
Genetic variants of lipase
activity in chronic pancreatitis
We read with great interest the article by
Weiss et al1 reporting genetic associations
of rs632111 (fucosyltransferase 2; FUT2),
rs8176693 (ABO) and rs889512 (chymo-
trypsinogen B2; CTRB2) with lipase levels.
Weiss et al also claimed that the variants at
the FUT2 and ABO loci were associated
with chronic pancreatitis (CP). No associ-
ation with CP was observed for the CTRB2

locus. Elevated lipase levels are a diagnostic
criterion for acute pancreatitis and might
mirror subclinical pancreatic injury in
patients without severe complaints. Hence,
variants associated with elevated serum
lipase levels might also be associated with
CP risk. In a recent genome-wide associ-
ation study, genetic variants of CP risk were
identified in PRSS1 and CLDN2-MORC4.2

A large European replication study refined
these associations to alcohol-related CP.3

However, no associations were revealed at
FUT2 and ABO in the former genome-wide
association study.2

Given the relatively moderate associ-
ation of genetic variants with CP in the
paper by Weiss et al, we analysed the
above-mentioned FUT2 and ABO single
nucleotide polymorphism (SNPs) regard-
ing association with CP in a German
cohort of 1458 cases (non-alcohol-related
CP n=584; alcohol-related CP n=874)
and 5133 controls derived from the KORA
study and patients with alcohol depend-
ence (GESGA (-) consortium) according to
DSM-IV criteria to replicate the finding.
Controls included 1488 individuals with
alcohol consumption of >60 g/day and
1915 individuals with alcohol consump-
tion of <20 g/day.
All individuals were genotyped using

Illumina SNP-chip technology. Briefly, data
was filtered using Plink 1.9 at an
individual- and SNP-wise call-rate >0.99
for relatedness (pi-hat <0.185), minor
allele frequency >0.01 and Hardy–
Weinberg disequilibrium with p value
>10−6. Imputation at 1000 Genomes ref-
erence panel (phase 1, release 3, software
SHAPEIT V.2+IMPUTE2.3.0) was per-
formed with 279 188 high-quality SNPs
available in all cohorts. Analyses were con-
ducted with R applying logistic regression
with the first three principal components
of the SNP data included as covariates to
account for possible population stratifica-
tion. We analysed additive, recessive and
dominant models of inheritance and sub-
group and interaction analysis regarding
alcohol consumption status.
Our analyses revealed no significance

for rs632111 and rs8176693 in statistical
models reported previously (table 1).1 For
rs632111, the same (non-significant) dir-
ection of effect was observed, while for
rs8176693, the effect direction was
reverse. Interaction and subgroup analysis
revealed significant interaction effects of
rs632111 with alcohol consumption
(p value 0.04, OR 0.82, 95% CI 0.68 to
0.99) and for rs8176693 for the subgroup
of alcohol-dependent individuals (p value
0.04, OR 0.78, 95% CI 0.62 to 0.98);

however, these associations would not
withstand correction for multiple testing.

Next, we screened whether there were
stronger associations in the vicinity of the
reported SNPs. Here, the two regions did
not reveal any convincing associations
(minimum p value=0.0013, figures not
shown).

In conclusion, we cannot convincingly
replicate the formerly described associa-
tions in our study. Only nominal associa-
tions were found for rs632111 and
rs8176693 than in other models as those
reported by Weiss et al. These results indi-
cate that further replication studies with
larger sample sizes are required to clarify
the role of these variants in CP risk.
Furthermore, gene–environment inter-
action (eg, including alcohol status) needs
to be considered when testing for associa-
tions with CP.
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Table 1 We compare our association results with corresponding reports of Weiss et al1

SNP Genetic model Groups compared Cases Cont. p Value OR (95% CI) p Value reported in ref. 1 OR reported in ref. 1

rs632111 (FUT2) add. CP vs non-alc. 1458 1915 0.26 1.07 (0.95 to 1.19) 0.003 1.24 (1.08 to 1.44)
add. NACP vs non-alc. 584 1915 0.22 1.09 (0.95 to 1.26) 0.017 1.27 (1.04 to 1.55)
rec. CP vs non-alc. 1458 1915 0.15 1.07 (0.98 to 1.18)* 0.0002 1.58 (1.24 to 2.02)
rec. NACP vs non-alc. 584 1915 0.19 1.08 (0.96 to 1.22)* 0.001 1.72 (1.25 to 2.38)

rs8176693 (ABO) dom. CP vs non-alc. 1458 1915 0.50 0.96 (0.87 to 1.07)*† 0.0002 1.67 (1.28 to 2.18)
dom. NACP vs non-alc. 584 1915 0.32 1.07 (0.94 to 1.21) 0.030 1.54 (1.06 to 2.24)
dom. ACP vs non-alc. 874 1915 0.20 0.92 (0.81 to 1.04)*† 0.016 1.26 (1.11 to 2.37)

In the analysis, individuals with alcohol consumption of <20 g/day are treated as ‘non-alcoholic’. None of the associations were replicated.
*Indicates 95% CIs that do not overlap with those formerly reported by Weiss et al.
†Indicates opposite effect sizes in comparison to Weiss et al.
ACP, alcohol-related CP; add., additive; CP, chronic pancreatitis; dom., dominant; NACP, non-alcohol-related CP; rec., recessive. Encoding of models of inheritance was done using the
minor allele as reported.1
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