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Abstract

The interpretation of membership functions
of fuzzy sets as statistical likelihood functions
leads to a probabilistic-possibilistic hierarchi-
cal description of uncertain knowledge. The
fundamental advantage of the resulting fuzzy
probabilities with respect to imprecise prob-
abilities is the ability of using all the informa-
tion provided by the data. This paper studies
the possibility of using fuzzy probabilities to
describe the uncertain knowledge about the
values of the nodes of belief networks.

1 INTRODUCTION

In the present paper, membership functions of fuzzy
sets are interpreted as statistical likelihood functions.
This allows a combination of probabilistic and possi-
bilistic uncertainty on the basis of the well-established
theories of probability and likelihood. The result-
ing probabilistic-possibilistic hierarchical description
of uncertain knowledge generalizes the description by
means of imprecise probabilities, but only from the
static point of view. In fact, the usual updating rule for
imprecise probabilities does not use all the information
provided by the data, and this waste of information
can lead to statistical inconsistency and unsatisfactory
results. By contrast, the probabilistic-possibilistic hi-
erarchical model exploits the outstanding asymptotic
properties of the likelihood function, which makes it
an ideal basis for inference and decision making: this
aspect is analyzed in Cattaneo (2005, 2007).

In the present paper, the probabilistic-possibilistic hi-
erarchical model is combined with belief networks, to
describe the uncertain knowledge about the values of
the involved variables. This leads to a generalization
of Bayesian networks and credal networks, combin-
ing the possibility of imprecision in the probability
values with the ability of using all the information

provided by the data. Since simple fuzzy probabil-
ity measures can be described as convex hulls of finite
sets of non-normalized probability measures, the re-
sulting probabilistic-possibilistic hierarchical networks
have the same complexity as credal networks. More-
over, the graphical criterion of d-separation can be ex-
ploited, since it implies the conditional irrelevance of
the involved variables.

2 PROBABILISTIC-POSSIBILISTIC
HIERARCHICAL MODEL

Let P be a set of probability measures on a finite set
Q=X x---x X, (for simplicity, in the present paper
only the finite case is considered, but infinite sets €2
would pose no problem). Each P € P is interpreted as
a probabilistic model for the values of the random vari-
ables X; : (x1,...,2,) — a; (for all i € {1,...,n}).
The interpretation of probability is not important: for
instance the elements of P can be statistical models,
or describe the forecasts of a group of experts.

The likelihood function lik on P induced by the obser-
vations X; € A; C X; (foreachi e I C{1,...,n}) is
defined by
lik(P) = P{(x1,...,2,) €Q:2; € A, for all i € T};

lik describes the relative ability of the probabilistic
models in P to forecast the observed data. Spuri-
ous modifications of the situation considered or of
its mathematical representation can lead to likelihood
functions proportional to lik (for example, if the re-
alization of an additional random variable X, 11 de-
scribing the result of tossing a fair coin is also observed,
then the induced likelihood function is halved). There-
fore, proportional likelihood functions are considered
equivalent; in fact, Fisher (1921, 1922) defined the like-
lihood of a statistical model as a quantity proportional
to the probability of the observed data. Hence, only
ratios lik(P)/lik(P’) of the values of lik for different
P, P’ € P have meaning: Kullback and Leibler (1951)



interpreted log[lik(P)/lik(P’)] as the information in
the data for discrimination in favor of P against P’,
and Good (1950) considered it as the weight of evi-
dence in favor of P against P’ provided by the data. So
the likelihood function can be interpreted as a measure
of the relative plausibility of the probabilistic models
in the light of the observed data alone.

The likelihood function l:k measures the relative plau-
sibility of the elements of P, but a measure of the rela-
tive plausibility of the subsets of P is often needed. A
simple and effective way to obtain it consists in defin-
ing the plausibility of a set of probabilistic models as
the plausibility of its best element: the result is the
set function
H — sup lik(P)
PeH

on the power set 27 of P (in this paper, sup @ = 0).
Proportional set functions of this form are equivalent,
since they correspond to equivalent likelihood func-
tions: to underline this relative meaning, the expres-
sion “relative plausibility measure” is used in Cattaneo
(2007) to denote an equivalence class of proportional
set functions of this form. Their normalized version
LR associates to each H C P the corresponding likeli-
hood ratio statistic

_ suppey lik(P)

suppep ik(P)’

The likelihood ratio test discards the hypothesis that
the data were generated by some P € H if LR(H)
is sufficiently small. In regular problems with large
samples, the critical value for LR(H) can be obtained
from the result of Wilks (1938) that —2 log LR(H) is
approximately x? distributed under each P € H.

LR(H)

A possibility distribution on a set G is a function
7 : G — [0,1]. The possibility measure on G with
possibility distribution 7 is the set function

G — sup ()
yelG

on 29. A possibility distribution = on G can also be
considered as the membership function of a fuzzy sub-
set of G (see Zadeh, 1978); when 7 is crisp (that is,
7 can take only the values 0 and 1), the subset is not
fuzzy and 7 is its indicator function on G. The likeli-
hood ratio statistic LR is a possibility measure on P
with possibility distribution proportional to the likeli-
hood function lik on P. In fact, the membership func-
tion of a fuzzy set has often been interpreted as a like-
lihood function (see for example Hisdal, 1988; Dubois
and Prade, 1993; Dubois, 2006), even though propor-
tional membership functions were not always consid-
ered equivalent (see for instance Dubois et al., 1997).
In the present paper, membership functions and pos-
sibility distributions are interpreted as proportional to

likelihood functions. Hence, it suffices to consider nor-
malized fuzzy sets and normalized possibility measures
(that is, sup., g m(y) = 1 is assumed), but grades of
membership and degrees of possibility have only a rel-
ative meaning.

A set P of probability measures on € and a likelihood
function lik on P can be interpreted as the two levels
of a probabilistic-possibilistic hierarchical model for the
values of the variables X;. The two levels describe dif-
ferent kinds of uncertain knowledge: in the first level
the uncertainty is stochastic, while in the second one
it is about which of the probabilistic models in P is
the best representation of the reality. It is important
to underline that no probabilistic model in P is as-
sumed to be in some sense “true”: the elements of P
are simply interpreted as more or less plausible rep-
resentations of the reality. By contrast, the use of a
probability measure on P, suggested by the Bayesian
approach, carries the implicit assumption that exactly
one of the probabilistic models in P is “true” (see Cat-
taneo, 2007, Section 3.1). The likelihood function lik
on P can also express subjective beliefs about the rel-
ative plausibility of the probabilistic models in P: in
this case, lik is interpreted as if it were induced by hy-
pothetical data (see also Dahl, 2005). The choice of a
subjective likelihood function on P seems to be better
supported by intuition than the choice of a subjective
probability measure on P: in particular, a constant
likelihood function describes complete ignorance (in
the sense of absence of information for discrimination
between the probabilistic models).

2.1 FUZZY PROBABILITIES AND
IMPRECISE PROBABILITIES

Let X be a real-valued function of Xi,...,X,, and
let g : P +— Ep(X) be the function on P assigning
to each probabilistic model the corresponding expec-
tation of X. A likelihood function lik on P induces
the (normalized) profile likelihood function

liky : x — LR(g™*{2}) sup
PeP:g(P)=x

lik(P)

on the set R of real numbers (in this paper, the expo-
nent ~! denotes the set function associating to a set
its inverse image). The profile likelihood function lik,
measures the relative plausibility of the values of g, on
the basis of the above definition of the plausibility of
a set of probabilistic models as the plausibility of its
best element. In fact, lik, is the possibility distribu-
tion corresponding to the possibility measure LRog™?
induced by g on R. Hence, the uncertain knowledge
about the expectation of X is described by the fuzzy
number (that is, a fuzzy subset of R) with membership
function liky: this fuzzy number can be interpreted as



the fuzzy expectation of X. In particular, when X is
the indicator function I4 of a set A C Q, the fuzzy
expectation of I4 describes the uncertain knowledge
about the probability of A, and can thus be interpreted
as the fuzzy probability of A.

Sometimes a fuzzy number can be a satisfactory con-
clusion about the expectation of X, but it is often
necessary to evaluate the fuzzy number by one or
more real numbers. The discussion on how to do
this goes beyond the scope of the present paper, but
it is important to note the correspondence between
some natural “defuzzification methods” and the usual
likelihood-based inference methods. In fact, the a-cut
{z € R : likg(z) > o} with a € (0, 1] corresponds to
a likelihood-based confidence region for the expecta-
tion of X (the coverage probability of this confidence
region can often be approximated thanks to the result
of Wilks, 1938), and when a global maximum of lik,
exists and is unique, it corresponds to the mazimum
likelihood estimate of the expectation of X.

Since the probabilistic models outside the support
P’ ={P € P :lik(P) > 0} of lik have no influence on
likg, the likelihood function can always be extended to
the set of all probability measures on €2, by defining it
constant equal to 0 outside P. Hence, the hierarchical
model can also be interpreted as a fuzzy probability
measure on {2, in the sense that it is a fuzzy subset of
the set of all probability measures on €2, with member-
ship function proportional to the (extended) likelihood
function. When this is crisp, it is the indicator func-
tion of the support P’ of lik: there is no information
for discrimination between the elements of P’, and in
fact the uncertain knowledge about the expectation of
X is described by the set G = {Ep(X) : P € P’} (in
the sense that liky = Ig). In particular, when P’ is
convex and closed, the set G is the interval

Az, (), pup BP0

that is, in this case the hierarchical description of un-
certain knowledge about the values of the variables X;
reduces to the description by means of imprecise prob-
abilities (see Walley, 1991).

Both the purely probabilistic and the purely possibilis-
tic descriptions of uncertain knowledge about the val-
ues of the variables X; appear as special cases of the
probabilistic-possibilistic hierarchical description. In
fact, when the support P’ of lik is a singleton {P},
the description of uncertain knowledge is purely prob-
abilistic: liky is the indicator function of {Ep(X)}.
By contrast, when P’ is a set of Dirac measures (that
is, P! C {6, : w € Q}, with é,{w} = 1), the descrip-
tion of uncertain knowledge is purely possibilistic: it
corresponds to the possibility measure LR’ = LRot ™!

on ), where ¢ is the function d, — w on P’. In fact,
lik4 is the possibility distribution corresponding to the
possibility measure LR’ o X! induced by X on R; in
particular, the support of lik, is finite, since it is a
subset of the image of X.

2.2 UPDATING

The definition of likelihood function implies that when
X, € A; C X, is observed (for an i € {1,...,n}),
the probabilistic level P of the hierarchical model is
updated to the set

,P/:{P(‘XZEAZ)P€P7P{XZ€A1}>O}

of conditional probability measures P(-| X; € A;) on
Q, while the possibilistic level lik is updated to the
likelihood function lik’ on P’ defined by
lik'(P') = sup lik(P) P{X; € A;}.
PEP: P(-| X;€A;)=P'

In fact, when interpreted as a function of P, the argu-
ment of the supremum is the new likelihood function
on P, and lik’ is the corresponding (profile) likelihood
function on P’. The definition of /i’ on P’ instead
of P can be slightly confusing (since likelihood func-
tions are usually defined on the set P of unconditional
probability measures, as done at the beginning of the
present section), but it is necessary if the hierarchical
model has to describe the available uncertain knowl-
edge about the values of the variables X;.

In particular, when the description of uncertain knowl-
edge is purely probabilistic, the support of lik is a sin-
gleton {P}, and the updating corresponds to condi-
tioning P, in accordance with the Bayesian approach.
When the description of uncertain knowledge is purely
possibilistic, the possibility measure LR’ on Q is up-
dated by multiplying the corresponding possibility dis-
tribution with the indicator function of {X; € A;} and
then renormalizing it. Hence, in particular, the purely
probabilistic and the purely possibilistic descriptions
of uncertain knowledge are maintained when updat-
ing the hierarchical model. By contrast, in general the
description by means of imprecise probabilities (cor-
responding to the case in which the support of lik is
convex and closed, and lik is constant on it) is not
maintained when updating the hierarchical model, be-
cause in general [k’ is not constant on its support. In
fact, the usual updating rule in the theory of impre-
cise probabilities is the regular extension (see Walley,
1991, Appendix J), which corresponds to the above
updating rule without the term P{X; € A;} in the ar-
gument of the supremum (so that ik’ too is constant
on its support).

In general, the hierarchical model with probabilistic
level P and possibilistic level lik can be described by



the set M = {lik(P) P : P € P} of non-normalized
probability measures on 2. When X; € A; C X, is
observed (for an ¢ € {1,...,n}), the set M is up-
dated to the set M’ = {u(- N {X; € A;}) : p € M} of
non-normalized probability measures on 2: the up-
dating of each p € M corresponds to the Bayesian
updating without renormalization. In fact, if p' is
defined as the probability measure on 2 obtained by
normalizing the non-normalized probability measure
p with p(Q) > 0 (that is, p = p(Q)y'), then the
probabilistic level of the updated hierarchical model
is P ={u :pe M, u) > 0}, while the possibilis-
tic level is the likelihood function lik’ on P’ defined
by
lik'(P') = sup  p(9).
HEM' :p'=P’

Since the updating u — u(- N {X; € A;}) of the
non-normalized probability measures on 2 is the re-
striction of a linear function, if M is the convex hull
of a set My, then M’ is the convex hull of the set

o =A{ut-n{X;, € A;}) : p € Mp}. That is, the
set My is updated in the same way as M, and can be
considered as a simpler description of the hierarchical
model. Of course, this simpler description is particu-
larly useful when M is finite.

In particular, if M is closed and convex, and its el-
ements are normalized (that is, M = P), then the
hierarchical description of uncertain knowledge corre-
sponds to the description by means of imprecise prob-
abilities. The updating by means of regular exten-
sion consists in updating M to the set M” = P’ of
the renormalized elements of M’ but the renormal-
ization of the elements of M’ deletes the information
about their relative ability to forecast the observation
X, € A;. For instance, if the probabilistic models in P
describe the opinions of a group of Bayesian experts,
then the updating by regular extension corresponds
to update the opinion of each expert without recon-
sidering her/his credibility, independently of how bad
her/his forecasts were when compared to the forecasts
of the other experts. This is not very reasonable, and
in fact the updating by regular extension can lead to
inconsistency, in the statistical sense of not tending to
the correct conclusion, even when the amount of in-
formation provided by the data tends to infinity. The
following adaptation of an example by Wilson (2001)
shows that this does not only happen when the set P
is too wide.

Example 1 Let X; = ... = X901 = {0, 1}, and let
Po = {Pp pe A}

be a set of probability measures on 2 = {0,1}19% such
that A =[0.1, 0.6] and for all p € A

P{X; =0} =1,
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Figure 1: Membership Function of the Fuzzy Proba-
bility of X; = 0 when z = 20.

and conditional on the realization of X1 the random
variables Xo, ..., X101 are independent with

PA{X;=1|X;=0}=1, P{X;i=1|X;=1}=p

for allie {2,...,101}.

Consider the hierarchical model described by the set
Mo = Py; that is, the probabilistic level P is the con-
vex hull of Py, and the possibilistic level is the likeli-
hood function lik on P with constant value 1. Since
the set M = P is closed and convex, the hierarchical
description of uncertain knowledge corresponds to the
description by means of imprecise probabilities.

When the realizations Xo = xo, ..., X101 = T101 are
observed, the updated hierarchical model is described
by the set

- {(%>101 5w0+%px (17p)100—x S :pEA}

of linear combinations of the Dirac measures d,, and
0wy, where wy, = (21,...,2101) for z1 € {0,1}, and

=2

Since M is convex, M' = Mg, and P’ consists of the
convex combinations of d,,, and d,,, proportional to the
linear combinations contained in My,.

Figure 1 shows the graph on [0, 5-10~7] of the member-
ship function of the fuzzy probability of X1 = 0 accord-
ing to the updated hierarchical model, when x = 20.
Since X1 = 1 is compatible with the observed data,
while X7 = 0 is not, the fuzzy probability of X1 = 0
is extremely concentrated near 0. In fact, any reason-
able evaluation of the fuzzy probability of X1 =0 by a
real number (such as the mazimum likelihood estimate
0.04 - 1077, or the midpoint 2.13 - 10=7 of the a-cut
with a = 0.01) would be approzimately 0.

However, the updating of M = P by means of reg-
ular extension is M" = P’; that is, each element of
M = My is renormalized, without considering how



improbable the observed data were for the correspond-
ing probabilistic models in P. For the probability of
X1 =0 this simply means forcing the crispness of the
membership function, by making it constant equal to 1
on its support: when x = 20, the resulting uncertain
knowledge about the probability of X1 = 0 is described
by the interval [4.26 - 107, 1 — 6.77 - 10~7] ~ [0, 1].
That is, despite the overwhelming information in favor
of X1 =1 against X1 = 0, almost complete ignorance
about the probability of X1 = 0 is obtained when up-
dating the imprecise probabilities by means of reqular
extension.

3 BELIEF NETWORKS

An elegant and useful way of constructing a prob-
abilistic model for the values of the variables X; is
through a Bayesian network (see Pearl, 1988; Jensen,
2001). This consists of a directed acyclic graph with
nodes X1, ..., X,, such that to each node X, is asso-
ciated a stochastic kernel assigning a probability mea-
sure P; (- | pa;(w)) on X; to each possible vector pa;(w)
of values for the parents of X; (that is, the nodes
from which start the edges pointing to X;). For each
i € {1,...,n}, the function pa; on  assigns to each
w = (21,...,xy) the vector (z;,,...,x;, ) of the values
of the parents X ,..., X, of X;; when X; is a root
(that is, it has no parents), pa; assigns the empty set
to all w € Q, and the stochastic kernel associated to X;
reduces to a probability measure P; (-| @) on X;. The
probability measure P on (2 associated to the Bayesian
network is defined by

Plw} = H P; ({zi} | pai(w))

for all w = (z1,...,2,) € Q.

The probability measures on 2 compatible with a di-
rected acyclic graph with nodes X1,..., X, are those
that can be constructed as above by a suitable choice
of the stochastic kernels. A key property of Bayesian
networks is that the graph encodes conditional inde-
pendencies between the variables Xi,...,X,: these
conditional independencies can be determined by the
graphical criterion of d-separation (see Pearl, 1988).

In the theory of imprecise probabilities, Bayesian net-
works have been generalized to credal networks by as-
sociating to each node X; a closed convex set P; of
stochastic kernels, instead of a single stochastic kernel
P; (see Cozman, 2000, 2005). There are several ways
of associating to a credal network a closed convex set
‘P of probability measures on 2; the simplest one is to
define P as the convex hull of the set Py of all probabil-
ity measures on €2 that can be constructed as above by
all possible choices of the stochastic kernels P; € P;.

Hence, all elements of Py are compatible with the di-
rected acyclic graph considered, but in general not all
elements of P are compatible with it.

When some data are observed, the imprecise probabil-
ities described by P are usually updated by means of
regular extension; but the results of Section 2.2 show
that regular extension can lead to unsatisfactory con-
clusions. A simple solution consists in considering P
as the description M = P of a hierarchical model (the
one with P as probabilistic level and the likelihood
function lik on P with constant value 1 as possibilistic
level), and updating it to the set M’ of non-normalized
probability measures on €2, as described in Section 2.2.
In general, the resulting conclusions are then fuzzy
expectations and fuzzy probabilities, but if necessary
these fuzzy numbers can be evaluated by intervals, for
instance by considering their a-cuts (see also Moral,
1992; Cano and Moral, 1996).

Credal networks can be generalized by allowing the
use of fuzzy probabilities also before the updating. In
the resulting probabilistic-possibilistic hierarchical net-
works, to each node X; is associated a fuzzy stochastic
kernel; that is, a fuzzy subset of the set of all pos-
sible stochastic kernels P;, with membership function
;. Let Py be the set of all probability measures on
Q compatible with the directed acyclic graph consid-
ered: a fuzzy subset of Py can be constructed on the
basis of the hierarchical network by defining the de-
gree of membership liko(P) of P € Py as the supre-
mum of []!"_; 7;(P;) over all choices of the stochastic
kernels P; such that P is associated to the correspond-
ing Bayesian network. Since the membership functions
m; are interpreted as proportional to likelihood func-
tions, the use of their product is implied by the im-
plicit assumption that these likelihood functions have
been induced by independent (hypothetical) observa-
tions. Under an analogous assumption, the member-
ship function 7; of the fuzzy stochastic kernel associ-
ated to a node X; can be defined as the product of the
membership functions of the fuzzy probability mea-
sures on X; corresponding to each possible vector of
values for the parents of Xj.

The set My = {liko(P) P : P € Py} of non-normalized
probability measures on 2 describes the hierarchical
model with Py as probabilistic level and the function
likg on Py as possibilistic level. The hierarchical model
associated to the hierarchical network can be defined
as the one described by My or as the one described
by the convex hull M of M. Let P and lik be the
two levels of the probabilistic-possibilistic hierarchical
model described by M. As for credal networks, in
general not all elements of the support of lik are com-
patible with the directed acyclic graph considered; in
fact, credal networks correspond to the special case



in which all membership functions 7; are crisp with
closed convex support.

When some data are observed, the hierarchical model
described by My or M can be updated to the one
described by M, or M’ (that is, the convex hull of
M), as considered in Section 2.2. This is particularly
simple when My is finite, or when M is the convex
hull of another finite set of non-normalized probability
measures on {2. This is the case in particular when
all fuzzy probability measures appearing in the hierar-
chical network can be described by finite sets of non-
normalized probability measures, as in the following
simple example.

Example 2 Let X} = Xy = X3 = {0, 1}, and consider
the Bayesian network consisting of the directed acyclic
graph X, «— Xo — X3 and of the stochastic kernels
Py, Py, Py defined by

Py ({0} |2) = Py ({0}] (0)) = P ({1} ] (1)) =
— Py ({1}1(0)) = Py ({0} | (1)) = 0.9.

Let P be the probability measure on Q = {0,1}® asso-
ciated to the Bayesian network:

P{X3=1}=0.82, P{X3=1|X; =0}~ 0.890,

Since P{X1 = 0} = 0.82, the observation X1 = 0 is
not surprising, and does not have much influence on
the probability of X3 = 1. By contrast, the observation
X1 =1 is more surprising, and has a larger influence
on the probability of X3 = 1; in fact, the probability
0.5 of X3 =1 conditional on X1 =1 can be considered
as arising from conflicting evidence.

Consider the hierarchical network obtained by modify-
ing in the following way each one of the 5 probability
measures on {0,1} that define the above Bayesian net-
work: assume that any probability measure on {0, 1} is
at least 0.01 times as plausible as the one used in the
Bayesian network, and take the convex hull of the cor-
responding set of non-normalized probability measures
on {0,1}. When building each one of these 5 con-
vex hulls, it suffices to consider the two extreme mon-
normalized probability measures 0.01 5y and 0.011 on
{0,1}, besides the probability measure used in the
Bayesian network; for example, the fuzzy probability
measure associated to the node X5 is described by the
convex hull of the set {0.01dp, 0.99 + 0.151, 0.0161}
of non-normalized probability measures on {0,1}.

When the set My of non-normalized probability mea-
sures on ) is defined as above, its convex hull M is
the convex hull of the set of the 99 mon-normalized
probability measures on € resulting from all possible

0.87

0.6

0.4+
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Figure 2: Membership Functions of the Fuzzy Proba-
bility of X3 = 1: Unconditional (Dotted Line), Condi-
tional on X; = 0 (Dashed Line), and Conditional on
X7 =1 (Solid Line).

combinations of the elements of the 5 sets of 3 non-
normalized probability measures on {0,1} that gener-
ate the 5 fuzzy probability measures defining the hi-
erarchical network (because of the two extreme mon-
normalized probability measures 0.01 9y and 0.01 ;1 as-
sociated to the node Xo, there are only 3* +2-3% = 99
possible combinations, and not 3° = 243). As con-
sidered in Section 2.2, when data are observed, the
hierarchical model described by M is updated to the
hierarchical model described by the convex hull M’ of
the set obtained by updating each one of the 99 non-
normalized probability measures on 2.

Note that every probability measure P’ on 2 compat-
ible with the graph considered has positive degree of
membership in the fuzzy probability measure on ) de-
scribed by M. When data are observed, each P’ is
updated and its degree of membership is modified in
accordance with the relative ability of P’ to forecast
the observed data. For erxample, Figure 2 shows the
graphs of the membership functions of the fuzzy prob-
ability of X3 = 1 according to the hierarchical model
described by M (dotted line) and to the updated hier-
archical model described by M’, when X1 = 0 is ob-
served (dashed line), or when X1 =1 is observed (solid
line). The mazimum likelihood estimates are the prob-
abilities resulting from the Bayesian network, while the
a-cuts with o = 0.1 are [0.746, 0.828], [0.809, 0.899],
and [0.311, 0.671], respectively. That is, the possibilis-
tic uncertainty about the value of the probability of
X3 =1 remains more or less constant when the unsur-
prising realization X1 = 0 is observed, while it clearly
increases when the more surprising realization X1 =1
is observed: the possibilistic uncertainty is larger for
probability values arising from conflicting evidence.

3.1 IRRELEVANCE AND D-SEPARATION

Let X|Y,Z C {X1,...,X,} be three disjoint sets of
variables. Y is said to be irrelevant to X given Z
(with respect to a probabilistic-possibilistic hierarchi-



cal model for the values of the variables X;) if the fuzzy
probability distribution for the variables in X condi-
tional on any realization of the variables in Z does not
change when also something about the variables in Y
is observed. Note that in general the conditional inde-
pendence of X and Y given Z under each probabilis-
tic model in the probabilistic level of the hierarchical
model does not suffice for the irrelevance of Y to X
given Z, because the possibilistic level can be influ-
enced by the observations about the variables in Y.
However, when the hierarchical model is constructed
through a hierarchical network, the following result
holds.

Theorem 3 If X and Y are d-separated by Z in the
directed acyclic graph of a probabilistic-possibilistic hi-
erarchical network, then Y is irrelevant to X given Z,
with respect to the hierarchical model associated to the
hierarchical network.

The theorem can be proved as follows. Let Y’ be the
set of all variables X; ¢ X U Z such that X and {X;}
are d-separated by Z in the graph considered, and
let X’ be the complement of Y/ U Z in {X;,...,X,}.
Then let Z; be the set of all variables in Z that have
no parents in Y’, and let Z; be the complement of
Zq in Z; the sets X' Y’, Z1, Z5 build a partition of
{X1,...,X,}. The definition of d-separation implies
that for each probability measure on €2 associated to a
Bayesian network on the graph considered, the value
of the probability of the observed realization of the
variables in Z factorizes in two parts: one depend-
ing only on the stochastic kernels P; for the variables
X, € X' U Z;, and the other depending only on the
stochastic kernels P, for the variables X, € Y’ U Zs.
Moreover, the value of the probability of an observa-
tion about the variables in X conditional on the ob-
served realization of the variables in Z depends only on
the stochastic kernels P; for the variables X; € X'UZ;,
while the value of the probability of an observation
about the variables in Y conditional on the observed
realization of the variables in Z depends only on the
stochastic kernels P, for the variables X, € Y/ U Zs.

Consider the hierarchical model described by the set
M of non-normalized probability measures on €2 de-
fined as above on the basis of the hierarchical network.
The degree of membership of a probability distribution
for the variables in X conditional on the observed re-
alization of the variables in Z is proportional to the
supremum (over all choices of the stochastic kernels
P; leading to this probability distribution) of the prod-
uct of [T}, m;(P;) with the corresponding value of the
probability of the observed realization of the variables
in Z. Hence, the argument of the supremum factorizes
in two parts as above, and the part depending only on

the stochastic kernels P, for the variables X}, € Y/UZ,
disappears in the proportionality constant. Since X
and Y are conditionally independent given Z under
each probabilistic model compatible with the graph
considered, the same supremum is obtained when con-
sidering also the observation about the variables in Y:
the additional factor in the argument depends only on
the stochastic kernels Py, for the variables X, € Y/UZ,,
and therefore it disappears in the proportionality con-
stant too. This result for the hierarchical model de-
scribed by Mg implies the same result for the hierar-
chical model described by the convex hull M of M.

3.2 PROBABILISTIC-POSSIBILISTIC
BELIEF NETWORKS

Any probabilistic model for the values of the variables
X1,...,X, can be constructed through a Bayesian
network with nodes Xi,...,X,,. By contrast, not
all closed convex sets of probability measures on
Q) can be constructed through credal networks with
nodes X1,...,X,, and not all hierarchical models on
Q can be constructed through hierarchical networks
with nodes X7, ..., X,. For instance, the hierarchical
model of Example 1 cannot be constructed through a
hierarchical network with nodes X7,..., Xi01.

However, any hierarchical model for the values of the
variables X1, ..., X, can be constructed through a hi-
erarchical network with nodes Xjy,..., X,4+1: it suf-
fices to add a root X,,41, which in general is a parent
of all other nodes, and which indexes the probabilis-
tic models in the probabilistic level of the hierarchical
model. Hence, in general X, is infinite, but this is
unimportant, because the uncertain knowledge about
the value of X, is purely possibilistic (with possibil-
ity distribution corresponding to the possibilistic level
of the hierarchical model). By contrast, the uncertain
knowledge about the value of any other node X;, given
the values of its parents, is purely probabilistic. For
instance, the hierarchical model of Example 1 can be
constructed through a hierarchical network with nodes
X1, ..., X102, where X192 = A, the nodes X; and X1g2
are roots, and they are the only two parents of all other
nodes. The uncertain knowledge about the value p of
the variable X1g2 is purely possibilistic (with possibil-
ity distribution constant equal to 1 on A), while the
uncertain knowledge about the value of the variable
X, is purely probabilistic, and the same is true for
the uncertain knowledge about the values of the vari-
ables Xo,..., X701, conditional on the values of X;
and XlOZ'

In general, every hierarchical network with nodes
X1,..., X, can be easily transformed into a larger
hierarchical network which describes the same un-
certain knowledge about the values of the variables



X1,...,X,, but such that the uncertain knowledge
about the value of each node, given the values of its
parents, is either purely probabilistic or purely possi-
bilistic. In fact, when the uncertain knowledge about
the value of a node Xj;, given the values of its par-
ents, is not purely probabilistic or purely possibilis-
tic, it suffices to add a root which is a parent of X;
only, and which indexes the possible stochastic kernels
P;. The uncertain knowledge about the value of this
additional root is purely possibilistic (with possibility
distribution corresponding to 7;), while the uncertain
knowledge about the value of the node X;, given the
values of its parents, is now purely probabilistic.

4 CONCLUSION

The use of fuzzy probabilities to describe the uncer-
tain knowledge about the values of the nodes of belief
networks seems very promising. The description of
fuzzy probability measures as convex hull of finite sets
of non-normalized probability measures and the ex-
ploitation of the criterion of d-separation allow the use
of fuzzy probabilities in those belief networks that can
be afforded by imprecise probabilities. The resulting
probabilistic-possibilistic hierarchical models can also
be interpreted as a simple generalization of Bayesian
networks, in which the uncertainty about the values of
some nodes can be possibilistic instead of probabilistic.

References

Cano, A., and Moral, S. (1996). A Genetic algo-
rithm to approximate convex sets of probabilities.
In IPMU ’96. Vol. 2. Universidad de Granada, 859—
864.

Cattaneo, M. (2005). Likelihood-based statistical de-
cisions. In ISIPTA ’05. SIPTA, 107-116.

Cattaneo, M. (2007). Statistical Decisions Based Di-
rectly on the Likelihood Function. PhD thesis, ETH
Zurich. Available online at e-collection.ethz.ch.

Cozman, F. G. (2000). Credal networks. Artif. Intell.
120, 199-233.

Cozman, F. G. (2005). Graphical models for imprecise
probabilities. Int. J. Approx. Reasoning 39, 167-184.

Dahl, F. A. (2005). Representing human uncertainty
by subjective likelihood estimates. Int. J. Approz.
Reasoning 39, 85-95.

Dubois, D. (2006). Possibility theory and statistical
reasoning. Comput. Stat. Data Anal. 51, 47-69.

Dubois, D., Moral, S., and Prade, H. (1997). A se-
mantics for possibility theory based on likelihoods.
J. Math. Anal. Appl. 205, 359-380.

Dubois, D., and Prade, H. (1993). Fuzzy sets and
probability: Misunderstandings, bridges and gaps.
In Second IEEE International Conference on Fuzzy
Systems. Vol. 2. IEEE Service Center, 1059-1068.

Fisher, R. A. (1921). On the “probable error” of a co-
efficient of correlation deduced from a small sample.
Metron 1, 3-32.

Fisher, R. A. (1922). On the mathematical founda-
tions of theoretical statistics. Philos. Trans. R. Soc.
Lond., Ser. A 222, 309-368.

Good, 1. J. (1950). Probability and the Weighing of
Evidence. Charles Griffin.

Hisdal, E. (1988). Are grades of membership probabil-
ities? Fuzzy Sets Syst. 25, 325-348.

Jensen, F. V. (2001). Bayesian Networks and Decision
Graphs. Springer.

Kullback, S., and Leibler, R. A. (1951). On informa-
tion and sufficiency. Ann. Math. Stat. 22, 79-86.

Moral, S. (1992). Calculating uncertainty intervals
from conditional convex sets of probabilities. In UAT
’92. Morgan Kaufmann, 199-206.

Pearl, J. (1988). Probabilistic Inference in Intelligent
Systems. Morgan Kaufmann.

Walley, P. (1991). Statistical Reasoning with Imprecise
Probabilities. Chapman and Hall.

Wilks, S. S. (1938). The large-sample distribution of
the likelihood ratio for testing composite hypothe-
ses. Ann. Math. Stat. 9, 60-62.

Wilson, N. (2001). Modified upper and lower probabil-
ities based on imprecise likelihoods. In ISIPTA ’01.
Shaker, 370-378.

Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory
of possibility. Fuzzy Sets Syst. 1, 3-28.



