way to compute the bounds in (3) in the case of 2-alternating upper probabilities (2-
monotone lower probabilities) on a finite space A is to use the Choquet representation of the upper
(lower) expectation (cf., e.g., Denneberg (1994, Proposition 10.3, p. 126)): For a fixed utility u
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and a 2-alternating upper probability ν with associated credal setMν the corresponding expected
upper utility can be written as E{u}×Mν

(X) =
∑n

i=1

(
u(i) − u(i−1)

)
· ν({s ∈ S | u(X(s)) ≥ u(i)}),

where u(i) denotes the i-th value of the increasingly ordered involved utility values u1, . . . , un.

If R1 is complete then the expectation is a linear form in the utility u and the maximization
maxu∈N δA E{u}×Mν

(X) translates to a simple linear program. If the relation R1 is not complete

then the ordering of the utility values ui can change as u ranges in N δ
A and one has to compute the

expectation separately for every possible ordering of the utility values and then take the maximum.
If there are totally comparable values ui meaning that for every uj either ui ≤ uj or ui > uj ,
independently from the concrete u ∈ N δ

A then one can split the sum in a part containing all utility
values below ui and a part containing all utility values above ui and then analyze every sub-sum
independently which would help in reducing the combinatorial complexity.

The criteria from Definition 6 allow for comparing acts given the granularity δ of the specific
decision maker of interest. However, note that knowing the granularity might be a strong as-
sumption if R1 and R2 are partial orderings, since experimental settings in which this additional
parameter could precisely be elicited are not as straightforward as in the case of complete order-
ings. A natural way for addressing this issue in practical problems is to compute the generalized
interval expectation along varying values of δ. Clearly, it holds that EDδ1 (X) ⊆ EDδ2 (X) whenever
δ1 ≥ δ2, since it holds Dδ1 ⊆ Dδ2 and, thus, the inf and the sup in (3) are taken for a smaller set
for δ1 than for δ2. That is, the generalized interval expectation of an act X becomes narrower (or
more precisely, not gets wider) as the value of δ increases. Utilizing this fact, in order to decide
between two competing acts X and Y , one could proceed as follows: Once having decided for one
of the criteria from Definition 6, one can compute the general interval expectation for increasing
values of δ until the chosen criterion can discriminate between the acts X and Y for the first time,
for instance in favor of X (say this happens for the value δ∗). Afterwards, the decision maker is
asked whether it is acceptable for her that utility differences below δ∗ are not taken into account
by the decision procedure. If the answer is yes, the decision maker should rank act X before Y ,
otherwise no decision can be made.

Further possibilities to deal with these issues are treated in the next two sections, where we
propose two approaches completely overcoming the choice of a granularity parameter.

4.3. Criteria based on Global Comparisons

The decision criteria defined in Section 4.2 all construct complete rankings on the set G by
comparing numerical representations of parts of the decision system and by somehow ignoring the
inherent utility and probability structure. Therefore, when defining optimality of acts in terms of
one of the criteria from Definition 6, it makes no difference if the ranking is constructed by pairwise
or global comparisons. In the next sections, we turn to two approaches that explicitly take into
account a global and local viewpoint for defining optimality of acts, respectively.4

We start with defining criteria taking the global perspective: For an act X in order to be labeled
optimal, it is necessary that there exists (depending on the concrete approach at least) one fixed
pair (u, π) ∈ UA ×M for which this act maximizes the expected utility among all other available
acts Y ∈ G. In particular, the pair (u, π) for which X dominates the other acts in expectation
must not depend on the concrete competing act under consideration, but has to be constant for all

4Note that in the context of IP decision theory, fundamental differences between global criteria and criteria based
on pairwise comparisons have already been discussed Schervish et al. (2003).
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acts from G. Optimality criteria for which the pair (u, π) may depend on the concrete competing
act are considered in Definition 8 in Section 4.4.

Moreover, note that the concepts from the following definition take a global point of view also
from another perspective: The utility component in the required pair(s) (u, π) should not depend
on its probability component and also its probability component should no depend on the utility
component. This is reflected in the fact that in the admissibility concepts of Definition 7 a ∀
quantifier can follow an ∃ quantifier but not vice versa.

Definition 7. Let G ⊆ F(A,M,S) denote a decision system. We call an act X ∈ G

i) A|M−admissible iff ∃u ∈ UA ∃π ∈M ∀Y ∈ G : Eπ(u ◦X) ≥ Eπ(u ◦ Y )

ii) A−admissible iff ∃u ∈ UA ∀π ∈M ∀Y ∈ G : Eπ(u ◦X) ≥ Eπ(u ◦ Y )

iii) M−admissible iff ∃π ∈M ∀u ∈ UA ∀Y ∈ G : Eπ(u ◦X) ≥ Eπ(u ◦ Y )

iv) A|M−dominant iff ∀u ∈ UA ∀π ∈M ∀Y ∈ G : Eπ(u ◦X) ≥ Eπ(u ◦ Y )

Denote by GA|M, GA, GM and GdA|M the sets of such acts, respectively.

All four act properties just defined rely on the idea that, if there was perfect information on both the
state probabilities (i.e.M = {π} is a singleton) and the utility values (i.e. the utility representation
u is unique up to a positive linear transformation), then an act X should be labeled optimal iff X
has greater or equal expected utility than every other act Y ∈ G with respect to (u, π). However,
they differ in the way they handle the ambiguity underlying the involved sets M and UA: While
A|M-admissibility only demands the existence of at least one compatible combination (u, π) with
respect to which X maximizes expected utility, A|M-dominance requires this for all compatible
combinations. M- and A-admissibility relax the ∀-assumption on probability and utility level,
respectively. Clearly, it holds that GA,GM,GdA|M ⊆ GA|M and GdA|M ⊆ GA and GdA|M ⊆ GM, but
in general neither GA ⊆ GM nor GM ⊆ GA.

Note that Danielson (2005, Section 4) also proposes a decision rule that rather could be viewed
from a global perspective. Precisely, in that paper an act X is labeled simultaneously superior to
the remaining acts from G\{X}, whenever the expectation Eπ(u◦X) of X is greater or equal as the
mean of the expectations 1

|G|−1
∑

Y ∈G\{X} Eπ(u◦Y ) of the remaining acts for every compatible pair

(u, π) of utility and probability representation. The author then proves that this criterion induces
the same ranking of the acts than a similar criterion applied solely for pairwise comparisons of acts.
This is an important difference to the concepts introduced in the present paper: Here, in general,
the global admissibility concepts introduced in Definition 7 do indeed induce different orderings of
the acts than the concepts of local admissibility introduced in Definition 8 from Section 4.4.

Note also that, if the involved set of utility representations UA is a class of positive linear trans-
formations, i.e. belongs to a perfectly cardinal preference structure, then both A|M−admissibility
and M−admissibility reduce to E-admissibility as recalled in Section 2. The following example
demonstrates that ignoring the available information base and applying the maximin criterion
instead leads to counter-intuitive decisions even in very simple situations.

Example 1. Let A = {a1, a2, a3, a4}, the (complete) relation R1 induced by a2PR1a3PR1a4PR1a1
and PR2 = {((a2, a4), (a3, a1))} consists of one single edge. Consider the decision system G =
{X1, X2}, where the acts X1, X2 : {s1, s2} → A are defined by (X1(s1), X1(s2)) = (a1, a2) and
(X2(s1), X2(s2)) = (a3, a4). An illustration of the decision system is given in Figure 2.
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Figure 2: The black part shows the Hasse graph of the relation R1, the gray dashed lines show the edges ♥ = (a3, a1)
and ♦ = (a2, a4) with ♦ being preferred to ♥. The solid gray lines show which elements of A are attained by the
acts X1 and X2 under the different states of nature.

Moreover, suppose there is additional probabilistic information available which is given by the
credal set M := {π : π({s1}) ≤ 0.5}. In this case, act X1 is A|M-dominant, since it maximizes
expected utility with respect to every pair (u, π) ∈ UA ×M. In contrast, X2 is not even A|M-
admissible, although it is the unique optimal act with respect to Wald’s maximin criterion (since
it holds that infs∈S X2(s) = a4PR1a1 = infs∈S X1(s)). Moreover, we can go on computing the
generalized interval expectations of the acts X1 and X2 (in the sense of Definition 5) for varying
degrees of granularity, say δ = 0, 0.1, 0.15, 0.25. The resulting expectation intervals for the acts are
visualized in Figure 3.
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Figure 3: Development of the generalized interval expectations of the acts X1 and X2 along increasing granularity.
For the case δ = 0 the lower expectation of act X1 and the upper expectation of act X2 coincide with a value of 0.5.

To complete the section, we give a proposition containing a linear programming based approach
for checking whether an act X is A-admissible in finite decision settings.

Proposition 4. Let A = [A,R1, R2] be a consistent preference system, where A = {a1, . . . , an}.
Moreover, let S = {s1, . . . , sm} be finite, M be some polyhedral credal set on (S, 2S) with extreme
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points E(M) := {π(1), . . . , π(T )} and let G := {X1, . . . , Xk} ⊆ F(A,M,S) denote a finite decision
system with Xz ∈ G. Consider again the linear optimization problem (1) with additional constraints

n∑

i=1

ui · π(t)(X−1z ({ai})) ≥
n∑

i=1

ui · π(t)(X−1l ({ai})) for all l = 1, . . . , k (Ct)

for every t = 1, . . . , T . Then Xz is A-admissible if and only if the optimal outcome of this opti-
mization problem is strictly greater than 0.

Proof. A similar argument as in the proof of Proposition 1 guarantees the existence of an opti-
mal solution (u∗1, . . . , u

∗
n, ε
∗) to the optimization problem. If ε∗ = 0, then there exists no vector

(u1, . . . , un, ε) with ε > 0 satisfying the constraints of the optimization problem. Since every func-
tion u ∈ UA with Eπ(t)(u ◦ Xz) ≥ Eπ(t)(u ◦ Xl) for all l = 1, . . . , k and t = 1, . . . , T induces such
a vector, we conclude that such u cannot exist. Since E(M) ⊆ M, we conclude that Xz is not
A-admissible.

If ε∗ > 0, constraints i) to iv) guarantee that u : A → R, u(ai) := u∗i for all i ∈ n (weakly)
represents the preference system A. Now, let π ∈ M be arbitrary. Choose α ∈ ∆T−1 such that
π(·) =

∑T
t=1 αt · π(t)(·). Then, condition (Ct) additionally guarantees that for all l = 1, . . . , k it

holds

Eπ(u ◦Xz) =
n∑

i=1

u∗i · π(X−1z ({ai}))

=
n∑

i=1

u∗i ·
( T∑

t=1

αt · π(t)(X−1z ({ai}))
)

=

T∑

t=1

αt

( n∑

i=1

u∗i · π(t)(X−1z ({ai}))
)

≥
T∑

t=1

αt

( n∑

i=1

u∗i · π(t)(X−1l ({ai}))
)

=
n∑

i=1

u∗i ·
( T∑

t=1

αt · π(t)(X−1l ({ai}))
)

= Eπ(u ◦Xl)

Hence, Xz maximizes expected utility with respect to (u, π). Since π ∈ M was chosen arbitrarily,
this implies that Xz is A-admissible. �

Note that a similar algorithm as given in Proposition 4 could be used for checkingM-admissibility
of acts. However, this would require the set E(UA) of extreme points of the representation set to
be known, which is way less straightforward than assuming E(M) to be known.

4.4. Criteria based on Pairwise Comparisons

While the criteria defined in Section 4.3 rather relied on global comparisons of acts in the sense
that an act, in order to be labeled admissible, has to dominate all other available acts from G in
expectation for (at least one) fixed pair (π, u) simultaneously, we now turn to criteria induced by
pairwise expectation comparisons of acts (i.e. binary relations on the set of acts). There, roughly
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spoken, the idea is to first compare the expectation of a fixed act X of interest to the expectation
of every other available act Y ∈ G separately and, afterwards, to label this act admissible if and
only if none of the other available acts from G dominates it. In particular, the pair (uY , πY ) for
which the expectation of act X is compared to the expectation of act Y might now depend on Y ,
for which reason the following criteria could rather be viewed from a local perspective.

Similarly as already seen in the global case, there are several different ways to define such
relations each of which reflecting a different attitude towards the underlying ambiguity between
the different compatible probability measures and/or the indeterminacy on the utility level. In
particular, we define six binary relations R∃∃, R1

∃∀, R
2
∃∀, R

1
∀∃, R

2
∀∃ and R∀∀ on F(A,M,S) by setting

for all X,Y ∈ F(A,M,S):

(X,Y ) ∈ R∃∃ iff ∃u ∈ UA ∃π ∈M : Eπ(u ◦X) ≥ Eπ(u ◦ Y ) (4)

(X,Y ) ∈ R1
∃∀ iff ∃u ∈ UA ∀π ∈M : Eπ(u ◦X) ≥ Eπ(u ◦ Y ) (5)

(X,Y ) ∈ R2
∃∀ iff ∃π ∈M ∀u ∈ UA : Eπ(u ◦X) ≥ Eπ(u ◦ Y ) (6)

(X,Y ) ∈ R1
∀∃ iff ∀u ∈ UA ∃π ∈M : Eπ(u ◦X) ≥ Eπ(u ◦ Y ) (7)

(X,Y ) ∈ R2
∀∃ iff ∀π ∈M ∃u ∈ UA : Eπ(u ◦X) ≥ Eπ(u ◦ Y ) (8)

(X,Y ) ∈ R∀∀ iff ∀π ∈M ∀u ∈ UA : Eπ(u ◦X) ≥ Eπ(u ◦ Y ) (9)

Obviously, it holds that R∀∀ is subset of all other relation, whereas R∃∃ is a superset of them. For
the remaining relations, in general, no sub- or superset relation has to be satisfied. Furthermore,
transitivity is only guaranteed for R∀∀ in general. Similarly as already discussed in the global case,
each of the desirability relations just defined relies on the idea that, given perfect information on
utilities and probabilities, maximizing expected utility should be the criterion of choice. Again,
the relations differ only in the way they handle the ambiguity on the involved sets UA and M.
Naturally, each of the relations defined above induces a different criterion of (local) admissibility.
These criteria are summarized in the following definition.

Definition 8. Let R ∈ {R∃∃, R1
∃∀, R

2
∃∀, R

1
∀∃, R

2
∀∃, R∀∀} =: Rp. We call an act X ∈ G locally

admissible with respect to R, if it is an element of the set

maxR(G) := {Y ∈ G : @Z ∈ G s.t. (Z, Y ) ∈ PR}

that is if it is a maximal element in G with respect to the relation R ∩ (G × G).

So, which of the relations in Rp defined above are most important in our context? To address this
question, it certainly makes sense to start by discussing some special cases of them: If the credal set
M is a singletonM = {π}, that is a precise probability available, and if the set of compatible utility
representations UA = {a · u0 + b | a > 0, b ∈ R} is unique up to a positive linear transformation of
one utility function u0, that is a perfectly cardinal utility, then all relations R ∈ Rp coincide with
the classical expected utility criterion, i.e. with choosing an act that maximizes the expectation
with respect to π and one arbitrary chosen utility representation from UA.

If M still is a singleton, however, UA is the class of all non-decreasing functions with respect
to R1 (this essentially corresponds to the case where the relation R2 of the underlying preference
system is empty), then the relations R2

∃∀, R
1
∀∃ and R∀∀ essentially coincide with the classical

concept of first order stochastic dominance (cf., e.g., Lehmann (1955); Kamae et al. (1977); Mosler
and Scarsini (1991)), while second order stochastic dominance is obtained if UA is the set of all
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continuous concave non-decreasing utility functions that are related to the concept of decreasing
returns to scale. An intermediate case would arise if one has information about decreasing returns
to scale only for parts of the preference system.

Finally, if the involved credal setM is no longer a singleton and utility is given perfectly cardinal
again, then the relations R∃∃, R2

∃∀ and R1
∀∃ all coincide and are exactly the ones corresponding

to the criterion of maximality as recalled in Section 2. More precisely, the acts that are locally
admissible with respect to one of the relations R∃∃, R2

∃∀ and R1
∀∃ in that special case, are exactly

the acts that are not dismissed when applying maximality. Additionally, the relations R1
∃∀, R

2
∀∃

and R∀∀ for that case reduce to Bewley’s structural dominance (see, e.g., Bewley (2002) or Etner
et al. (2012, p. 243)).

To check whether an act X dominates another acts Y with respect to one of the relations
R∃∃ and R∀∀ in the general (yet finite) case, one can apply a similar technique as described in
Proposition 3 by noting that Eπ(u ◦ X) ≥ Eπ(u ◦ Y ) is equivalent to Eπ(u ◦ X − u ◦ Y ) ≥ 0.
Utilizing this fact leads us to the following proposition.

Proposition 5. Let A = [A,R1, R2] be a consistent preference system, where A = {a1, . . . , an}.
Moreover, let S = {s1, . . . , sm} be finite, M be some polyhedral credal set on (S, 2S) with ex-
treme points E(M) := {π(1), . . . , π(T )} and let X,Y ∈ F(A,M,S). Consider the collection of linear
programs LO1, ... , LOT given by:

n∑

i=1

ui · [π(t)(X−1({ai}))− π(t)(Y −1({ai}))] −→ min
(u1,...,un)∈Rn

/ max
(u1,...,un)∈Rn

(LOt)

with constraint i)-iv) from Proposition 1 where ε is set to 0. For t = 1, . . . , T , denote by v(t) and
v(t) the optimal value of problem LOt in minimum and maximum form, respectively. Then, the
following holds:

i) (X,Y ) ∈ R∀∀ if and only if mint v(t) ≥ 0

ii) (X,Y ) ∈ R∃∃ if maxt v(t) > 0

Proof. Define the function g : ŨA ×M → R by setting g(u, π) = Eπ(u ◦ X − u ◦ Y ), where ŨA
denotes the set of all functions u : A → [0, 1] which are monotone (but not necessarily strictly
monotone) with respect to the relations R1 and R2. Note that UA ⊆ ŨA. A similar argument as
performed in the proof of Proposition 3 shows that mint v(t) = min{g(u, π) : (u, π) ∈ ŨA ×M}
and maxt v(t) = max{g(u, π) : (u, π) ∈ ŨA ×M}.

Part i): If mint v(t) ≥ 0 (note that this actually means mint v(t) = 0 since the vector (0, . . . , 0)
is an admissible solution of LOt for all t = 1, . . . , T ), then, according to the above identity, it holds
that Eπ(u ◦ X − u ◦ Y ) ≥ 0 for all (u, π) ∈ ŨA ×M. Since UA ⊆ ŨA, this implies Eπ(u ◦ X) ≥
Eπ(u ◦ Y ) for all (u, π) ∈ UA ×M. If contrarily mint v(t) < 0, let (u∗1, . . . , u

∗
n) denote a solution

yielding mint v(t) and define u∗ ∈ ŨA by setting u∗(ai) := u∗i . If u∗ ∈ UA we are done. If
u∗ ∈ ŨA \ UA, choose u0 ∈ UA 6= ∅ (this is possible since A is assumed to be consistent) such that
Eπ(u0 ◦X − u0 ◦ Y ) < |mint v(t)| for all π ∈ M (this is possible since, with any u ∈ UA, we have
also λ · u ∈ UA for arbitrary λ ∈ (0, 1)). One then easily verifies that u+ := u∗+u0

2 ∈ UA. One
also easily verifies that, if π+ ∈ M is chosen to be a credal element yielding outcome mint v(t) in
combination with u∗, then it holds Eπ+(u+ ◦X) < Eπ+(u+ ◦ Y ). This completes the proof of i).
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Part ii): If maxt v(t) > 0, then, due to maxt v(t) = max{g(u, π) : (u, π) ∈ ŨA ×M}, there
exists a pair (u∗, π+) ∈ ŨA ×M such that Eπ+(u∗ ◦X) ≥ Eπ+(u∗ ◦ Y ). If u∗ ∈ UA we are done. If
u∗ ∈ ŨA \UA, choose u0 ∈ UA 6= ∅ (again utilizing the consistency of the preference system A) such
that Eπ(u0 ◦X − u0 ◦ Y ) > −maxt v(t) (again utilizing the fact that, with any u ∈ UA, we have
also λ ·u ∈ UA for arbitrary λ ∈ (0, 1)). Analogously as in part i), we have that u+ := u∗+u0

2 ∈ UA.
Moreover, one easily verifies that it holds that Eπ+(u+ ◦X) > Eπ+(u+ ◦ Y ). Thus, there exists a
pair (u+, π+) ∈ UA×M with the desired property and, therefore, it holds that (X,Y ) ∈ R∃∃. This
completes the proof of part ii). �

Note that the converse implication in part ii) of Proposition 5 is not necessarily true (for a trivial
example consider the pair (X,X) ∈ R∃∃). A non-trivial situation where the opposite direction fails
to hold is illustrated by the following toy example:

Example 2. Let A = {a1, a2, a3, a4}, the (complete) relation R1 induced by a1IR1a4PR1a2IR1a3
and the relation R2 = ∅. Consider the decision system G = {X1, X2} consisting of two acts X1, X2 :
{s1, s2} → A defined by (X1(s1), X1(s2)) = (a1, a2) and (X2(s1), X2(s2)) = (a3, a4). Suppose the
uncertainty about the states is characterized by the credal set M = {π : π({s1}) ≤ 0.5}. Then we
have (X,Y ) ∈ R∃∃, since for π the uniform distribution and u defined by u(a1) = u(a4) = 0.75 and
u(a2) = u(a3) = 0.25 we have Eπ(u ◦X1) = Eπ(u ◦X2). However, it holds that

max
t
v(t) = sup

(u,π)∈ ŨA×M
Eπ(u ◦X1 − u ◦X2)

= sup
(u,π)∈ ŨA×M

u(a1)(π({s1})− π({s2})) + u(a2)(π({s2})− π({s1}))

= sup
(u,π)∈ ŨA×M

(u(a1)− u(a2))(π({s1})− π({s2}))

= 0

where the last equality holds since u(a1) − u(a2) ≥ 0 due to a1PR1a2 and, therefore, the product
is maximal when π({s1}) is, which is the case for π({s1}) = 0.5. Hence, we have constructed a
situation where (X,Y ) ∈ R∃∃ but not maxt v(t) > 0.

In the following proposition, we formulate an additional assumption under which also the opposite
implication of Proposition 5 ii) is valid.

Proposition 6. Consider again the situation of Proposition 5. Additionally, assume that both R1

and R2 are antisymmetric relations and that there exists an element a0 ∈ A such that

π(t)(X−1({a0}))− π(t)(Y −1({a0})) > 0

for all t = 1, . . . , T . Then, we have that (X,Y ) ∈ R∃∃ if and only if maxt v(t) > 0.

Proof. It follows from Proposition 5 ii) that maxt v(t) > 0 implies (X,Y ) ∈ R∃∃. For the converse
implication assume that (X,Y ) ∈ R∃∃. We then can choose u∗ ∈ UA such that Eπ+(u∗ ◦ X) ≥
Eπ+(u∗ ◦ Y ) for some π+ ∈ M. If the inequality holds strictly we are done, since then setting
u∗i := u∗(ai) for all i ∈ n induces a solution with an objective value strictly greater than 0. Thus,
assume Eπ+(u∗ ◦X) = Eπ+(u∗ ◦ Y ). Choose α ∈ ∆T−1 such that π+(·) =

∑T
t=1 αt · π(t)(·) and let

δ > 0 be defined as in the proof of Proposition 1, i.e. as the minimal difference with respect to u
over all elements of PR1 and PR2 . Define the function u+ : A→ [0, 1] by u+(a) := u∗(a) for a 6= a0
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and u+(a0) := u∗(a0) + δ
4 . Then one can show that u+ ∈ UA (utilizing that both relations R1 and

R2 are antisymmetric).5 Set z(a, t) := π(t)(X−1({a}))− π(t)(Y −1({a})) for t = 1, . . . T and a ∈ A.
Then, we can compute

max
t
v(t) ≥ Eπ+(u+ ◦X − u+ ◦ Y )

=
T∑

t=1

αt · Eπ(t)(u+ ◦X − u+ ◦ Y )

=
T∑

t=1

αt ·
(∑

a∈A
u+(a) · z(a, t)

)

=
T∑

t=1

αt ·
(( ∑

a∈A\{a0}
u+(a) · z(a, t)

)
+u+(a0) · z(a0, t)

)

=
T∑

t=1

αt ·
(( ∑

a∈A\{a0}
u∗(a) · z(a, t)

)
+(u∗(a0) + δ

4) · z(a0, t)
)

=
T∑

t=1

αt ·
((∑

a∈A
u∗(a) · z(a, t)

)
+ δ

4 · z(a0, t)
)

=
T∑

t=1

αt ·
∑

a∈A
u∗(a) · z(a, t) + δ

4 ·
T∑

t=1

αt · z(a0, t)

=
T∑

t=1

αt · Eπ(t)(u∗ ◦X − u∗ ◦ Y ) + δ
4 ·

T∑

t=1

αt · z(a0, t)

= Eπ+(u∗ ◦X − u∗ ◦ Y ) + δ
4 ·

T∑

t=1

αt · z(a0, t)

= 0 + δ
4 ·

T∑

t=1

αt · (π(t)(X−1({a0}))− π(t)(Y −1({a0})))

> 0

where the first inequality sign is valid since, as seen in the proof of Proposition 5, we have that
maxt v(t) = max{g(u, π) : (u, π) ∈ ŨA×M} and where the last strict inequality holds since we have

5Antisymmetry is required since otherwise changing u∗ only on the element a0 would mean that u+ cannot
represent the relations IR1 and IR2 on pairs of the form (a0, a1) ∈ IR1 with a0 6= a1 and pairs of the form
((a0, a1), (a2, a3)) ∈ IR2 with a1, a2, a3 ∈ A \ {a0}.

Given antisymmetry, proving that u+ ∈ UA is then straightforward, however, involves some tedious arithmetic
exercises. One has to show that u+ represents both relations R1 and R2. Therefore, one first has to note that by
definition of δ it holds that u∗(a)−u∗(b) > δ

2
for all (a, b) ∈ PR1 and that u∗(a)−u∗(b)− (u∗(c)−u∗(d)) > δ

2
for all

((a, b), (c, d)) ∈ PR2 . It is then immediate that u+ represents R1 and R2 for pairs not containing a0, since for such
pairs u+ equals u∗ and u∗ ∈ UA. Thus, we need only care about pairs containing a0. There are several cases to distin-
guish. We only show the most complicated one. Assume for a1, a2 ∈ A \ {a0} it holds that ((a1, a0), (a0, a2)) ∈ PR2 .
Then, due to the second of the above identities, it holds that u∗(a1) − u∗(a0) − δ

2
> u∗(a0) − u∗(a2). This implies

u∗(a1)− (u∗(a0) + δ
4
) > u∗(a0) + δ

4
−u∗(a2), which implies u+(a1)−u+(a0) > u+(a0)−u+(a2). Thus, u+ represents

R2 on pairs of this form. The remaining cases are similar.
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π(t)(X−1({a0}))− π(t)(Y −1({a0})) > 0 for all t = 1, . . . T by assumption. This gives maxt v(t) > 0
and completes the proof of the proposition. �

Note that the other relations R ∈ Rp \ {R∀∀, R∃∃} do not appear to be manageable in such
a straightforward manner. However, in the special case that M is the core of a belief function,
all π ∈ M can be understood as obtained from a mass transfer of probability mass to singleton
sets of S (cf., e.g., Chateauneuf and Jaffray (1989, Corollary 3, p.273) or Derks et al. (2000,
Theorem 2, p.29) in the context of game theory). Since classical first order stochastic dominance
can be alternatively checked via the solution of a suitable mass transportation problem (cf., Mosler
and Scarsini (1991, p. 269)), the computation of R2

∃∀ can be done by solving a composite mass
transportation problem.

On the other hand, ifR1 is totally ordered andR2 is empty, then first order stochastic dominance
can be characterized for a precise probability π as Y ≥SD X ⇐⇒ ∀c ∈ A : π(Y ≥ c) ≥ π(X ≥ c).
This can be generalized to imprecise probabilities by replacing the probability of the events X ≥ c
and Y ≥ c, respectively by the lower or the upper probabilities associated with the credal set M.
This would lead to four other generalizations of stochastic dominance for imprecise probabilities and
was studied in detail in Denoeux (2009) for the case of belief functions. In the special case of some
notion of “independence” of X and Y the relation Y ≥ X ⇐⇒ ∀c ∈ A : P (Y ≥ c) ≥ P (X ≥ c)
would be equivalent to our relation R∀∀. Here, we used the notations P (B) = infπ∈M π(B) and
P (B) = supπ∈M π(B) for B ⊆ A and the term “independence” means that there always exists
some π ∈M that attains at the same time π(X ≥ c) = P (X ≥ c) and π(Y ≥ c) = P (Y ≥ c).

Note that the characterization of stochastic dominance via the probability of the events of the
form X ≥ c (and Y ≥ c) becomes far more complicated when dealing with a relation R1 that is
only partial. In this case one has to consider the probabilities of all events of the form X ∈ U (and
Y ∈ U), where U is an arbitrary upset6, and the number of upsets can become extremely large
such that explicitly checking all upsets becomes intractable. (But note that for the case of a precise
probability, checking all upsets can be done by using linear programming techniques described in
(Schollmeyer et al., 2017).)

It should be further mentioned that in Montes et al. (2014a, Section 3) and in Montes et al.
(2014b, Section 3) the authors introduce six binary relations �1, . . . ,�6 relying on a quite similar
idea as the relations in Rp, however, in a slightly different context. Here, the authors explore six
ways of extending a binary relation � between random variables to binary relations �1, . . . ,�6

between sets of random variables that are based on the same construction principle as the ones
collected in the set Rp (i.e. considering all variants of placing the ∃ and the ∀ quantifier). The
authors then propose to apply these relations for decision making with acts attaining uncertain
rewards: By considering more general acts Γ : S → 2A \ {∅} yielding set-valued outcomes (i.e. acts
that are random sets), and their associated sets of random variables S(Γ) = {X : S → A : X(s) ∈
Γ(s)}, they propose to prefer act Γ1 before Γ2 whenever S(Γ1) �i0 S(Γ2), where �i0∈ {�1, . . . ,�6}
is the extension of choice. The main difference to the relations proposed in the present paper is
that we do not consider acts with uncertain reward, but certain rewards with uncertain utility
assignment. More precisely, we do exactly know which consequence from A is attained by which
act under which state of nature, however, we do not know which is the concrete utility assignment.
Consequently, we find ourselves in a more structured setting than the authors in Montes et al.
(2014a,b) and we would ignore information by solely considering the relations �1, . . . ,�6.

6A set U ⊆ A is called an upset if ∀x, y ∈ A : x ∈ U & y ≥ x =⇒ y ∈ U .
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Furthermore, in Montes et al. (2014a, Section 5) the authors propose two binary relation �Ms
and �Mw between acts if the uncertainty on the states is characterized by a credal setM. Here, they
first assume a family (�π)π∈M on the states each representing the ordering of the acts given π was
the true distribution and, afterwards, define act X to be preferable to act Y , that is (X,Y ) ∈�Ms
or (X,Y ) ∈�Mw , if it holds that (X,Y ) ∈�π for all π ∈ M or it holds that (X,Y ) ∈�π for some
π ∈ M, respectively. Here, there are some close connections to the relations from the set Rp: If
we assume a preference system A = [A,R1, R2] with a complete ordinal relation R1 and an empty
cardinal relation R2 and we additionally choose �π to be defined as first order stochastic dominance
with respect to π for every π ∈ M, then it holds that (X,Y ) ∈ R∀∀ if and only if (X,Y ) ∈�Ms as
well as (X,Y ) ∈ R2

∃∀ if and only if (X,Y ) ∈�Mw .
Finally, note that the relation R∀∀ is also discussed in Danielson and Ekenberg (1998, Section 2):

If one considers the concept of t-admissibility proposed in that paper for the special case that t = 0
and one additionally assumes the sets V and P from Danielson and Ekenberg (1998) to consist of
exactly those utility and probability sentences that characterize the sets UA and M respectively,
then the set of t-admissible acts coincides with the set of acts that are locally admissible with
respect to R∀∀ in the sense of Definition 8. However, in general, it will not always be possible to
describe the utility constraints induced by the relation R2 and the probability constraints induced
by the credal setM by one of the three types of utility and probability sentences that are considered
in that paper. Of course, these constraints could straightforwardly incorporated in the framework
developed in the paper by allowing for larger classes of such sentences, since they are still linear in
the corresponding values.

Clearly, the set of locally R∀∀-admissible acts coincides with the set of A|M−dominant acts.
Thus, part i) of Proposition 5 can also be used for checking whether an act X is A|M−dominant
by solving the problems (LOt)t=1,...,T for every pair ((X,Y ))Y ∈G , where G ⊆ F(A,M,S) once again
denotes a finite set of available concurring acts. This is a unique feature offered by R∀∀: In general,
the other global concepts of admissibility from Definition 4.3 cannot be expressed as induced by
one of the local criteria from Definition 4.4 (for the special case of a cardinal u this is discussed
and shown in Schervish et al. (2003)).

5. A Real World Toy Example

In this section, we apply certain aspects of the proposed framework for decision making under
uncertainty by computing selected decision criteria for a prototypical toy example. Particularly, we
thereby demonstrate, firstly, that our framework is computationally feasible and, secondly, show
a class of situations in which ps-valued acts naturally appear in practical applications, namely
situations where the orderings R1 and R2 arise from the fact that the acts map into some bivariate
product space with one cardinal and one (potentially partial) ordinal dimension.

5.1. Setup of the Example

The example reads as follows: Suppose the agent under consideration is currently looking for
a new job. As she has very high qualification in her field, she immediately receives three different
job offers, say J1, J2 and J3, each of which appears to be of high interest for her at first sight. In
order to come to a decision between the different job offers, she decides to address the situation
systematically by comparing the jobs with respect to the offered monthly salary after tax and the
offered additional benefits. She specifies the additional benefits collected in X = {b1, . . . , b5} to be
important for her, where
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b1 b2 b3 b4 b5
overtime premium child care advanced training promotion prospects flexible hours

Under the assumption that the different additional benefits are incomparable for our agent, the
situation just described very naturally induces the following preference system A′ = [A

′
, R
′
1, R

′
2],

where A
′

= R+ × 2X is the set of possible decision outcomes (each of which consists of a potential
salary offer and a set of additional benefits), the relation R

′
1 ⊆ A

′ × A
′

is the component-wise
ordering given by

R
′
1 = {((y1, B1), (y2, B2)) : y1 ≥ y2 ∧B1 ⊇ B2} (10)

and the relation R
′
2 ⊆ R

′
1 ×R

′
1 partially specifying the strength of preferences is given by

R
′
2 =
{

(((y1, B1), (y2, B2)), ((y3, B3), (y4, B4))) : y1 − y2 ≥ y3 − y4 ∧B1 ⊇ B3 ⊇ B4 ⊇ B2

}
(11)

The relation R
′
1 is interpretable in a pretty straightforward manner: An element (y1, B1) of A

′
is

preferred to another element (y2, B2), whenever it is preferable in terms of salary, i.e. y1 ≥ y2 and
offers a super-set of additional benefits, i.e. B1 ⊇ B2. Otherwise, the elements are incomparable
with respect to R

′
1. Moreover, also the relation R

′
2 possesses a very natural interpretation: When-

ever, for elements ((y1, B1), (y2, B2)), ((y3, B3), (y4, B4)) ∈ R′1, it is clear that exchanging B2 by B1

is preferable to exchanging B4 by B3 since it holds that B1 ⊇ B3 ⊇ B4 ⊇ B2, one can compare the
exchanges of elements from A by simply checking whether the difference y1−y2 is greater than the
difference y3 − y4 in the salaries.

Finally, the agent specifies a set S = {s1, . . . , s4} of four different economic scenarios which
might affect the offers of the companies in different ways (for example, here, {s4} might be some
event having very negative influence on the stock price of the company offering job J1, whereas
{s1} might be an event causing the opposite). Particularly, the agent can specify the following
decision system describing her situation:

s1 s2 s3 s4
J1 (5000,X )︸ ︷︷ ︸

=:a1

(2700, {b1, b2})︸ ︷︷ ︸
=:a2

(2300, {b1, b2, b3})︸ ︷︷ ︸
=:a3

(1000, ∅)︸ ︷︷ ︸
=:a4

J2 (3500, {b1, b5})︸ ︷︷ ︸
=:a5

(2400, {b1, b2})︸ ︷︷ ︸
=:a6

(1700, {b1, b2})︸ ︷︷ ︸
=:a7

(2500, {b1})︸ ︷︷ ︸
=:a8

J3 (3000, {b1, b2, b3})︸ ︷︷ ︸
=:a9

(1000, {b1})︸ ︷︷ ︸
=:a10

(2000, {b1})︸ ︷︷ ︸
=:a11

(3000, {b1, b4, b5})︸ ︷︷ ︸
=:a12

Once having set up the decision system, the agent can also determine the relevant preference system
A = [A,R1, R2] by setting A := {a1, . . . , a12}, R1 := R

′
1 ∩ (A × A) and R2 := R

′
2 ∩ (R1 × R1),

i.e. by restricting all sets contained in the triplet A′ to the relevant ones. The Hasse graph of
the order R1 (which is clearly anti-symmetric here, since all elements of A are distinct) then can
be visualized as in Figure 4. Note that R2 is not anti-symmetric, since for instance it holds that
((a3, a7), (a9, a6)) ∈ IR2 while (a3, a7) 6= (a9, a6) and therefore distinct equivalent elements with
respect to R2 exist.
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a4 = (1000, ∅)

a1 = (5000,X )

a2 = (2700, {b1, b2})

a3 = (2300, {b1, b2, b3})

a5 = (3500, {b1, b5})

a6 = (2400, {b1, b2})

a7 = (1700, {b1, b2})

a8 = (2500, {b1})

a9 = (3000, {b1, b2, b3})

a10 = (1000, {b1})

a11 = (2000, {b1})

a12 = (3000, {b1, b4, b5})

b

b

b

b b

b

bb

b b

b

b

♣

♠

Figure 4: Hasse graph of the relation R1 of the example. The symbols ♠ and ♣ mark examples of elements of R1×R1

that are comparable with respect to the strict relation PR2 .

5.2. Checking Consistency and Applying the Decision Criteria

First, we want to check whether the preference system A = [A,R1, R2] of the considered agent is
consistent in the sense of Definition 2. Therefore, we apply the algorithm described in Proposition 1,
whose objective function translates as

ε = 〈(0, . . . , 0, 1)
′
, (u1, . . . , u12, ε)

′〉 −→ max
(u1,...,u12,ε)∈R13

(12)

and whose constraints are determined by the relations R1 and R2 from the preference system
under consideration as described in Proposition 1. For example, since (a9, a2) ∈ PR1 , we add the
constraint u2 + ε ≤ u9 and, since ((a7, a10), (a8, a11)) ∈ PR2 (the edges (a7, a10) and (a8, a11) are
indicated with ♠ and ♣ in the figure), we add the constraint u8 − u11 + ε ≤ u7 − u10. Solving the
resulting linear programming problem (12) gives an optimal objective of 0.037. Hence, according
to Proposition 1, the preference system A is consistent. An optimal solution to the problem
is given by (u∗1, . . . , u

∗
12, ε

∗) ≈ (1, 0.4, 0.370, 0, 0.629, 0.370, 0.2, 0.370, 0.518, 0.037, 0.259, 0.5, 0.037),
which induces an element u∗ ∈ UA by setting u∗(ai) := u∗i for i = 1, . . . , 12.

Now, suppose our agent collects some more information that allows her to order the different
economic scenarios s1, . . . , s4 by their probability to occur, i.e. by an ordinal probability specified
by the credal set M = {π : π({s1}) ≥ π({s2}) ≥ π({s3}) ≥ π({s4})}. In this situation, the set
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of extreme point of M possesses exactly four elements and is given by E(M) = {π(1), . . . , π(4)},
where we have π(t)({sj}) = 1{1,...,t}(j) · 1t for j, t ∈ {1, 2, 3, 4} (cf., Kofler (1989, p. 26) or Miranda
and Destercke (2015, Proposition 5 and Algorithm 1)).

Then, we want to check which of the jobs J1, J2, J3 are A-admissible in the sense of Definition 7,
part ii). The linear optimization problem described in Proposition 4, for instance applied for job J1,
then possesses the same objective function as the program for checking consistency, namely (12).
Moreover, it also includes all the constraints of problem (12), however, additionally involves the
constraints (as described in Proposition 4)

(C1) u1 ≥ u5
u1 ≥ u9

(C2)
1
2(u1 + u2) ≥ 1

2(u5 + u6)
1
2(u1 + u2) ≥ 1

2(u9 + u10)

(C3)
1
3(u1 + u2 + u3) ≥ 1

3(u5 + u6 + u7)
1
3(u1 + u2 + u3) ≥ 1

3(u9 + u10 + u11)

(C4)
1
4(u1 + u2 + u3 + u4) ≥ 1

4(u5 + u6 + u7 + u8)
1
4(u1 + u2 + u3 + u4) ≥ 1

4(u9 + u10 + u11 + u12)

that are due to the information about the uncertainty that is given by the credal setM (where Ci,
for i = 1, . . . , 4, here describes the constraint induced by the ith extreme point). Again, solving the
resulting linear programming problem gives an optimal objective of 0.037 and, again, an optimal
solution to the problem is given by (u∗1, . . . , u

∗
12, ε

∗) from above. However, the interpretation of
the optimal solution is quite different: If we define u∗ ∈ UA as above, then job J1 maximizes
expected utility with respect to (u∗, π) for every π ∈ M compatible with the agent’s probabilistic
information. In contrast, solving the same linear programming problem from Proposition 4 for
the jobs J2 and J3 gives an optimal objective of 0 each time indicating that both jobs are not
A-admissible. According to A-admissibility, therefore, our agent should decide for job J1.

Next, we want to compute the generalized interval expectations from Definition 5 of choosing
one of the three jobs under consideration along varying granularity value δ = 0, 0.01, 0.02, 0.03.7

According to Proposition 3, for job Jk (k=1,2,3) and fixed value of the granularity parameter δ,
this makes necessary solving the optimization problems

12∑

i=1

ui · π(t)(J−1k ({ai})) −→ min
(u1,...,u12)∈R12

/ max
(u1,...,u12)∈R12

(13)

for t = 1, . . . , 4, with constraints as described in Proposition 1, with the difference that ε here is
not one of the variables, but is set to δ. Thus, eight linear programs have to be solved for each
choice of job Jk and δ and the generalized expectation interval can be computed as described in
the proposition (i.e. by taking for each job the minimum of the minima as lower bound and the
maximum of the maxima as upper bound). Solving the corresponding optimization problems gives
the following results:

7Note that, since the optimal objective value of program (12) equals 0.037, it makes no sense to consider values
of δ any greater than that.
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δ = 0 δ = 0.01 δ = 0.02 δ = 0.03

EDδ(J1) [0.25,1] [0.305,1] [0.36,1] [0.415,1]
EDδ(J2) [0,1] [0.1075,0.9] [0.215,0.8] [0.3225,0.7]
EDδ(J3) [0,1] [0.073̄, 0.9] [0.146̄,0.8] [0.22,0.7]

Since both lower and upper bound of the interval of J1 are greater than the respective bounds of
the intervals of J2 and J3 (independent of which granularity value is chosen), job J1 is also optimal
with respect to all criteria introduced in Definition 6. The generalized expectation intervals of the
different jobs along increasing value of granularity are visualized in Figure 5.

amsmath,amssymb

0 000

1 111

EDδ
(Jk)

granularity

δ = 0 δ = 0.01 δ = 0.02 δ = 0.03

J1 J2 J3J1J1 J1 J2 J3 J1 J2 J3 J1 J2 J3

Figure 5: Generalized expectation intervals of the different jobs along increasing value of granularity.

Finally, we apply Proposition 5 in order to investigate how the different job offers J1, J2 and
J3 relate to each other with respect to the relations R∃∃ and R∀∀. The results are summarized in
the following table:

(J1, J2) (J1, J3) (J2, J1) (J2, J3) (J3, J1) (J3, J2)

R∃∃ ∈ ∈ ∈ ∈ ∈ ∈
R∀∀ /∈ /∈ /∈ /∈ /∈ /∈

As discussed in the second paragraph after the proof of Proposition 5, from the fact that (J1, J2) /∈
R∀∀ one can also conclude that job J1 is not A|M−dominant in the sense of Definition 7.

Concluding the example, we have seen that the agent under consideration should most likely
decide for job J1, since it is the only offer which is A-admissible in the sense of Definition 7. More-
over, J1 is the unique optimal offer with respect to the criteria based on generalized expectation
intervals as introduced in Definition 6. In contrast, when preferring pairwise comparison of the
different job offers with respect to the binary relations R∃∃ and R∀∀, no clear decision can be made:
While every job offer Ji dominates any other job offer Jj , where i, j ∈ {1, 2, 3}, with respect to
R∃∃, none of the job offers are comparable with respect to R∀∀.
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6. Summary and Outlook

In this paper, we proposed three approaches for decision making under severe uncertainty if
the acts under consideration take values in some preference system, i.e. can be understood as
partial cardinal and partial ordinal valued. Our first approach is based on comparing granularity-
dependent expectation intervals. Specifically, we proposed three decision criteria based on these
intervals that are direct generalizations of the decision criteria known from the theory of imprecise
probabilities. The other two approaches for decision making discussed in the paper rely on local and
global comparisons of specific compatible expectations of the considered acts, respectively: For the
former approach one searches for compatible pairs (u, π) of utility and probability representations
with respect to which the act X of interest simultaneously dominates all the other available acts
Y ∈ G in expectation. For the latter approach, it suffices if for each other available act Y ∈ G there
exists a pair (uY , πY ) such that X dominates Y with respect to this specific pair. At several points,
we discussed how special cases of our criteria relate to concepts from the classical theory like for
instance stochastic dominance or the criteria from decision theory using imprecise probabilities.
For certain decision criteria proposed in the paper, we moreover provided linear programming
algorithms to evaluate them. Finally, we illustrated a class of situations where our framework
appears natural by means of a prototypical toy examples.

There are, of course, several challenges that could be addressed in future research. Clearly,
further algorithms for evaluating the remaining criteria that were proposed in the paper need to
be explored in order to make the theory computationally more tractable and, therefore, applicable
in practice (compare, in particular, the discussion directly following the proof of Proposition 6 of
Section 4.4). Further, it is certainly worth investigating in more detail how the criteria from
the different approaches relate to each other and what can be learned about them by considering
special cases of imprecise probabilistic models. Finally, designing experimental settings for eliciting
the parameter δ could help to receive a more canonical interpretation of granularity (compare, in
particular, the discussions directly following Definition 3 of Section 3 as well as the discussions at
the end of Section 4.2).
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Kofler, E. and Menges, G. (1976). Entscheiden bei unvollständiger Information. Springer, Berlin.
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