
*For correspondence: t.brunet@

berkeley.edu (TB); arendt@embl.

de (DA)

Present address: †Department

of Molecular and Cell Biology,

Howard Hughes Medical

Institute, University of California,

Berkeley, Berkeley, United

States; ‡Ludwig-Maximilians

University Munich, Munich,

Germany; §Sars International

Centre for Marine Molecular

Biology, University of Bergen,

Bergen, Norway; ¶Institute for

Biological and Medical Imaging,

Helmholtz Zentrum München,

Neuherberg, Germany

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 17

Received: 24 August 2016

Accepted: 01 December 2016

Published: 01 December 2016

Reviewing editor: Alejandro

Sánchez Alvarado, Stowers

Institute for Medical Research,

United States

Copyright Brunet et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

The evolutionary origin of bilaterian
smooth and striated myocytes
Thibaut Brunet*†, Antje HL Fischer‡, Patrick RH Steinmetz§, Antonella Lauri¶,
Paola Bertucci, Detlev Arendt*

Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg,
Germany

Abstract The dichotomy between smooth and striated myocytes is fundamental for bilaterian

musculature, but its evolutionary origin is unsolved. In particular, interrelationships of visceral

smooth muscles remain unclear. Absent in fly and nematode, they have not yet been characterized

molecularly outside vertebrates. Here, we characterize expression profile, ultrastructure,

contractility and innervation of the musculature in the marine annelid Platynereis dumerilii and

identify smooth muscles around the midgut, hindgut and heart that resemble their vertebrate

counterparts in molecular fingerprint, contraction speed and nervous control. Our data suggest

that both visceral smooth and somatic striated myocytes were present in the protostome-

deuterostome ancestor and that smooth myocytes later co-opted the striated contractile module

repeatedly – for example, in vertebrate heart evolution. During these smooth-to-striated myocyte

conversions, the core regulatory complex of transcription factors conveying myocyte identity

remained unchanged, reflecting a general principle in cell type evolution.

DOI: 10.7554/eLife.19607.001

Introduction
Musculature is composed of myocytes that are specialized for active contraction (Schmidt-

Rhaesa, 2007). Their contractile apparatus centers on actomyosin, a contractile module that dates

back to stem eukaryotes (Brunet and Arendt, 2016a) and incorporated accessory proteins of pre-

metazoan origin (Steinmetz et al., 2012). Two fundamentally distinct types of myocytes are distin-

guished based on ultrastructural appearance. In striated myocytes, actomyosin myofibrils are orga-

nized in aligned repeated units (sarcomeres) separated by transverse ‘Z discs’, while in smooth

myocytes adjacent myofibrils show no clear alignment and are separated by scattered ‘dense bod-

ies’ (Figure 1A). In vertebrates, striated myocytes are found in voluntary skeletal muscles, but also at

the anterior and posterior extremities of the digestive tract (anterior esophagus muscles and exter-

nal anal sphincter), and in the muscular layer of the heart; smooth myocytes are found in involuntary

visceral musculature that ensures slow, long-range deformation of internal organs. This includes the

posterior esophagus and the rest of the gut, but also blood vessels, and most of the urogenital sys-

tem. In stark contrast, in the fruit fly Drosophila virtually all muscles are striated, including gut vis-

ceral muscles (Anderson and Ellis, 1967; Goldstein and Burdette, 1971; Paniagua et al., 1996);

the only exception are little-characterized multinucleated smooth muscles around the testes (Susic-

Jung et al., 2012). Also, in the nematode Caenorhabditis, somatic muscles are striated, while the

short intestine and rectum visceral myocytes are only one sarcomere-long and thus hard to classify

(Corsi et al., 2000; White, 1988).

The evolutionary origin of smooth versus striated myocytes in bilaterians accordingly remains

unsolved. Ultrastructural studies have consistently documented the presence of striated somatic

myocytes in virtually every bilaterian group (Schmidt-Rhaesa, 2007) and in line with this, the com-

parison of Z-disc proteins supports homology of striated myocytes across bilaterians
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(Steinmetz et al., 2012). The origin of smooth myocyte types, however, is less clear. Given the

absence of smooth muscles from fly and nematode, it has been proposed that visceral smooth myo-

cytes represent a vertebrate novelty, which evolved independently from non-muscle cells in the ver-

tebrate stem line (Goodson and Spudich, 1993; OOta and Saitou, 1999). However, smooth

muscles are present in many other bilaterian groups, suggesting instead their possible presence in

urbilaterians and secondary loss in arthropods and nematodes. Complicating the matter further,

intermediate ultrastructures between smooth and striated myocytes have been reported, suggesting

interconversions (reviewed in [Schmidt-Rhaesa, 2007]).

Besides ultrastructure, the comparative molecular characterization of cell types can be used to

build cell type trees (Arendt, 2003, 2008; Musser and Wagner, 2015; Wagner, 2014). Cell type

identity is established via the activity of transcription factors acting as terminal selectors

(Hobert, 2016) and forming ‘core regulatory complexes’ (CoRCs; [Arendt et al., 2016; Wag-

ner, 2014]), which directly activate downstream effector genes. This is exemplified for vertebrate

myocytes in Figure 1B. In all vertebrate myocytes, transcription factors of the Myocardin family

(MASTR in skeletal muscles, Myocardin in smooth and cardiac muscles) directly activate effector

genes encoding contractility proteins (Figure 1B) (Creemers et al., 2006; Meadows et al., 2008;

Wang and Olson, 2004; Wang et al., 2003). They heterodimerize with MADS-domain factors of the

Myocyte Enhancer Factor-2 (Mef2) (Black and Olson, 1998; Blais et al., 2005; Molkentin et al.,

1995; Wales et al., 2014) and Serum Response Factor (SRF) families (Carson et al., 1996;

Nishida et al., 2002). Other myogenic transcription factors are specific for different types of striated

and smooth myocytes. Myogenic Regulatory Factors (MRF) family members, including MyoD and its

paralogs Myf5, Myogenin and Mrf4/Myf6 (Shi and Garry, 2006), directly control contractility effector

genes in skeletal (and esophageal) striated myocytes, cooperatively with Mef2 (Blais et al., 2005;

Molkentin et al., 1995) – but are absent from smooth and cardiac muscles. In smooth and cardiac

myocytes, this function is ensured by NK transcription factors (Nkx3.2/Bapx and Nkx2.5/Tinman,

respectively), GATA4/5/6 and Fox transcription factors (FoxF1 and FoxC1, respectively), which bind

to SRF and Mef2 to form CoRCs directly activating contractility effector genes (Durocher et al.,

1997; Hoggatt et al., 2013; Lee et al., 1998; Morin et al., 2000; Nishida et al., 2002; Phiel et al.,

2001) (Figure 1B).

Regarding effector proteins (Figure 1B) (Kierszenbaum and Tres, 2015), all myocytes express

distinct isoforms of the myosin heavy chain: the striated myosin heavy chain ST-MHC (which dupli-

cated into cardiac, fast skeletal and slow skeletal isoforms in vertebrates) and the smooth/non-mus-

cle myosin heavy chain SM-MHC (which duplicated in vertebrates into smooth myh10, myh11 and

myh14, and non-muscle myh9) (Steinmetz et al., 2012). The different contraction speeds of smooth

and striated muscles are due to the distinct kinetic properties of these molecular motors

(Bárány, 1967). In both myocyte types, contraction occurs in response to calcium, but the responsive

proteins differ (Alberts et al., 2014): the Troponin complex (composed of Troponin C, Troponin T

and Troponin I) for striated muscles, Calponin and Caldesmon for smooth muscles. In both myocyte

types, calcium also activates the Calmodulin/Myosin Light Chain Kinase pathway (Kamm and Stull,

1985; Sweeney et al., 1993). Striation itself is implemented by specific effectors, including the long

elastic protein Titin (Labeit and Kolmerer, 1995) (which spans the entire sarcomere and gives it

elasticity and resistance) and ZASP/LBD3 (Z-band Alternatively Spliced PDZ Motif/LIM-Binding

Domain 3), which binds actin and stabilizes sarcomeres during contraction (Au et al., 2004;

Zhou et al., 2001). The molecular study of Drosophila and Caenorhabditis striated myocytes

revealed important commonalities with their vertebrate counterparts, including the Troponin com-

plex (Beall and Fyrberg, 1991; Fyrberg et al., 1990, 1994; Marı́n et al., 2004; Myers et al.,

1996), and a conserved role for Titin (Zhang et al., 2000) and ZASP/LBD3 (Katzemich et al., 2011;

McKeown et al., 2006) in the striated architecture.

Finally, smooth and striated myocytes also differ physiologically. All known striated myocyte types

(apart from the myocardium) strictly depend on nervous stimulations for contraction, exerted by

innervating motor neurons. In contrast, gut smooth myocytes are able to generate and propagate

automatic (or ‘myogenic’) contraction waves responsible for digestive peristalsis in the absence of

nervous inputs (Faussone-Pellegrini and Thuneberg, 1999; Sanders et al., 2006). These autono-

mous contraction waves are modulated by the autonomic nervous system (Silverthorn, 2015).

Regarding overall contraction speed, striated myocytes have been measured to contract 10 to 100

times faster than their smooth counterparts (Bárány, 1967).
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To elucidate the evolutionary origin and diversification of bilaterian smooth and striated myo-

cytes, we provide an in-depth ultrastructural, molecular and functional characterization of the myo-

cyte complement in the marine annelid Platynereis dumerilii, which belongs to the Lophotrochozoa.

Strikingly, as of now, no invertebrate smooth visceral muscle has been investigated on a molecular

level (Hooper and Thuma, 2005; Hooper et al., 2008). Platynereis has retained more ancestral fea-

tures than flies or nematodes and is thus especially suited for long-range comparisons (Denes et al.,

2007; Raible et al., 2005). Also, other annelids such as earthworms have been reported to possess

both striated somatic and midgut smooth visceral myocytes based on electron microscopy

(Anderson and Ellis, 1967). Our study reveals the parallel presence of smooth myocytes in the mus-

culature of midgut, hindgut and pulsatile dorsal vessel and of striated myocytes in the somatic mus-

culature and the foregut. Platynereis smooth and striated myocytes closely parallel their vertebrate

counterparts in ultrastructure, molecular profile, contraction speed and reliance on nervous inputs,

thus supporting the ancient existence of a smooth-striated duality in protostome/deuterostome

ancestors.
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Figure 1. Ultrastructure and core regulatory complexes of myocyte types. (A) Schematic smooth and striated ultrastructures. Electron-dense granules

called ‘dense bodies’ separate adjacent myofibrils. Dense bodies are scattered in smooth muscles, but aligned in striated muscles to form Z lines. (B–D)

Core regulatory complexes (CoRCs) of transcription factors for the differentiation of different types of myocytes in vertebrates. Complexes composition

from (Creemers et al., 2006; Meadows et al., 2008; Molkentin et al., 1995) for skeletal myocytes, (Hoggatt et al., 2013; Nishida et al., 2002;

Phiel et al., 2001) for smooth myocytes and (Durocher et al., 1997; Lee et al., 1998) for cardiomyocytes. Target genes from (Blais et al., 2005) for

skeletal myocytes, (Nishida et al., 2002) from smooth myocytes and (Schlesinger et al., 2011) for cardiomyocytes.

DOI: 10.7554/eLife.19607.002
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Results

Platynereis midgut and hindgut muscles are smooth, while foregut and
somatic muscles are striated
Differentiation of the Platynereis somatic musculature has been documented in much detail

(Fischer et al., 2010) and, in 5 days post-fertilization (dpf) young worms, consists of ventral and dor-

sal longitudinal muscles, oblique and parapodial muscles, head muscles and the axochord

(Lauri et al., 2014). At this stage, we found the first Platynereis visceral myocytes around the devel-

oping tripartite gut, which is subdivided into foregut, midgut and hindgut (based on the conserved

regional expression of foxA, brachyury and hnf4 gut specification factors [Martı́n-Durán and Hejnol,

2015]; Figure 2—figure supplement 1). At 7 dpf, visceral myocytes form circular myofibres around

the foregut, and scattered longitudinal and circular fibres around midgut and hindgut (Figure 2A,

Figure 2—figure supplement 2A), which expand by continuous addition of circular and longitudinal

fibres to completely cover the dorsal midgut at 11dpf (Figure 2A, Figure 2—figure supplement

2B) and finally form a continuous muscular orthogon around the entire midgut and hindgut in the

1.5 months-old juvenile (Figure 2A, Figure 2—figure supplement 2C).

We then proceeded to characterize the ultrastructure of Platynereis visceral and somatic muscula-

ture by transmission electron microscopy (Figure 2C–M). All somatic muscles and anterior foregut

muscles display prominent oblique striation with discontinuous Z-elements (Figure 2C–H; compare

Figure 1A), as typical for protostomes (Burr and Gans, 1998; Mill and Knapp, 1970; Rose-

nbluth, 1972). To the contrary, visceral muscles of the posterior foregut, midgut and hindgut are

smooth with scattered dense bodies (Figure 2I–M). The visceral muscular orthogon is partitioned

into an external longitudinal layer and an internal circular layer (Figure 2J), as in vertebrates

(Marieb and Hoehn, 2015) and arthropods (Lee et al., 2006). Thus, according to ultrastructural

appearance, Platynereis has both somatic (and anterior foregut) striated muscles and visceral smooth

muscles.

The molecular profile of smooth and striated myocytes
We then set out to molecularly characterize annelid smooth and striated myocytes via a candidate

gene approach. As a starting point, we investigated, in the Platynereis genome, the presence of reg-

ulatory and effector genes specific for smooth and/or striated myocytes in the vertebrates. We found

striated muscle-specific and smooth muscle/non-muscle isoforms of both myosin heavy chain (consis-

tently with published phylogenies [Steinmetz et al., 2012]) and myosin regulatory light chain. We

also identified homologs of genes encoding calcium transducers (calponin for smooth muscles; tro-

ponin I and troponin T for striated muscles), striation structural proteins (zasp/lbd3 and titin), and

terminal selectors for the smooth (foxF and gata456) and striated phenotypes (myoD).

We investigated expression of these markers by whole-mount in situ hybridization (WMISH). Stri-

ated effectors are expressed in both somatic and foregut musculature (Figure 3A,C; Figure 3—fig-

ure supplement 1). Expression of all striated effectors was observed in every somatic myocyte

group by confocal imaging with cellular resolution (Figure 3—figure supplement 2). Interestingly,

myoD is exclusively expressed in longitudinal striated muscles, but not in other muscle groups (Fig-

ure 3—figure supplement 2).

The expression of smooth markers is first detectable at three dpf in a small triangle-shaped group

of mesodermal cells posteriorly abutting the macromeres (which will form the future gut) (Figure 3B,

Figure 3—figure supplement 3A–C). At this stage, smooth markers are also expressed in the fore-

gut mesoderm (Figure 3B, Figure 3—figure supplement 3A–C, yellow arrows). At six dpf, expres-

sion of all smooth markers is maintained in the midgut and hindgut differentiating myocytes

(Figure 3D, Figure 3—figure supplement 3D–G, Figure 3—figure supplement 4A–E) but smooth

effectors disappear from the foregut, which turns on striated markers instead (Figure 3—figure sup-

plement 1R–W) – reminiscent of the replacement of smooth fibres by striated fibres during develop-

ment of the vertebrate anterior esophageal muscles (Gopalakrishnan et al., 2015). Finally, in 2-

month-old juvenile worms, smooth markers are also detected in the dorsal pulsatile vessel (Fig-

ure 3—figure supplement 3H–M) – considered equivalent to the vertebrate heart

(Saudemont et al., 2008) but, importantly, of smooth ultrastructure in polychaetes (Jensen, 1974;

Spies, 1973). None of the striated markers is expressed around the midgut or the hindgut
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Figure 2. Development and ultrastructure of visceral and somatic musculature in Platynereis larvae and juveniles. (A) Development of visceral

musculature. All panels are 3D renderings of rhodamine-phalloidin staining imaged by confocal microscopy. Visceral muscles have been manually

colored green and somatic muscle red. Scale bar: 50 mm. (B) Schematic of the musculature of a late nectochaete (six dpf) larva. Body outline modified

from (Fischer et al., 2010). Ventral view, anterior is up. (C–M) Electron micrographs of the main muscle groups depicted in B. Each muscle group is

Figure 2 continued on next page
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(Figure 3—figure supplement 4F–K), or in the dorsal vessel (Figure 3—figure supplement 3L).

Taken together, these results strongly support conservation of the molecular fingerprint of both

smooth and striated myocytes between annelids and vertebrates.

We finally investigated general muscle markers that are shared between smooth and striated

muscles. These include actin, mef2 and myocardin – which duplicated into muscle type-specific

paralogs in vertebrates but are still present as single-copy genes in Platynereis. We found them to

be expressed in the forming musculature throughout larval development (Figure 3—figure supple-

ment 5A–F), and confocal imaging at six dpf confirmed expression of all three markers in both vis-

ceral (Figure 3—figure supplement 5G–L) and somatic muscles (Figure 3—figure supplement

5M).

Smooth and striated muscles differ in contraction speed
We then characterized the contraction speed of the two myocyte types in Platynereis by measuring

myofibre length before and after contraction, and by dividing the difference by the duration of con-

traction. Live confocal imaging of contractions in Platynereis larvae with fluorescently labeled muscu-

lature (Video 1, Video 2) gave a striated contraction rate of 0.55 ± 0.27 s�1 (Figure 4A–E) and a

smooth myocyte contraction rate of 0.07 ± 0.05 s�1 (Figure 4G). As in vertebrates, annelid striated

myocytes thus contract nearly one order of magnitude faster than smooth myocytes (Figure 4F).

Striated, but not smooth, muscle contraction depends on nervous
inputs
Finally, we investigated the nervous control of contraction of both types of muscle cells. In verte-

brates, somatic muscle contraction is strictly dependent on neuronal inputs. By contrast, gut peristal-

sis is automatic (or myogenic – i.e. does not require nervous inputs) in vertebrates, cockroaches

(Nagai and Brown, 1969), squids (Wood, 1969), snails (Roach, 1968), holothurians and sea urchins

(Prosser et al., 1965). The only exceptions appear to be bivalves and malacostracans (crabs, lobster

and crayfish), in which gut motility is neurogenic (Prosser et al., 1965). Regardless of the existence

of an automatic component, the gut is usually innervated by nervous fibres modulating peristalsis

movements (Wood, 1969; Wu, 1939).

Gut peristalsis takes place in Platynereis larvae and juveniles from six dpf onwards (Video 3), and

we set out to test whether nervous inputs were necessary for it to take place. We treated 2-month-

old juveniles with 180 mM Brefeldin A, an inhibitor of vesicular traffic which prevents polarized secre-

tion (Misumi et al., 1986) and interferes with neurotransmission (Malo et al., 2000). Treatment

stopped locomotion in all treated individuals, confirming that neurotransmitter release by motor

neurons is required for somatic muscles contraction, while DMSO-treated controls were unaffected.

On the other hand, vigorous gut peristalsis movements were maintained in Brefeldin-A-treated ani-

mals (Video 4). Quantification of the propagation speed of the peristalsis wave (Figure 5A–D; see

Materials and methods) indicated that contractions propagated significantly faster in Brefeldin-A-

treated individuals than in controls. The frequency of wave initiation and their recurrence (the num-

ber of repeated contraction waves occurring in one uninterrupted sequence) did not differ signifi-

cantly in Brefeldin-A-treated animals (Figure 5E,F). These results indicate that, as in vertebrates,

Figure 2 continued

shown sectioned parallel to its long axis, so in the plane of its myofilaments. Scale bar: 2 mm. (C’,E’) are schematic drawings of the cells shown in (C,E).

The Z-lines are made of aligned dense bodies (in black), myofilaments are in red, cytoplasm is in yellow and plasma membrane in grey. Attachment

points of myofilaments on the dense bodies are represented with dotted lines when they are outside of the plane of section in the electron micrograph.

Zoom panel in C’ shows oblique striation with a 5˚ angle between myofilaments and Z-lines (compare to Figure 1A). (H) shows another cross-section in

the stomodeum of the individual shown in G, in the region encased by the yellow box, and observed at a higher magnification. (J) shows the dorsal

midgut in cross-section, dorsal side up.

DOI: 10.7554/eLife.19607.003

The following figure supplements are available for figure 2:

Figure supplement 1. Gut patterning in Platynereis six dpf larvae.

DOI: 10.7554/eLife.19607.004

Figure supplement 2. Formation of the visceral musculature observed in cross-section.

DOI: 10.7554/eLife.19607.005
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visceral smooth muscle contraction and gut peristalsis do not require nervous (or secretory) inputs in

Platynereis.

An enteric nervous system is present in Platynereis
In vertebrates, peristaltic contraction waves are initiated by self-excitable myocytes (Interstitial Cajal

Cells) and propagate across other smooth muscles by gap junctions ensuring direct electrical cou-

pling (Faussone-Pellegrini and Thuneberg, 1999; Sanders et al., 2006). We tested the role of gap

junctions in Platynereis gut peristalsis by treating animals with 2.5 mM 2-octanol, which inhibits gap

junction function in both insects (Bohrmann and Haas-Assenbaum, 1993; Gho, 1994) and verte-

brates (Finkbeiner, 1992). 2-Octanol abolishes gut peristalsis, both in the absence and in the
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Table summarizing the expression patterns of smooth and striated markers in Platynereis and vertebrate muscles. (*) indicates that Platynereis and

vertebrate Calponin are mutually most resembling by domain structure, but not one-to-one orthologs, as independent duplications in both lineages
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DOI: 10.7554/eLife.19607.006

The following figure supplements are available for figure 3:

Figure supplement 1. Expression of striated muscle markers in Platynereis larvae.

DOI: 10.7554/eLife.19607.007

Figure supplement 2. Expression of striated muscle markers in the six dpf Platynereis larva.

DOI: 10.7554/eLife.19607.008

Figure supplement 3. Expression of smooth muscle markers in Platynereis larvae.

DOI: 10.7554/eLife.19607.009

Figure supplement 4. Molecular profile of midgut muscles in the six dpf larva.

DOI: 10.7554/eLife.19607.010

Figure supplement 5. General muscle markers are expressed in both smooth and striated muscles.

DOI: 10.7554/eLife.19607.011

Brunet et al. eLife 2016;5:e19607. DOI: 10.7554/eLife.19607 7 of 24

Research article Developmental Biology and Stem Cells Genomics and Evolutionary Biology

http://dx.doi.org/10.7554/eLife.19607.006
http://dx.doi.org/10.7554/eLife.19607.007
http://dx.doi.org/10.7554/eLife.19607.008
http://dx.doi.org/10.7554/eLife.19607.009
http://dx.doi.org/10.7554/eLife.19607.010
http://dx.doi.org/10.7554/eLife.19607.011
http://dx.doi.org/10.7554/eLife.19607


presence of Brefeldin A (Figure 5G), indicating that propagation of the peristalsis wave relies on

direct coupling between smooth myocytes via gap junctions.

The acceleration of peristalsis upon Brefeldin A treatment indicates that gut peristalsis is modu-

lated by secreted signals (neurotransmitters, hormones or neurohormones) whose net combined

effect in normal, resting conditions is to slow down the self-generated peristaltic waves. This is con-

sistent with the existence of neurotransmitters that inhibit visceral muscle contraction in other bilat-

erians such as vertebrates (adrenaline [Burnstock, 1958]) and squids (acetylcholine

[Wood, 1969]). To gain insights into the nature of these secreted signals, we investigated the inner-

vation of the Platynereis gut. Immunostainings of juvenile worms for acetylated tubulin revealed a

dense, near-orthogonal nerve net around the entire gut (Figure 6A), which is tightly apposed to the

visceral muscle layer (Figure 6C) and includes serotonergic neurites (Figure 6B,C) and cell bodies

(Figure 6D), as well as previously described neurons expressing the conserved neuropeptide Myoin-

hibitory Peptide, that stimulates gut peristalsis (Williams et al., 2015). Interestingly, some enteric

serotonergic cell bodies are devoid of neurites, thus resembling the vertebrate (non-neuronal) enter-

ochromaffine cells – endocrine serotonergic cells residing around the gut and activating gut peristal-

sis by direct serotonin secretion upon mechanical stretch (Bulbring and Crema, 1959).

longitudinal

muscle

GCaMP6s

H2B-RFP

61 μm

ventral

longitudinal

muscles

Lifeact-EGFP

H2B-RFP
c. b.

c. b.

c. b.

telotroch

telotroch

t
0

t
0
+280ms

t
0

t
0
+280ms

H2B-RFP

52 μm

6 dpf

Lifeact-EGFP

H2B-RFP

1
1

2 2

FM-464FX

midgut

50 μm

31

μm

27

μm

hindgut

GA B

A’ B’

C D

E

F

t
0 t

0
+1.3s

foregut

myocytes

t
0

t
0
+436 ms

6 dpf

3 dpf20 μm 50 μm

60

μm

51

μm

Somatic striated

muscles

0
.0

0
.4

0
.8

1
.2

Visceral smooth

muscles

C
o

n
tr

a
c
ti
o

n
 s

p
e

e
d

 (
s

-1
)

p = 8.5*10-8

Figure 4. Contraction speed quantifications of smooth and striated muscles. (A–B) Snapshots of a time lapse live confocal imaging of a late

nectochaete larva expressing fluorescent markers. Ventral view of the two posterior-most segments, anterior is up. (C) Snapshots of a time-lapse live

confocal imaging of a three dpf larva expressing GCaMP6s. Dorsal view, anterior is up. (D–E) Two consecutive snapshots on the left dorsal longitudinal

muscle of the larva shown in C, showing muscle contraction. (F) Quantification of smooth and striated muscle contraction speeds (see Experimental

procedures and Figure 4—source data 1), p-value by Mann-Whitney’s U test. Each point represents a biological replicate (see Materials and methods).

(G) Snapshot of a time-lapse live confocal imaging of a late nectochaete larva. Ventral view, anterior is up. Optical longitudinal section at the midgut

level.

DOI: 10.7554/eLife.19607.012

The following source data is available for figure 4:

Source data 1. Contraction speed values measured for somatic and visceral muscles.

DOI: 10.7554/eLife.19607.013
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Discussion

Smooth and striated myocyte
coexisted in bilaterian ancestors
Our study represents the first molecular charac-

terization of protostome visceral smooth muscu-

lature (Hooper and Thuma, 2005; Hooper et al.,

2008). The conservation of molecular signatures

for both smooth and striated myocytes indicates

that a dual musculature already existed in bilater-

ian ancestors: a fast striated somatic musculature

(possibly also present around the foregut – as in

Platynereis, vertebrates [Gopalakrishnan et al.,

2015] and sea urchins [Andrikou et al., 2013;

Burke, 1981]), under strict nervous control; and a

slow smooth visceral musculature around the

midgut and hindgut, able to undergo automatic

peristalsis due to self-excitable myocytes directly

coupled by gap junctions. In striated myocytes, a

core regulatory complex (CoRC) involving Mef2

and Myocardin directly activated striated contrac-

tile effector genes such as ST-MHC, ST-MRLC

and the Troponin genes (Figure 7—figure sup-

plement 1). Notably, myoD might have been

part of the CoRC in only part of the striated myo-

cytes, as it is only detected in longitudinal muscles in Platynereis. The absence of myoD expression

in other annelid muscle groups is in line with the ‘chordate bottleneck’ concept (Thor and Thomas,

2002), according to which specialization for undulatory swimming during early chordate evolution

would have fostered exclusive reliance on trunk longitudinal muscles, and loss of other (myoD-nega-

tive) muscle types. In smooth myocytes, a CoRC composed of NK3, FoxF and GATA4/5/6 together

with Mef2 and Myocardin activated the smooth contractile effectors SM-MHC, SM-MRLC and calpo-

nin (Figure 7—figure supplement 1). In spite of their absence in flies and nematodes, gut myocytes

of smooth ultrastructure are widespread in other bilaterians, and an ancestral state reconstruction

retrieves them as present in the last common protostome/deuterostome ancestor with high

Video 1. Live imaging of somatic muscle contraction

visualized by GCaMP6s. Dorsal view of a three dpf

Platynereis larva injected (at the zygote stage) with a

mRNA encoding GCaMP6s and mounted in 3% LMP

agar between a slide and a cover slip. Anterior side is

up. Left side is the red (GCaMP6s) fluorescence

channel, right side shows overlay of transmitted light

and red fluorescence channel. Time step between two

frames: 0.436 s.

DOI: 10.7554/eLife.19607.014

Video 2. Live imaging of visceral muscle contraction

visualized by FM-464FX. Ventral view of a six dpf

Platynereis larva stained with the vital dye FM-464FX

and mounted in 3% LMP agar between a slide and a

cover slip. Red fluorescence signal is shown. Anterior

side is up. Time step between two frames: 1.29 s.

DOI: 10.7554/eLife.19607.015
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confidence (Figure 7—figure supplement 2), supporting our homology hypothesis. Our results are

consistent with previous reports of Calponin immunoreactivity in intestinal muscles of earthworms

(Royuela et al., 1997) and snails (which also lack immunoreactivity for Troponin T) (Royuela et al.,

2000).
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Figure 5. Platynereis gut peristalsis is independent of nervous inputs and dependent on gap junctions. (A) Two-month-old juvenile mounted in 3% low-

melting point (LMP) agarose for live imaging. (B) Snapshots of a confocal live time-lapse imaging of the animal shown in A. Gut is observed by

detecting fluorescence of the vital membrane dye FM-464FX. (C) Kymograph of gut peristalsis along the line of interest in (B). Contraction waves

appear as dark stripes. A series of consecutive contraction waves is called a contraction event: here, two contraction waves are visible, which make up

one contraction event with a recurrence of 2. (D) Quantification of the propagation speed of peristaltic contraction waves in mock (DMSO)-treated

individuals and Brefeldin-A-treated individuals (inhibiting neurotransmission). Speed is calculated from kymographs (see Materials and methods and

Figure 5—source data 1), p-value by Mann-Whitney’s U test. Each point represents a contraction wave. Five biological replicates for each category

(see Materials and methods). (E,F) Same as in E, but showing respectively the frequency of initiation and the recurrence of contraction events. Each

point represents a biological replicate (see Materials and methods). (G) Representative kymographs of controls, animals treated with Brefeldin A

(inhibiting neurotransmission), animals treated with 2-octanol (inhibiting gap junctions) and animals treated with both (N = 10 for each condition). 2-

Octanol entirely abolishes peristaltic waves with or without Brefeldin A.

DOI: 10.7554/eLife.19607.016

The following source data is available for figure 5:

Source data 1. Peristalsis waves quantifications in control and Brefeldin A-treated worms.

DOI: 10.7554/eLife.19607.017
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Origin of the enteric nervous
system and enterochromaffine cells
In both Platynereis and vertebrates, visceral

smooth myocytes are able to contract automati-

cally but undergo modulation by secretory cells

that form an enteric nerve plexus. Interestingly,

an enteric nervous system has been found in

most bilaterians investigated, including Platyner-

eis (this study), earthworms (Barna et al., 2001;

Csoknya et al., 1991; Telkes et al., 1996), snails

(Furukawa et al., 2001), insects

(Copenhaver and Taghert, 1989), nematodes

(Brownlee et al., 1994) and echinoderms (Gar-

cı́a-Arrarás et al., 1991, 2001). This suggests

that the urbilaterian ancestor already possessed

enteric neurons. In vertebrates, the enteric ner-

vous system is entirely produced by the neural

crest (Le Douarin and Teillet, 1973), a special-

ized migratory embryonic lineage which is a ver-

tebrate innovation (Shimeld and Holland, 2000).

This suggests that the neural crest ‘took over’ the

production of the pre-existing enteric neurons (as

it did with pharyngeal cartilage, of endomesoder-

mal origin in stem-chordates (Meulemans and

Bronner-Fraser, 2007), but produced by the

neural crest in amniotes [Lièvre and Le Douarin,

1975; Sefton et al., 2015]). Alternatively, the

ancient enteric neurons could have been lost in

stem-vertebrates and later replaced by a novel,

neural-crest-derived population. A careful com-

parison of the molecular fingerprints of inverte-

brate and vertebrate enteric neurons will be

required to distinguish between these competing hypotheses. Alongside the enteric nervous system

Video 3. Live imaging of gut peristalsis in a control 2-

month-old juvenile worm. Lateral view of an individual

stained with FM-464FX and mounted in 3% LMP agar

between a slide and a cover slip. Left side is the

transmitted light signal and right side is the red

fluorescence channel. Note the peristalsis waves

travelling along the gut, interrupted with rest periods.

DOI: 10.7554/eLife.19607.018

Video 4. Live imaging of gut peristalsis in a Brefeldin-

A-treated 2-month-old juvenile worm. Ventral view of

an individual treated with 180 mM Brefeldin-A, stained

with FM-464FX (not shown) and mounted in 3% LMP

agar between a slide and a cover slip. Transmitted light

signal is shown. Note the vigorous and constant gut

peristalsis waves travelling along the gut. The straight

posture of the animal (compare with its bent control

sibling in Video 3) is an effect of somatic muscle

inhibition by Brefeldin-A.

DOI: 10.7554/eLife.19607.019
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(which includes serotonergic neurons in both vertebrates and annelids), the gut wall of both Platy-

nereis and vertebrates also harbors non-neuronal, paracrine serotonergic cells (or enterochromaffine

cells) – which are, unlike enteric neurons, of endodermal origin in vertebrates (Andrew, 1974;

Fontaine and Le Douarin, 1977), and potentially represent another ancient bilaterian cell type mod-

ulating gut peristalsis.

Origin of smooth and striated myocytes by cell type individuation
How did smooth and striated myocytes diverge in evolution? Figure 7 presents a comprehensive

cell type tree for the evolution of myocytes, with a focus on Bilateria. This tree illustrates the diver-

gence of the two muscle cell types by progressive partitioning of genetic information in evolution –

a process called individuation (Arendt et al., 2016; Wagner, 2014). The individuation of fast and

slow contractile cells involved two complementary processes: (1) changes in CoRC (black circles, Fig-

ure 7) and (2) emergence of novel genes encoding new cellular modules, or apomeres

(Arendt et al., 2016) (grey squares, Figure 7).

Around a common core formed by the Myocardin:Mef2 complex (both representing transcription

factors of pre-metazoan ancestry [Steinmetz et al., 2012]), smooth and striated CoRCs incorporated

different transcription factors implementing the expression of distinct effectors (Figure 1B; Fig-

ure 7—figure supplement 1) – notably the bilaterian-specific bHLH factor MyoD (Steinmetz et al.,

2012) and GATA4/5/6, which arose by bilaterian-specific duplication of a single ancient pan-endo-

mesodermal GATA transcription factor (Leininger et al., 2014; Martindale et al., 2004).

Regarding the evolution of myocyte-specific apomeres, one prominent mechanism of divergence

has been gene duplication. While the MHC duplication predated metazoans, other smooth and stri-

ated-specific paralogs only diverged in bilaterians. Smooth and striated MRLC most likely arose by

gene duplication in the bilaterian stem-line (Supplementary file 1). Myosin essential light chain,

actin and myocardin paralogs split even later, in the vertebrate stem-line (Figure 7). Similarly,

smooth and non-muscle mhc and mrlc paralogs only diverged in vertebrates. The calponin-encoding
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Figure 6. The enteric nerve net of Platynereis. (A) Immunostaining for acetylated tubulin, visualizing neurites of the

enteric nerve plexus. Z-projection of a confocal stack at the level of the midgut. Anterior side up. (B) Same

individual as in A, immunostaining for serotonin (5-HT). Note serotonergic neurites (double arrow), serotonergic

neuronal cell bodies (arrow, see D), and serotonergic cell bodies without neurites (arrowhead). (C) Same individual

as in A showing both acetylated tubulin and 5-HT immunostainings. Snapshot in the top right corner: same

individual, showing both neurites (acetylated tubulin, yellow) and visceral myofibres (rhodamine-phalloidin, red).

The acetylated tubulin appears yellow due to fluorescence leaking in the rhodamine channel. (D) 3D rendering of

the serotonergic neuron shown by arrow in B.

DOI: 10.7554/eLife.19607.020
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gene underwent parallel duplication and subfunctionalization in both annelids and chordates, giving

rise to both specialized smooth muscle paralogs and more broadly expressed copies with a different

domain structure (Figure 7—figure supplement 3). This slow and stepwise nature of the individua-

tion process is consistent with studies showing that recently evolved paralogs can acquire differential
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deuterostome ancestor. Bilaterian myocytes are split into two monophyletic cell type clades: an ancestrally SM-MHC+ slow-contracting clade (green)
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represent cell type duplications (indicated by two partly overlapping circles) or speciation events, as typical for a cell type tree (Arendt, 2008; Serb and

Oakley, 2005).

DOI: 10.7554/eLife.19607.021

The following figure supplements are available for figure 7:

Figure supplement 1. Evolution of myogenic Core Regulatory Complexes (CoRCs) in Bilateria.

DOI: 10.7554/eLife.19607.022

Figure supplement 2. Ancestral state reconstructions of the ultrastructure of midgut/hindgut and heart myocytes.

DOI: 10.7554/eLife.19607.023

Figure supplement 3. Domain structure, phylogeny and expression patterns of members of the calponin gene family.

DOI: 10.7554/eLife.19607.024
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expression between tissues that diverged long before in evolution (Force et al., 1999; Lan and

Pritchard, 2016).

Complementing gene duplication, the evolution and selective expression of entirely new apo-

meres also supported individuation: for example, Titin and all components of the Troponin complex

are bilaterian novelties (Steinmetz et al., 2012). In vertebrates, the new gene caldesmon was incor-

porated into the smooth contractile module (Steinmetz et al., 2012).

Smooth to striated myocyte conversion
Strikingly, visceral smooth myocytes were previously assumed to be a vertebrate innovation, as they

are absent in fruit flies and nematodes (two groups which are exceptions in this respect, at least

from ultrastructural criteria [Figure 7—figure supplement 2A]). This view was seemingly supported

by the fact that the vertebrate smooth and non-muscle myosin heavy chains (MHC) arose by verte-

brate-specific duplication of a unique ancestral bilaterian gene, orthologous to Drosophila non-mus-

cle MHC (Goodson and Spudich, 1993) – which, as our results suggest, rather reflects gradual

individuation of pre-existing cell types (see above). Strikingly, the striated gut muscles of Drosophila

resemble vertebrate and annelid smooth gut muscles by transcription factor expression (nk3/bag-

pipe [Azpiazu and Frasch, 1993], foxF/biniou [Jakobsen et al., 2007; Zaffran et al., 2001]), even

though they express the fast/striated contractility module (Fyrberg et al., 1994, 1990; Marı́n et al.,

2004). If smooth gut muscles are ancestral for protostomes, as our results indicate, this suggests

that the smooth contractile module was replaced by the fast/striated module in visceral myocytes

during insect evolution. Interestingly, chromatin immunoprecipitation assays (Jakobsen et al., 2007)

show that the conserved visceral transcription factors foxF/biniou and nk3/bagpipe do not directly

control contractility genes in Drosophila gut muscles (which are downstream mef2 instead), but

establish the morphogenesis and innervation of the visceral muscles, and control non-contractile

effectors such as gap junctions – which are the properties these muscles seem to have conserved

from their smooth ancestors. The striated gut myocytes of insects would thus represent a case of co-

option of an effector module from another cell type, which happened at an unknown time during

ecdysozoan evolution (Figure 7; Figure 7—figure supplement 1).

Another likely example of co-option is the vertebrate heart: vertebrate cardiomyocytes are stri-

ated and express fast myosin and troponin, but resemble smooth myocytes by developmental origin

(from the splanchnopleura), function (automatic contraction and coupling by gap junctions) and ter-

minal selector profile (Figure 1B). These similarities suggest that cardiomyocytes might stem from

smooth myocytes that likewise co-opted the fast/striation module. Indicative of this possible ances-

tral state, the Platynereis dorsal pulsatile vessel (considered homologous to the vertebrate heart

based on comparative anatomy and shared expression of NK4/tinman [Saudemont et al., 2008])

expresses the smooth, but not the striated, myosin heavy chain (Figure 3—figure supplement 3H–

M). An ancestral state reconstruction based on ultrastructural data further supports the notion that

heart myocytes were smooth in the last common protostome/deuterostome ancestor, and indepen-

dently acquired striation in at least five descendant lineages (Figure 7—figure supplement 2B) –

usually in species with large body size and/or fast metabolism.

Striated to smooth conversions
Smooth somatic muscles are occasionally found in bilaterians with slow or sessile lifestyles – for

example in the snail foot (Faccioni-Heuser et al., 1999; Rogers, 1969), the ascidian siphon

(Meedel and Hastings, 1993), and the sea cucumber body wall (Kawaguti and Ikemoto, 1965). As

an extreme (and isolated) example, flatworms lost striated muscles altogether, and their body wall

musculature is entirely smooth (Rieger et al., 1991). Interestingly, in all cases that have been molec-

ularly characterized, smooth somatic muscles express the same fast contractility module as their stri-

ated counterparts, including ST-MHC and the Troponin complex – in ascidians (Endo and Obinata,

1981; Obinata et al., 1983), flatworms (Kobayashi et al., 1998; Sulbarán et al., 2015;

Witchley et al., 2013), and the smooth myofibres of the bivalve catch muscle (Nyitray et al., 1994;

Ojima and Nishita, 1986). (It is unknown whether these also express zasp and titin in spite of the

lack of striation). This suggests that these are somatic muscles that have secondarily lost striation (in

line with the sessile lifestyle of ascidians and bivalves, and with the complete loss of striated muscles

in flatworms). Alternatively, they might represent remnants of ancestral smooth somatic fibres that
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would have coexisted alongside striated somatic fibres in the last common protostome/deutero-

stome ancestor. Interestingly, the fast contractile module is also expressed in acoel body wall

smooth muscles (Chiodin et al., 2011); since acoels belong to a clade that might have branched off

before all other bilaterians (Cannon et al., 2016) (although a position within deuterostomes has also

been envisioned [Bourlat et al., 2003, 2006; Philippe et al., 2011]), these could represent fast-con-

tracting myocytes that never evolved striation in the first place, similar to those found in cnidarians.

In all cases, the fast contractility module appears to represent a consistent synexpression group (i.e.

its components are reliably expressed together), and a stable molecular profile of all bilaterian

somatic muscles, regardless of the presence of morphologically overt striation. This confirms the

notion that, even in cases of ambiguous morphology or ultrastructure, the molecular fingerprint of

cell types holds clue to their evolutionary affinities.

Implications for cell type evolution
In the above, genetically well-documented cases of cell type conversion (smooth to striated conver-

sion in insect visceral myocytes and vertebrate cardiomyocytes), cells kept their ancestral CoRC of

terminal selector transcription factors, while changing the downstream effector modules. This sup-

ports the recent notion that CoRCs confer an abstract identity to cell types, which remains stable in

spite of turnover in downstream effectors (Wagner, 2014) – just as hox genes impart conserved

abstract identity to segments of vastly diverging morphologies (Deutsch, 2005). Tracking cell-type-

specific CoRCs through animal phylogeny thus represents a powerful means to decipher the evolu-

tion of cell types.

Pre-bilaterian origins
If the existence of fast-contracting striated and slow-contracting smooth myocytes predated bilater-

ians – when and how did these cell types first split in evolution? The first evolutionary event that

paved the way for the diversification of the smooth and striated contractility modules was the dupli-

cation of the striated myosin heavy chain-encoding gene into the striated isoform ST-MHC and the

smooth/non-muscle isoform SM-MHC. This duplication occurred in single-celled ancestors of ani-

mals, before the divergence of filastereans and choanoflagellates (Steinmetz et al., 2012). Consis-

tently, both sm-mhc and st-mhc are present in the genome of the filasterean Ministeria (although st-

mhc was lost in other single-celled holozoans) (Sebé-Pedrós et al., 2014). Interestingly, st-mhc and

sm-mhc expression appears to be segregated into distinct cell types in sponges, cnidarians

(Steinmetz et al., 2012) and ctenophores (Dayraud et al., 2012), suggesting that a cell type split

between slow and fast contractile cells is a common feature across early-branching metazoans (Fig-

ure 7). Given the possibility of MHC isoform co-option (as outlined above), it is yet unclear whether

this cell type split happened once or several times. The affinities of bilaterians and non-bilaterians

contractile cells remain to be tested from data on the CoRCs establishing contractile cell types in

non-bilaterians.

Conclusions
Our results indicate that the split between visceral smooth myocytes and somatic striated myocytes

is the result of a long individuation process, initiated before the last common protostome/deutero-

stome ancestor. Fast- and slow-contracting cells expressing distinct variants of myosin II heavy chain

(ST-MHC versus SM-MHC) acquired increasingly contrasted molecular profiles in a gradual fashion –

and this divergence process continues to this day in individual bilaterian phyla. Blurring this picture

of divergence, co-option events have led to the occasional replacement of the slow contractile mod-

ule by the fast one, leading to smooth-to-striated myocyte conversions. Our study showcases the

power of molecular fingerprint comparisons centering on effector and selector genes to reconstruct

cell type evolution (Arendt, 2008). In the bifurcating phylogenetic tree of animal cell types

(Liang et al., 2015), it remains an open question how the two types of contractile cells relate to

other cell types, such as neurons (Mackie, 1970) or cartilage (Brunet and Arendt, 2016b;

Lauri et al., 2014; Tarazona et al., 2016).
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Materials and methods

Immunostainings and in situ hybridizations
Immunostaining, rhodamine-phalloidin staining, and WMISH were performed according to previously

published protocols (Lauri et al., 2014). Antibodies against acetylated tubulin and serotonin were

purchased from Sigma Aldrich (RRID:AB_477585) and ImmunoStar (RRID:AB_572263), respectively.

Rhodamine-phalloidin was purchased from ThermoFischer Scientific (RRID:AB_2572408). For all

stainings not involving phalloidin, animals were mounted in 97% TDE/3% PTw for imaging following

(Asadulina et al., 2012). Phalloidin-stained larvae were mounted in 1% DABCO/glycerol instead, as

TDE was found to quickly disrupt phalloidin binding to F-actin. Confocal imaging of stained larvae

was performed using a Leica SPE and a Leica SP8 microscope. Stacks were visualized and processed

with ImageJ 1.49v (RRID:SCR_003070). 3D renderings were performed with Imaris 8.1 (RRID:SCR_

007370). Bright-field Nomarski microscopy was performed on a Zeiss M1 microscope. Z-projections

of Nomarski stacks were performed using Helicon Focus 6.7.1 (RRID:SCR_014462).

Transmission electron microscopy
TEM was performed as previously published (Lauri et al., 2014).

Pharmacological treatments
Brefeldin A was purchased from Sigma Aldrich (B7561) and dissolved in DMSO to a final concentra-

tion of 5 mg/mL. Animals were treated with 50 mg/mL Brefeldin A in 6-well plates filled with 5 mL fil-

tered natural sea water (FNSW). Controls were treated with 1% DMSO (which is compatible with

Platynereis development and survival without noticeable effect). Other neurotransmission inhibitors

were found to be ineffective on Platynereis (as they elicited no impairment of locomotion): tetanus

toxin (Sigma Aldrich T3194; 100 mg/mL stock in distilled water) up to 5 mg/mL; TTX (Latoxan, L8503;

1 mM stock) up to 10 mM; Myobloc (rimabotulinum toxin B; Solstice Neurosciences) up to 1%; saxi-

toxin 2 HCl (Sigma Aldrich NRCCRMSTXF) up to 1%; and neosaxitoxin HCl (Sigma Aldrich

NRCCRMNEOC) up to 1%. (±)�2-Octanol was purchased from Sigma Aldrich and diluted to a final

concentration of 2.5 mM (2 mL in 5 mL FNSW). (±)�2-Octanol treatment inhibited both locomotion

and gut peristalsis, in line with the importance of gap junctions in motor neural circuits

(Kawano et al., 2011; Kiehn and Tresch, 2002). No sample size was computed before the experi-

ments. At least two technical replicates were performed for each assay, with at least five biological

replicates per sample per technical replicate. A technical replicate is a batch of treated individuals

(together with their control siblings), and a biological replicate is a treated (or control sibling)

individual.

Live imaging of contractions
Animals were mounted in 3% low melting point agarose in FNSW (2-Hydroxyethylagarose, Sigma

Aldrich A9414) between a slide and a cover slip (using five layers of adhesive tape for spacing) and

imaged with a Leica SP8 confocal microscope. Fluorescent labeling of musculature was achieved

either by microinjection of mRNAs encoding GCaMP6s, LifeAct-EGFP or H2B-RFP, or by incubation

in 3 mM 0.1% FM-464FX (ThermoFisher Scientific, F34653). Contraction speed was calculated as (l2-

l1)/(l1*t), where l1 is the initial length, l2 the length after contraction, and t the duration of the con-

traction. Kymographs and wave speed quantifications were performed with the ImageJ Kymograph

plugin: http://www.embl.de/eamnet/html/kymograph.html. No sample size was computed before

the experiments. At least two technical replicates were performed for each assay, with at least two

biological replicates per sample per technical replicate. A technical replicate is a batch of treated

individuals (together with their control siblings), and a biological replicate is a treated (or control sib-

ling) individual.

Ancestral state reconstruction
Ancestral state reconstructions were performed with Mesquite 3.04 using the Maximum Likelihood

and Parsimony methods.
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Cloning
The following primers were used for cloning Platynereis genes using a mixed stages Platynereis

cDNA library (obtained from 1, 2, 3, 5, 6, 10 and 14-days old larvae) and either the HotStart Taq

Polymerase from Qiagen or the Phusion polymerase from New England BioLabs (for GC-rich

primers):

Gene name Forward primer Reverse primer

foxF CCCAGTGTCTGCATCCTTGT CATGGGCATTGAAGGGGAGT

zasp CATACCAGCCATCCCGTCC AAATCAGCGAACTCCAGCGT

troponin T TTCTGCAGGGCGCAAAGTCA CGCTGCTGTTCCTTGAAGCG

SM-MRLC TGGTGTTTGCAGGGCGGTCA GGTCCATACCGTTACGGAAGCTTTT

calponin ACGTGCGGTTTACGATTGGA GCTGGCTCCTTGGTTTGTTC

transgelin1 GCTGCCAAGGGAGCTGACGC ACAAAGAGCTTGTACCACCTCACCC

myocardin GACACCAGTCCGAAGCTTGA CGTGGTAGTAGTCGTGGTCG

The following genes were retrieved from an EST plasmid stock: SM-MHC (as two independent

clones that gave identical expression patterns) and ST-MRLC. Gene orthology (Supplementary fils 1)

was determined by phylogenetic analysis using MrBayes (RRID:SCR_012067) or PhyML

(Guindon et al., 2010) run from http://www.atgc-montpellier.fr/phyml/ (RRID:SCR_014629).

Other genes were previously published: actin and ST-MHC (under the name mhc1-4) (Lauri et al.,

2014) and GATA456 (Gillis et al., 2007).
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Barna J, Csoknya M, Lázár Z, Barthó L, Hámori J, Elekes K. 2001. Distribution and action of some putative
neurotransmitters in the stomatogastric nervous system of the earthworm, Eisenia fetida (Oligochaeta,
Annelida). Journal of Neurocytology 30:313–325. doi: 10.1023/A:1014456329814, PMID: 11875279

Beall CJ, Fyrberg E. 1991. Muscle abnormalities in Drosophila melanogaster heldup mutants are caused by
missing or aberrant troponin-I isoforms. Journal of Cell Biology 114:941–951. doi: 10.1083/jcb.114.5.941,
PMID: 1908472

Black BL, Olson EN. 1998. Transcriptional control of muscle development BY myocyte enhancer factor-2 (MEF2)
proteins. Annual Review of Cell and Developmental Biology 14:167–196. doi: 10.1146/annurev.cellbio.14.1.167

Blais A, Tsikitis M, Acosta-Alvear D, Sharan R, Kluger Y, Dynlacht BD. 2005. An initial blueprint for myogenic
differentiation. Genes & Development 19:553–569. doi: 10.1101/gad.1281105, PMID: 15706034

Bohrmann J, Haas-Assenbaum A. 1993. Gap junctions in ovarian follicles of Drosophila melanogaster: inhibition
and promotion of dye-coupling between oocyte and follicle cells. Cell and Tissue Research 273:163–173.
doi: 10.1007/BF00304623, PMID: 8364958

Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES, Thorndyke M, Nakano H,
Kohn AB, Heyland A, Moroz LL, Copley RR, Telford MJ. 2006. Deuterostome phylogeny reveals monophyletic
chordates and the new phylum Xenoturbellida. Nature 444:85–88. doi: 10.1038/nature05241, PMID: 17051155

Bourlat SJ, Nielsen C, Lockyer AE, Littlewood DT, Telford MJ. 2003. Xenoturbella is a deuterostome that eats
molluscs. Nature 424:925–928. doi: 10.1038/nature01851, PMID: 12931184

Brownlee DJ, Fairweather I, Johnston CF, Shaw C. 1994. Immunocytochemical demonstration of peptidergic and
serotoninergic components in the enteric nervous system of the roundworm, Ascaris suum (Nematoda,
Ascaroidea). Parasitology 108:89–103. doi: 10.1017/S0031182000078562, PMID: 7908737

Brunet T, Arendt D. 2016a. From damage response to action potentials: early evolution of neural and contractile
modules in stem eukaryotes. Philosophical Transactions of the Royal Society of London. Series B, Biological
Sciences 371:20150043. doi: 10.1098/rstb.2015.0043, PMID: 26598726

Brunet T, Arendt D. 2016b. Animal evolution: The hard problem of Cartilage origins. Current Biology 26:R685–
R688. doi: 10.1016/j.cub.2016.05.062, PMID: 27458918

Bulbring E, Crema A. 1959. The release of 5-hydroxytryptamine in relation to pressure exerted on the intestinal
mucosa. Journal of Physiology 146:18–28. doi: 10.1113/jphysiol.1959.sp006175, PMID: 13655213

Burke RD. 1981. Structure of the digestive tract of the pluteus larva of dendraster excentricus (Echinodermata:
Echinoida). Zoomorphology 98:209–225. doi: 10.1007/BF00312050

Burnstock G. 1958. The effect of drugs on spontaneous motility and on response to stimulation of the extrinsic
nerves of the gut of a teleostean fish. British Journal of Pharmacology and Chemotherapy 13:216–226. doi: 10.
1111/j.1476-5381.1958.tb00894.x, PMID: 13584720

Burr AH, Gans C. 1998. Mechanical significance of obliquely striated architecture in nematode muscle. The
Biological Bulletin 194:1–6. doi: 10.2307/1542507, PMID: 9525033

Cannon JT, Vellutini BC, Smith J, Ronquist F, Jondelius U, Hejnol A. 2016. Xenacoelomorpha is the sister group
to Nephrozoa. Nature 530:89–93. doi: 10.1038/nature16520, PMID: 26842059

Carnevali MDC, Ferraguti M. 1979. Structure and ultrastructure of muscles in the priapulid halicryptus spinulosus:
functional and phylogenetic remarks. Journal of the Marine Biological Association of the United Kingdom 59:
737–748. doi: 10.1017/S0025315400045719

Brunet et al. eLife 2016;5:e19607. DOI: 10.7554/eLife.19607 19 of 24

Research article Developmental Biology and Stem Cells Genomics and Evolutionary Biology

http://www.ncbi.nlm.nih.gov/pubmed/4448939
http://dx.doi.org/10.1186/2041-9139-4-33
http://www.ncbi.nlm.nih.gov/pubmed/24295205
http://dx.doi.org/10.1038/nrg.2016.127
http://dx.doi.org/10.1038/nrg.2016.127
http://www.ncbi.nlm.nih.gov/pubmed/27818507
http://www.ncbi.nlm.nih.gov/pubmed/14756332
http://dx.doi.org/10.1038/nrg2416
http://www.ncbi.nlm.nih.gov/pubmed/18927580
http://dx.doi.org/10.1186/2041-9139-3-27
http://www.ncbi.nlm.nih.gov/pubmed/23199348
http://dx.doi.org/10.1016/j.str.2004.02.019
http://www.ncbi.nlm.nih.gov/pubmed/15062084
http://dx.doi.org/10.1083/jcb.108.2.521
http://www.ncbi.nlm.nih.gov/pubmed/2537318
http://dx.doi.org/10.1101/gad.7.7b.1325
http://www.ncbi.nlm.nih.gov/pubmed/8101173
http://dx.doi.org/10.1006/dbio.2001.0162
http://dx.doi.org/10.1006/dbio.2001.0162
http://www.ncbi.nlm.nih.gov/pubmed/11237466
http://dx.doi.org/10.1085/jgp.50.6.197
http://dx.doi.org/10.1023/A:1014456329814
http://www.ncbi.nlm.nih.gov/pubmed/11875279
http://dx.doi.org/10.1083/jcb.114.5.941
http://www.ncbi.nlm.nih.gov/pubmed/1908472
http://dx.doi.org/10.1146/annurev.cellbio.14.1.167
http://dx.doi.org/10.1101/gad.1281105
http://www.ncbi.nlm.nih.gov/pubmed/15706034
http://dx.doi.org/10.1007/BF00304623
http://www.ncbi.nlm.nih.gov/pubmed/8364958
http://dx.doi.org/10.1038/nature05241
http://www.ncbi.nlm.nih.gov/pubmed/17051155
http://dx.doi.org/10.1038/nature01851
http://www.ncbi.nlm.nih.gov/pubmed/12931184
http://dx.doi.org/10.1017/S0031182000078562
http://www.ncbi.nlm.nih.gov/pubmed/7908737
http://dx.doi.org/10.1098/rstb.2015.0043
http://www.ncbi.nlm.nih.gov/pubmed/26598726
http://dx.doi.org/10.1016/j.cub.2016.05.062
http://www.ncbi.nlm.nih.gov/pubmed/27458918
http://dx.doi.org/10.1113/jphysiol.1959.sp006175
http://www.ncbi.nlm.nih.gov/pubmed/13655213
http://dx.doi.org/10.1007/BF00312050
http://dx.doi.org/10.1111/j.1476-5381.1958.tb00894.x
http://dx.doi.org/10.1111/j.1476-5381.1958.tb00894.x
http://www.ncbi.nlm.nih.gov/pubmed/13584720
http://dx.doi.org/10.2307/1542507
http://www.ncbi.nlm.nih.gov/pubmed/9525033
http://dx.doi.org/10.1038/nature16520
http://www.ncbi.nlm.nih.gov/pubmed/26842059
http://dx.doi.org/10.1017/S0025315400045719
http://dx.doi.org/10.7554/eLife.19607


Carson JA, Schwartz RJ, Booth FW. 1996. SRF and TEF-1 control of chicken skeletal alpha-actin gene during
slow-muscle hypertrophy. The American Journal of Physiology 270:C1624–C1633. PMID: 8764144

Chiodin M, Achatz JG, Wanninger A, Martinez P. 2011. Molecular architecture of muscles in an acoel and its
evolutionary implications. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution
316B:427–439. doi: 10.1002/jez.b.21416

Copenhaver PF, Taghert PH. 1989. Development of the enteric nervous system in the moth. Developmental
Biology 131:70–84. doi: 10.1016/S0012-1606(89)80039-9

Corsi AK, Kostas SA, Fire A, Krause M. 2000. Caenorhabditis elegans twist plays an essential role in non-striated
muscle development. Development 127:2041–2051. PMID: 10769229

Creemers EE, Sutherland LB, Oh J, Barbosa AC, Olson EN. 2006. Coactivation of MEF2 by the SAP domain
proteins myocardin and MASTR. Molecular Cell 23:83–96. doi: 10.1016/j.molcel.2006.05.026, PMID: 16818234
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of myosin II paralogues in muscle vs. non-muscle functions during early animal evolution: a ctenophore
perspective. BMC Evolutionary Biology 12:107. doi: 10.1186/1471-2148-12-107, PMID: 22747595
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