
Proof Theory
A selection of papers
from the Leeds Proof Theory Programme 1990

edited by

Peter Aczel
Urdversity of M a n c h e s t e r

Harold Simmons
University of M a n c h e s t e r

and

Stanley S. Wainer
University of Leeds

C O N T E N T S

Preface vii

Programme of lectures ix

S. W A I N E R and L . W A L L E N

B a s i c p r o o f t h e o r y 1

W. P O H L E R S

A s h o r t c o u r s e i n o r d i n a l a n a l y s i s 27

IL S C H W I C H T E N B E R G

P r o o f s as p r o g r a m s 79

W . B U C H H O L Z

A s i m p I i f i e d v e r s i o n of l o c a l p r e d i c a t i v i i y 115

S. BUSS

A n o t e o n b o o t s t r a p p i n g i n t u i t i o n i s t i c b o u n d e d a r i t h m e t i c 149

E . C I C H O N

T e r m i n a t i o n o r d e r i n g s a n d c o m p l e x i i y c h a r a c t e r i s a t i o n s 171

S. F E F E R M A N
L o g i c s f o r t e r m i n a t i o n a n d c o r r e c i n e s s of f u n c i i o n a l p r o g r a m s , I I .
L o g i c s of s t r e n g t h PRA 195
D. H O W E

R e f l e c t i n g i h e semantics of r e f l e c t e d p r o o f 227

M . R A T H J E N

F r a g m e n t s of K r i p k e - P l a t e k sei t h e o r y w i t h i n f i n i t y 251

J . T U C K E R and J . Z U C K E R
P r o v a b l e c o m p u t a b l e s e l e c t i o n f u n c t i o n s o n a b s i r a c t s t r u c t u r e s 275

Proofs as programs

H. SCHWICHTENBERG

Reproduced from 'Proof Theory' edited by Aczell, Simmons & Wainer.
© 1993 Cambridge University Press

Proofs as Programs
HELMUT SCHWICHTENBERG

Mathematisches Institut, Universität München

Suppose a formal proof of Vz3ySpec(x,y) is given, where Spec(x,y) is an atomic
formula expressing some specification for natural numbers x, y . For any par-
ticular number n we then obtain a formal proof of 3ySpec(n, y). Now the
proof-theoretic normalization procedure yields another proof of 3ySpec(n,j/)
which is in normal form. In particular, it does not use induction axioms any
more, and it also does not contain non-evaluated terms. Hence we can read
off, linearly in the size of the normal proof, an instance m for y such that
Spec(n, m) holds. In this way a formal proof can be seen as a program, and
the central part in implementing this programming language consists in an
implementation of the proof-theoretic normalization procedure.

There are many ways to implement normalization. As usual, a crucial point
is a good choice of the data structures. One possibility is to represent a term
as a function (i.e. a SCHEME-procedure) of its free variables, and similarly
to represent a derivation (in a Gentzen-style system of natural deduction) as
a function of its free assumption and object variables. Then Substitution is
realized as application, and normalization is realized as the built-in evalua-
tion process of SCHEME (or any other language of the LISP-family). We
presently experiment with an implementation along these lines, and the re-
sults up to now are rather promising. Some details are given in an appendix.

It is not the prime purpose of the present paper to discuss this implementa­
tion. Rather, we want to explore the theoretical possibilities and limitations
of a programming language based on formal proofs. The notion of proof is
taken here in a quite basic sense: the formal language is supposed to talk
about algebraic data structures (i.e. free algebras), and structural recur-
sion as well as structural induction is allowed. Hence we discuss Systems of
the strength of ordinary arithmetic. We will measure the strength of our
proofs/programs in terms of the so-called slow growing hierarchy G Q intro-
duced by Wainer and studied by Girard. We will give a new proof of the fol-

82 SCHWICHTENBERG: Proofs as programs

lowing result of Kreisel and (Girard 1981): Any function defined by a proof of
Vx3ySpec(x,y) is bounded by a function G a of the hierarchy with a below the
Bachmann-Howard ordinal, and conversely that for any such G Q there is an
atomic formula Speca(x,y) such that G a (n) < the least m with Speca(n,m), and
Vx3ySpec a(x,y) is provable, and hence for any proof of this fact the function
computed by that proof (considered as a program) grows at least as fast as
Ga.

On the more technical side, our work builds heavily on earlier work of (Buch­
holz 1987) and (Arai 1989). In particular, the material in Sections 1-3 on
trees, tree notations and the slow growing hierarchy is taken from Buchholz.
Also, the u>+-Rule below is derived from (a special case of) the Q-Rule in
(Buchholz 1987) (or more precisely of its "slow-growing" variant in (Arai
1989)), which in turn is based on earlier work of (Howard 1972). The new
twist here is that we make use of a technique of (Howard 1980) to measure
the complexity of a (finite) term/proof by (transfinite) trees; for this to go
through it is essential to use a natural deduction system and not a Tait cal-
culus as in (Buchholz 1987) or (Buchholz and Wainer 1987).

More precisely, we inductively define what it means for a (finite) term/proof
involving recursion/induction constants to be SDH-generated (for Sanchis-
Diller-Howard) with measure a (a transfinite tree) and rank m. One clause of
this inductive definition is called w+-rule and introduces uncountable trees.
In this setup it is easy to provide relatively perspicious and complete proofs
of the relations mentioned above between the slow growing hierarchy and the
functions computed by proofs/programs in arithmetical Systems.

1. T R E E S
We give an informal treatment of the tree classes 7a with <T < v, for some fixed
v < u>. For our later applications it will suffice to take v = 2. The material
developed here will later (in Section 2) give rise to a system of (finitary, or
algebraic) notations for such trees.

Let <T < w, and assume that T e for all Q < a is defined already. We then define
the tree class % inductively by the clause

T A . If a: I —• 7a is a function with 7 = 0, {0} or Te for some Q < a , then a e %.

Ii I = 0, then a : I —• Ta is denoted by 0. If / = {0}, then a : I —• Ta is determined
by a(0) =: ß and denoted by ß + . Ii I = T e , then a: I —• 7a is denoted by (<*c)ceTff

with a c := ot(C).
T0 consists of 0,0 + ,0 + + , . . . and hence is identified with the set N of natural

SCHWICHTENBERG: Proofs as programs 83

numbers. 7i is the set of countable trees. For example,

w '•= («) n € N € Ti

and more generally
•= (C)C€T, € T a + i ,

hence CJ = ft0-

Note that, since T a is defined inductively, the following principle of transfinite
(or Noetherian) induction on T a holds.

(Va 6 T„.V< G dom(a) : ̂ (a c) — y>(a)) — Va 6 T , :

Here y> is an arbitrary property of elements of T a .

Addition, multiplication and exponentiation of trees are defined as follows.

i. a + 0 = et

i i . a + /?+ = (a + ß)+

Üi. a + (/?c)<€Tr = (a + 0c)<€T#.

Then (a + ß) + 7 - <* + (/? + T); this can be proved easily by induction on 7.

i . a • 0 = 0.
i i . a (/ ? + l) = (a •/?) + <*.

i i i . a-(ft) C 6 7; = (a-/?c)<€T„.

Then a • (/? + 7) = a • ß + a • 7, and also (a • 0) • 7 = a • (ß • 7) .

i. *° = 1.

Üi. a(£<)<€^ = (a^) C € T < r .

Then = • a^, and also (a ^ = a ^ .

Using these arithmetical Operations we can now give some more examples of
trees.

U-2 = U > + L J = (U + n) n € N ,

J 2 - cj • u) = (u> . n) n € N ,

u , " = (u ; n) n e N

and similarly, for Q := Qi,

Q.2 = o + n = (n + c)c€T»,

84 SCHWICHTENBERG: Proofs as programs

n2 = a • n = (n • c)(€T,,

fin = (n<)(6Tl.

From now on we restrict attention to the tree class T„ for some fixed v < u .
We define collapsing functions Va : T„ —• T a + 1 for all er < v, by induction on T„.

i. ^ 0 :=Q a

i i . Va(a + 1) := (Va(a) • (n + 1)) „ € N

i i i . K ß O , then 2><r ((<*<)< er,) :=)<€T#.
iv. If (7 < /i + 1, then ^((a<)cer^+l) •=)neN where <0 := fy,, C»+i : = £ W n .

For a € D^a is similar to Q A o;0; the only difference is that in ii we have
n+1 instead of n (for technical reasons; cf. the proof of the Cut Elimination
Lemma in Section 4). However, the crucial clause in the definition of Va is iv,
which makes V0 defined for trees beyond 7V+i, and hence makes it a collapsing
function.

For example, V Q Q . X = (X>0Cn)n€T0 where Co = w, Cn+i = V 0 C n . Since V 0 a for a e TX

is similar to the exponential u>a, we can conclude that Z>0Qi is similar to the
tree (1 , W , W U ; , C J u , w , ...), which is usually denoted by e0.

From now on we restrict attention to trees built up from 0,1 by + and X>a, for
a < v . Such trees can clearly be denoted by elements of an appropriate free
algebra, hence by finitary notations.

2. T R E E N O T A T I O N S
Let D a for a < v be unary function Symbols; again v < u is a fixed number
(and v = 2 in Sections 4 and 5). We define a set T of terms and simultaneously
a set HT of principal terms inductively by

i . 1 G HT.

i i . If a G T and <r < v , then D a a G HT.
iii. If o i , . . . , o t G HT with k > 0, then (a u . ..,afc) G T.

The empty list () is denoted by 0. For the one element list (a) we often write
a; in this sense we have HT c T.

The elements of T are called tree notations, since for any oeTwe can define
its value val(a) G T„ by

i. val(l) = l ,

i i . v a A (D a a) = P a(val(a)),

SCHWICHTENBERG: Proofs as programs 85

i i i . val(ai , . . . , a k) = val(ai) H h val(cti).

For a, 6 € T we define a + 6 to be the concatenation of the lists a and 6. Then
clearly a + b e T , and also a + 0 = 0 + a = a, a-f (6 + c) = (a + 6) + c. We abbreviate
a 4- h a by a • n .

The subsets T < , C T and H T , C H T are to consist of those terms containing D M

with <T < fi only in a context D p a with p < a . More precisely, for any er < v the
sets T , and H T * are defined by

i. 1 G H T , .

i i . If a G T and p < <r, then D , a G H T , .
i i i . If a i , . . . , a * G H T , with k > 0, then (a i , . . . , a k) G T , .

Clearly val(a) G T , for a G T , .

T 0 consists of0 , l ,1 + 1,1 + 1 + 1,... and hence is identified with the set N of
natural numbers. Let u := D o 0 , Q := DiO and generally Q0 : = D a 0 . The fia's as
well as 1 are called regulär tree notations.

For any a G T we have val(a) G T„, i.e. val(a):7 T„ with 7 = 0, {0} or % for
some er < v. We now want to recover from a its type r(a), which is to be 0,1

or Q, if 7 is 0,{O} or T , , respectively. In the case r(a) = Q,, we also want to
recover from a its f u n d a m e n t a l sequence, i.e. notations a[z] e T with value
val(a)(val(z)), for all z G T , .

Let |0| := 0, |1| := {0} and := T , . For a G T we define r(a) G {0, l}U{n„ : er < i/}
and a[z] G T for 2 G \ r (a) \ by induction on a, as follows.

i. For a G {0,1} U {Q, : er < v) let r(a) := a and a[z] := z.

i i . For D a a with r(a) = 1 let r (D a a) := w and (D,a)[n] = (T^alO]) • (n + 1).

iii. For D a a with r(a) = Qe with g < er let r(D,a) := Qe and (D a a) { z) := £>aa[z].

iv. For D a a with r(a) = Qß+X with er < + 1 let r (D a a) := w and (D,a)[n] := Z},a[zn]
with z 0 := Q^, z„+i := DMa[z„].

v. r(ai , . . . ,ajt) := r (a k) and (a i , . . . , a k) [z] := (a^ . . . , a k - U a k [z \) .

Then clearly r(a) = 0 a = 0 and r(a) = 1 <=> a = a[0] + 1. Also, if a G T ,
and r(a) ^ 0,1, then r(a) = Qe for some Q < er, and in this case we have a[z] G T ,
for all 2 eTQ = \ r (a) \ .

Lemma 2.1. 7f a G T and z G |r(a)|, ilien val(z) G dom(val(a)) and val(a[z]) =

val(a)(val(z)).

Proof. First note that if r(a) = 0,1 or fi,, then dom(val(a)) = 0,{O} or T , . We
prove the Lemma by induction on a, and treat only Case iv, i.e. D a a with

86 SCHWICHTENBERG: Proofs as programs

r(a) = Q„+i and <r < /z + 1. Let val(a) = (a<)<€TM+1. Then by induction hypothesis

v a \ ((D a a) [n]) = v a \ (D * a [z n]) = V a (y s \ (a [z n])) = X>< 7av a l (,n)

with ZQ = QjijZn+i = D M a [z „] , and

val(D (Ta)(n) = 2>„(val(a))(n) = ^ a C w

with Co = ^Ai,Cn+i = £V<*c«- Hence it suffices to prove val(z n) = Cr». This follows
by induction on n from val(fip) = Q ß and

val(zn+i) = V ^ \ a \ (a [z n]) = ^ a v a l (< 8 n) = X>MaC n = C n + i - d

As a consequence, we can infer the principle of transfinite induction on T a ,

i.e.
(Va 6 T„.Vz € |r(a)| : p(a[z]) - <p(a)) -+ Va E T , : p(a),

from the principle of transfinite induction on Ta in Section 1. To see this,
assume the premise and let a e T a . We use transfinite induction on val(a) e T, .

It suffices to prove Vz € \ r (a) \ : <p(a[z]). So let z e \ r (a) \ . By Lemma 2.1
val(z) e dom(val(a)) and val(a[z]) = val(a)(val(z)). Hence val(a[z]) comes before
val(a) in the sense of the inductive generation of Ta. So <p(a[z]) by induction
hypothesis.

3. T H E S L O W G R O W I N G H I E R A R C H Y
Given a tree notation a £ T i and a natural number n, we may decide to climb
down the tree (which grows downwards), using n as a parameter. This is done
as follows. If the node we are at is formed by the successor Operation, then
we have to do some work to climb down one step. If on the other hand the
node is formed as a sequence (which must be of length <J, since a e T i) , then
we don't have to work but just slip down to the n-th element of the sequence.

If we count the pieces of work we have done until we reach a bottom node,
we get a natural number G a (n) . These functions G a : N —• N for a e Tx form
the so-called slow growing hierarchy; the formal definition is by transfinite
induction on a e T i , as follows

G 0 (n) = 0,

Ga+i(n) = G„(n) + l ,

G a { n) = G a [n] { n) if r(a) = w.

Note that G a + b (n) = G a (n) + G b (n) ; this can be proved easily by transfinite
induction on 6 e T\.

SCHWICHTENBERG: Proofs as programs 87

For example,

*,

G w [n] (n) = G n (n) = n,

Gw.(n+i)(n) = (n + 1) • G w (n) = (n + 1) • n,

G(Doi)(n+i)(n) = (n + 1) • G D o l (n) = (n + l) 2 • n,

G D o „ (n) = (n + l) n . n .

Hence, the functions G a with a built up from 0,1 by + and D 0 but without
nesting of D 0 are all polynomials.

The functions GA with a of the form D Q D ^ O will be used in Section 4 to
estimate the instances provided by existential proofs in arithmetic. We will
also show in Section 5 that this result is best possible, since any such G A is
bounded by a function provably total in arithmetic.

In order to achieve these results we need some monotonicity properties of the
GA- Since G k n = k and G ^ n - n, we cannot have that val(a) < val(6) implies
G a n < Gftn, for all n. Hence we introduce appropriate relations <k such that
a <jb 6 implies G a n < G b n for all n > k .

For a £ 0 let a~ := a[0] if r(a) = 1 or r(a) = w, and a~ := «[fy,] if r(a) = Q^+i- Let
a < k b iff we have a finite sequence a — a Q i a i , . . . , a n = 6 with n > 0 such that for
all i < n either at- = a t"+ 1 or r(a t+i) = <J and a,- = a,-+i[;] for some j with 1 < j < k.
Note that from a < k b and k < l we can obviously conclude that a </ 6. We
write a <jt 6 for a <fc 6 or a = b.

Some of our later arguments will be by induction on length(a), v/hich is defined
by

length(O) = 0,

length(l) = 1,

length(D<7a) = length(a) + <r + 1,

length(ai,.. . , ak) = length(ai) H h length(ajb).

Note that length(a + 6) = length(a) + length(6).

Lemma 3.1.
H a ^ O , then { D a a) - = D a a ~ .

Hb £ 0, then (a + 6)" = a + 6".
I f a j : 0 , then length(a~) < length(a).
Proof. i . If r(a) = 1 or w, then r { D a a) = LJ and

G k (n) =

G w (n) =

ÖDoi (n) =

G D o 2(n) =

GD o W (n) =

(D a a) - = (D a a) [Q] = (£U[0]) • 1 = £ U ~

gg SCHWICHTENBERG: Proofs as programs

If r(a) = with n + 1 < <r, then r { D a a) = and

(D 0 a) - = (Z ^ a) ^] = D ^ a ^] = D a a ~ .

If r(a) = Q p + i with <r < /i + 1, then r (D a a) = u and

(L U) ~ = (D a a) [0] = D ^ a ^] = jD<,<r\

i i . The claim follows from r(a + 6) = r(6) and (a + b)[z] = a + &[*].
i i i . By induction on a. Case Then a" = a[0] = 0 and the claim is
immediate. Case D a a , For a = 0 this is clear. For o /Owe have by i

length((D aa)") = length(D aa-)

= iength(a~) +er + 1

< length(a) + <r -f 1

= length(D aa).

Case a + 6. Similarly, using i i . •

Lemma 3.2.
i . If 60 <jb 6, t h e n a + 60 <* a + 6.

i i . If c ^ O , t h e n 1 <i c.
iii. If 6 <* a, tien D a b < k D a a .
iv. (D™a) + l < i i ? r (a + l) .

Proof. i . The claim follows from Lemma 3.1 ii together with r(a + 6) = r(6)
and (a + b)[z] = a + b[z].

i i . By induction on length(c). Case 1. 1 <i 1. Case u. 1 = w[l] <i w. Case
fyi+i- 1 <i ß/i <i ^/i+ii here 1 < ftM holds by induction hypothesis. Case
D a a with a ^ 0. 1 <i D a a ~ = { D a a) ~ <i D a a \ here the first inequality follows
by induction hypothesis, since length(a") < length(a). Case a + 6 with a,6 ^ 0.

1 <i a < i o-f 1 <i a + 6; in the last inequality we have used i and the induction
hypothesis.
iii . This follows from (D a a) - = D a a ~ and the fact that, if r(a) = w, then
T (D a a) =w and (Daa)[n] = Dffa[n].
iv. By induction on m. For 0 there is nothing to show, and in the induction
Step we have (D ? + l a) + 1 < x (D ^ + 1 a) • 2 = (£> a ((D™a) + 1))[1] <i £ > , ((£ > » + 1) <i

+ !)> where in the first inequality we have used i i , and in the last one
we have used the induction hypothesis and iii . •

Lemma 3.3.
i . I f r (c) = Q ^ + i and x,y G \ r (c) \ and x < k y , then c[x] < k c[y].

i i . If r(c) = fi^+i and x € \ r (c) \ , then c[x] + 1 <i c[x 4-1].

SCHWICHTENBERG: Proofs as programs 89

iii. If r(c) = u>, then c[n] + 1 <i c[n + 1].

Proof. i . By induction on length(c). Case fi^+i. Obvious, since Qp+i[z] = z.

Case D a a . Then r(a) = Q^+i and / i + 1 < <r, hence

(D 9 a) [x) = D 9 a [x] < k D a a [y) = (D . a) \ y] t

by induction hypothesis and Lemma 3.2 i i i . Case a + 6. Then r(6) = Q ß + i and

(a + b)[x] = a + 6[x] <* a + 6[y] = (o + b) [y) .

i i . By induction on length(c). Case Q^+i. Obvious, since fyi+i[z] = z. Case JD aa.

Then r(a) = Q^+i and y, + 1 < er, hence

(D aa)[s] + 1 = D a a [x] + 1 <i + 1) <i D a a [x + 1] = (D a a) [x + 1]

where in the first inequality we have used Lemma 3.2 iv, and in the second
one the induction hypothesis and Lemma 3.2 i i i . Case a + 6. Then r(6) = Q M + 1

and
(a + b)[x] + 1 = a + 6[x] + 1 <i a + 6[x + 1] = (a + 6)[x + 1].

i i i . By induction on length(c). Case u. Then w[n] + 1 = n + 1 = w[n + 1]. Case
D a a with r(a) = 1. Then

(D 9 a) [n] + 1 = (£U[0]) • (n + 1) + 1 <i (£U[0]) • (n + 2) = (ZU)[n + 1].

Case D a a with r(a) = C J . Then

(D „ a) [n] + 1 = (D a a [n \) + 1 <x A,(a[n] + 1) <! D a a [n + 1] = (£ U) [n + 1].

Case £> f fa with r(a) = Q ß + i , (r < p + 1. Then (£><,a)[n] = D^Zn] with z0 -

z n + 1 = D ^ a [z n] . It suffices to prove

Zn + 1 <1 *n+l> (1)

for then we obtain

(Z W * «]) + 1 <i Ar(a[z n] + 1) < i D a a [z n + 1] <j D<,a[zn+i],

using i i , (1) and i . We prove (1) by induction on n. The base case follows
from

+ 1 < i P / . 0) • 2 = < i Z V < i D f i a [Z k ß] %

and the induction step follows from

+ 1 <i D ^ a l z n] + 1) <! D ß a [z n + 1] <i D M a [z n + 1] ,

SCHWICHTENBERG: Proofs as programs 90

where we have used i i , the induction hypothesis and i . Case a-f 6 with r(6) = w.
Then

(a + b)[n] + 1 = a + b[n] + 1 < x a + b[n + 1] = (a + 6)[n + 1] 0

Now we can prove the monotonicity properties of the functions G a we were
looking for.

Lemma 3.4. (Monotonicity Properties of the G a)
i. Ifb <k a and k < n , then Gb(n) < Ga(n)

iL G«(n) < G « (n + l) .

Proof. i . By transfinite induction on a G T I . Case e r . If r(a) = 1, we have

G a - (n) < G « - (n) + l = G«(n) .

If r(a) =w, we have a~ = a[0], and by Lemma 3 .3 iii we know a[0] <i a[n). Hence
by induction hypothesis

G a - (n) = G a [0](n) < G a [n] (n) = G.(n).

Case a[j] with 1 < j < ib. Then again by Lemma 3 . 3 iii we have a[j] <i a[n],
hence by induction hypothesis

G«[fl(n) < G o [n] (n) = G a (n) .

i i . By transfinite induction on a G T i . Case 0. Go(n) = 0 = Go(n + l) . Case a-f 1.

G « + i (n) = G a (n) + 1 < G a (n + 1) + 1 = G a + i (n + 1),

by induction hypothesis. Case r(a) = u .

G a (n) = G a [n] (n) < G a [n] (n + 1) < G a [n + 1] (n + 1) = G a (n + 1)

by induction hypothesis and Lemma 3 .3 iii together with i . •

We finally prove a Lemma on the functions G a which enables us to shift a
depence on n from the index into the argument. This will be used in Section 4.

Lemma 3.5. L e t a = D 0 (c • (n + 1)) w i t h c = / ^ (f i , • m) a n ^ 1 < m < n, and
f u r t h e r m o r e d = D o D ^ + 2 0 . Then we have G a (l) < G d (n) .

Proof. First note that

c.(n + l) = (D H ß , . m)) . (n + l)

= (D 9 (D ? - l (Q 0 . m) + l)) [n]

< n D(7(Da

n~1(üa • m) + 1)

<i D ? (f l a - (m + l))

= D ? ((D , l) [m])

<m

SCHWICHTENBERG: Proofs as programs 91

Hence we obtain, using Lemma 3.4 i and ii

G£>0(c-(n+i))(l) < Gz>0(c-(n+i))(n) < GDoDm^0(n)£3

4. A N E S T I M A T E O F I N S T A N C E S I N E X I S T E N T I A L P R O O F S
We now set up a formal system of terms involving recursion Operators and
on top of it a formal system of derivations involving induction axioms. It is
possible and convenient to treat both simultaneously; we use r , s } t to denote
terms as well as derivations.

For any term/derivation r we define inductively what it means for r to be
SDH-generated with size a (a tree notation) and rank m; we write r for
this. Note that r is a finite term/derivation here, i.e. it is not expanded into
an infinite object using some kind of w-rule. The transfinite analysis of r
comes in at the level of transfinite SDH generation trees for such r, whose
size is measured by our notations for (transfinite) trees treated in Section 2.
The inductive definition of r involves an u;+-Rule, which is used for an
appropriate analysis of terms/derivations containing recursion/induction.

We start out with the easy Observation that for any term/derivation r we
can find an SHD generation tree of size Qk and rank m, for some k and m
reflecting the levels of recursion/induction Operators in r. Hence we get H£*r.
Then we use a Cut Elimination Lemma to bring the rank m down to zero, at
the expense of rising the size Qjfc to D^(QJb); so we get

, D?(rtt)

Now we can apply a First Collapsing Lemma, which says that if hg r with r
closed, then h ^ 0 ^ |r|, where |r| is the numeral denoting

• the value of r in case r is a term, or
• the value of some correct instance provided by r in case r is a closed derivation

of an existential formula 3t/Spec(n,y) with an atomic formula Spec.

Hence we get
^ ° ß " (n 4) | r | .

But SDH generation trees of rank 0 for numerals can be easily analysed: From
hgn with a G Ti we first get r-Jfa(1)n by the Second Collapsing Lemma and then
n < G a (l) by the Value Lemma. So altogether we have

and by Lemma 3.5 this essentially suffices for our desired estimate.

92 SCHWICHTENBERG: Proofs as programs

We now carry out this program. First we have to say exactly what we mean
by a term and by a formal proof. Our definition is guided by the following
considerations. It should be possible to

• view a formal proof as a A-term (i.e. a SCHEME procedure) which has
the derived formula as its type, such that normalization will correspond to
evaluation, and to

• carry out an ordinal (or better tree) analysis of formal proofs by the SDH-
technique.

Since the SDH-technique also refers to A-terms, it seems appropriate to use
the -+V-fragment of Gentzens natural deduction calculus, for then the logical
rules are just introduction and elimination rules for —• and V, which correspond
exactly to A-abstraction and application.

The first thing to note is that we don't loose anything by this restriction to
the —»V-fragment, and in particular don't need any special axioms to recover
classical arithmetic. To see this, we first show that for any atomic formula
A (x) we can derive its stability V x . - i - > A (x) —• A (x) . This is done as follows.
Atomic formulas are taken as terms atom(r) of type prop, with r a term of
type boole and atom a constant of type boole -+ prop. In particular, falsity J_ is
defined as atom(ff) with ff a constant of type boole; then -><p is defined to be
(p —> ±. Using boolean induction y>(tt) —• <p(-ti) —• Vpy>(p), first prove

Vp, q. atom(p D ?) H (atom(p) -+ atom(g))

where D is a constant of type boole -+ boole -+ boole corresponding to implica-
tion; here we need the truth axiom atom(tt). Using this it is easy to prove

N/p.-*-« atom(p) —• atom(p),

again by boolean induction.

Now we can Substitute a boolean term r (x) for p, and with A (x) := atom(r(z))

we obtain V x . ^ A (x) —• A (x) .

Using induction on —•V-formulas it is easy to derive ->-><p —• <p from the stability
of atomic formulas. Now defining

(p V ip by -><£> —• ->•»/> —*• J_,
3 x < p (x) by - i V x - n p (x) ,

we can derive exactly the same formulas as in classical arithmetic.

SCHWICHTENBERG: Proofs as programs 93

For brevity we do not give all details of our notion (and implementation) of
term/derivation, but only collect those features which are relevant for our
later arguments.

1. Terms have types, built up from ground types (here, for simplicity, just nat)
by (g —• er). Particular terms are the construetor constants 0 of type nat, S of
type nat nat and the recursion constants

R of type g —• (nat — • £ — • #) — • nat —• g.

Any type has a level, defined by

lev(r) = 0,

\ev(g —• er) = max(lev(^) + 1, lev(<r))

with r a ground type.
2. Since formulas are for derivations what types are for terms, we also need the

notion of the level of a formula

lev(i4) = 0,

\ev(<p —* xp) = max(lev(y?) + 1, lev(^)),

\ e v (V x (p (x)) — max(lev(nat) + l,lev(<p))

with A atomic. Note that for simplicity we only consider formulas with quan-
tified variables of level 0.

3. D e r i v a t i o n s derive formulas. Particular derivations are the induction axioms

R of the formula y?(0) — (Vz.p(x) < p (S z)) — Vxp(x),

the truth axiom of the formula T and possibly some other axioms (or con­
struetor constants for derivations) of true ü-formulas, i.e. formulas with only
quantifier-free premises in implications.

4. If r derives 0, then \ u * r derives <p —* ̂ . Similarly, if r has type <r, then \ x e r has
type g—><T. If r derives i p (x) and if no assumption variable free in r assumes a
formula with x among its free variables (this is known as variable c o n d i t i o n) ,
then X x r derives Vx<p(x).

5. If r derives <p xp and s derives y>, then rs derives xj>. Similarly, if r has type
g —> a and s has type g, then rs has type a . If r derives Vx<p(x) and s has type
nat, then rs derives y?(s).

6. Any term/derivation has a uniquely determined long normal form, where for
R we have the usual conversion rules R r s O •-»• r and Rrs(St) ^ st(Rrst). For
example, if F is of type (nat —• nat) —(nat nat) and g is of type nat —• nat,

then the long normal form of

g is X x . g x

94 SCHWICHTENBERG: Proofs as programs

F is X z x . F (X y . z y) x

F g is X x . F (X y . g y) x

We identify terms/derivations with the same long normal form.

For any term/derivation r let lev(r) denote the level of its type/formula.

For terms/derivations r with lev(r) = 0, tree notations a £ T (see Section 2,
taken with v = 2) and m € N we define inductively the relation h ^ r, to be
read r is SDH-</enera£ed with size a and rank m, by the following rules.

Variable R u l e . If r - ^ U y l for i = 1,..., n with n > 0, then h ^ + 1 xt\.. .tn.

C l o s u r e Rule 0. h^O.
C l o s u r e Rule S . If h ^ r , then h ^ + 1 Sr.
Lemma R u l e . Let L be a lemma asserting a true ü-formula <p. If h£> r,-$ for
t = 1,..., n with n > 0, then h ^ + 1 L r .
u;+ - R u l e . If r(a) = Q, h^~ « and Vz G T i V n . hg n — h ^ 1 Ä r s n f , then h ^ Ärrff.

< i - R u l e . If hj^r and 6 <i a, then h ^ r .
Ctzi Äu/e. If h ^ r y with lev(r) < m and ^ U y i for i = l , . . . , n with n > 1, then

More precisely, we first inductively define h ^ r for a e T i by the rules given
excluding the w+-Rule, and based on this relation we then define h ^ r for
a e T by all the rules given.

Variable Lemma 4,1. I f c ^ O and lev(x) < k, then h^*xy.

Proof. By induction on lev(x). By induction hypothesis h ^ * " ^ hence
h c

m

(f c * 1) + 1 x y by the Variable Rule, hence \-c

m

kxy by the <i-Rule. •

Substitution Lemma 4.2. I f h ^ r and \-b

mSjyj with lev(s ;) < m for j = 1,..., n ,
t h e n r - b + * r £ [s \ .

Proof. By induction on hj^ r. We write t* for <f [5]. Variable R u l e . By induction
hypothesis h £ + a t^yl, hence h ^ a + 1 x t j . . A*n by the Variable Rule. Now if x is
one of the variables Xj to be substituted by s ;, we must use the Cut Rule
instead of the Variable Rule. This is possible since lev(s;) < m by hypothesis
and hf^"a Sjjjj by hypothesis and the <i-Rule. Then (if n > 0) the Cut Rule
yields hj^" 0 + 1 s;-<J...t*, as required. In case n = 0 there are no *»'s and we
have used the Variable Rule to generate h^ + 1 x ; - . But then h j ^ ° + 1 SJ holds by
hypothesis and the <i-Rule. For all other rules the claim follows easily from
the induction hypothesis and the same rule. •

SCHWICHTENBERG: Proofs as programs 95

Cut Elimination Lemma 4.3. J f h ^ + 1 r , then h £ l f l r .

Proof. By induction on h ^ + 1 r. Variable R u l e . By induction hypothesis
r-£»fl«,-öS, hence h („ ? i a) + 1 ztx...tn by the Variable Rule, hence h £ l (f l + 1) xtx.. .tn

by the <i-Rule. C l o s u r e Rule 0. Note that 1 <i D i l . Hence h ^ 1 0 by the
<!-Rule. C l o s u r e Rule S. By induction hypothesis h £ l 0 r , hence h £ ? i a) + I Sr

by the Closure Rule 5, hence h £ l (a + 1) Sr by the <!-Rule. Lemma R u l e . By
induction hypothesis h ^ i a r ^ , hence h £ f l ö) + 1 L r by the Lemma Rule, hence
h £ l (a + 1) L r by the <i-Rule. u + - R u l e . Then h ^ + 1 Ärstf has been inferred from
r (a) = ß , h«r + 1t, a n d

Vz € T i V n . h j n —"l~m+i Ä ™ * .

By induction hypothesis h £ i a ~ < , and

V* e T i V n . hg n - + h £ i a (2 l Rrsnt.

Now D i a " = (Dia)~, and since r(a) = Q we have D x a [z] = (Dia)[z]. Hence
h £ i a Ä r s * f by the w+-Rule. < x ~ R u l e . By induction hypothesis h £ l 6 r . Since
from 6 <i a we can infer D x b < x D x a , we get h £ l f l r by the <i-Rule. C u t
R u l e . By induction hypothesis h £ i a r y and h£ i a t ;yj . Since lev(r) < m+ 1, we
have lev(fi) < m and hence h £ > a + D i a H t ...tn by the Substitution Lemma. But
(D x (a + l)) [l] = D i a + D i a , so h £ , (a + 1) . . .tn by the <i~Rule. •

We now want to prove the Collapsing Lemma mentioned above. For its
formulation we need the notion of the first instance \r\ provided by a refutation
r of U ~ a s s u m p t i o n s . So let r be such a refutation, i.e. a derivation of a closed
false atomic formula from assumptons u, :^ , y?< closed n-formulas and <pi true
if <fi is quantifier-free. Note that we identify derivations with the same long
normal form, so we can always assume r to be normal. Hence r must be of
one of the two forms below. In particular, it cannot contain induction axioms
any more.

Case r = Uif. If all derivations r t among f actually derive true formulas
(which can be decided, since the formulas are quantifier-free and can clearly
be assumed to be closed), let |r | be the list of all | r ; | , r;- term among f. Oth-
erwise, let |r | be | r f u | , where r,- is the first derivation among r deriving a false
quantifier-free formula and u are lemmas or assumptions of true formulas.

Case r = Lr with L a lemma. Then some r» among f must derive a false
quantifier-free formula, since r derives a false formula and the lemma L is
assumed to be true. Let |r| be | r t u | for the first such r:-, with u lemmas or
assumptions of true formulas.

96 SCHWICHTENBERG: Proofs as programs

First Collapsing Lemma 4.4. Suppose hg r w i t h r a closed term of type
nat or eise a r e f u t a t i o n of U - a s s u m p t i o n s . Let \r\ be the n u m e r i c a l v a l u e of r
(in case r is a t e r m) , or the maximum v a l u e i n the first instance p r o v i d e d by
r (in case r is a d e r i v a t i o n) . Then h £ ° a | r | .

Proof. By induction on hg r. Variable Rule. Then r = u,f, and h g + 1 u , f has
been inferred from hg ny. If all derivations r; among f derive true formulas,
then by definition |r| is the list of all |r,-|, r;- term among r, and h^° a | r j | holds
by induction hypothesis, hence h £ o (a + 1) |r;-| by the <i-Rule. Otherwise, again
by definition |r| = |rtt7| where rt- is the first derivation among f deriving a false
quantifier-free formula and ü lemmas or assumptions of true formulas. Then
h £ ° a |r ,u| holds by induction hypothesis, hence h £ ° (a + 1) \riü\ by the <i-Rule.
C l o s u r e Rule 0. Clear, since h £ o 1 0 by the <i-Rule. C l o s u r e Rule S . By
induction hypothesis h £ ° a | r | , hence r-$°a+1 S\r\ by the Closure Rule 5, hence
|_z>o(a+i) 5 | r | b y t h e < i - . R u i e ? a n c j | 5 r | _ 5 | r | # Lemma Rule. Then r = L f ,

and h g + 1 Lf has been inferred from hg r ty. By definition |r | = | r t u | for some n
among r deriving a false quantifier-free formula with ü lemmas or assumptions
of true formulas. By induction hypothesish^00 | r ,u | , hence h ^ o (a + 1) | r t u| by the
<i-Rule. u + - R u l e . Then hgÄr 0 s*rhas been inferred from r(a) = hg" t , and

Vz e T i V n . hg n ^ h ^ 1 Rr0snt.

We have to show h £ ° a \ R r 0 s k t \ with k : = \t\. From r(a) = Q we get r (D 0 a) = w and
(D0a)[n] = D 0 a [z n] with z 0 = u>, z n + 1 = £> 0 a[z„] , hence zi = D 0 a [w] - D 0 a ~ . Since
D 0 a ~ = (D 0 a)~ , the induction hypothesis yields h (

a

D ° a) k. Since (D 0 a) ~ £ T i , we
get h o t (£ > o a) ^ |#r0sfcf| from our assumption, so again the induction hypothesis
yields hJ > o a l (D ° a) " 1 |Är 0$Jbf|. But D 0 a [Z l] = { D 0 a) [l] , so the <!-Rule gives h £ ° a

\Rr0skt\. < i ~ R u l e . By induction hypothesis h £ ° 6 | r | , hence h £ ° a |r | by the
<!-Rule. •

Second Collapsing Lemma 4.5. If hgn with a € T i , fchen h o a (1) n .

Proof. By induction on hg n. C l o s u r e Rule 0. h £ l (1) 0 since Gi(l) = 1. C l o s u r e
Rule S. By induction hypothesis h ^ a (1) n, hence h £ a + l (1) Sn by the Closure
Rule S, since G a +i(l) = G a (l) + 1. <\—Rule. By induction hypothesis h 0 n,
hence h ^ a (1) n by the <i-Rule, since from 6 <i a we can conclude G 6(l) < G a (l) .
•

Value Lemma 4.6. If hjjn, tAen n < Ar.

Proof. By induction on hj n. C l o s u r e Rule 0. Clear, since |0| = 0. C l o s u r e
Rule S . By induction hypothesis n < k, hence Sn < k + 1. < X - R u l e . Note first
that from 6 <i k we can conclude 6 e T 0 and hence that 6 is a numeral / with
l < k . By induction hypothesis n < /, hence n < fc. •

SCHWICHTENBERG: Proofs as programs 97

We now construct an "initial" SDH-generation tree for any term/derivation
r. The main point here is that by using the Cut Rule we can sort of "short-
cut" an enormous SDH-generation tree. Consider for example an application
term (\xr)$ where $ may be complex and r may contain many occurrences
of x. The shortcut is achieved by considering instead of (Axr)s, which may
have a complex normal form, the two terms (Axr)y (with a variable y) and s

separately.

Embedding Lemma 4.7. Assume t h a t all subterms/subderivations of r
have levels < m. Then we can u n d k such t h a t h{*'* ry

Proof. By induction on r. Case x. The claim follows from the Variable
Lemma with k := lev(x) + 1. Case L . By the Variable Rule, the Lemma Rule
and the <i-Rule we have r - Q (* + 1) Ly if lev(yj) < k. Case R . Consider Rywxy.

We want to apply the u>+-Rule to get h m (f c + 1) Rywxy with k = lev(y). Since
trivially r(Q • (k + 1)) = Q and h ^ n " (* + l) r x we only have to show

Vz G T i V n . h 2

0 n - h £ * + * Rywny.

This is done by induction on hg n. C l o s u r e Rule 0. Since RywQy is identified
with yy it suffices to show * + 1 yy. Since lev(y,) < ib, this follows from the
Variable Lemma and the Variable Rule. C l o s u r e Rule S. By induction hy­
pothesis h % k + z Rywny. Since Ryw(Sn)y is identified with wn(Rywn)y it suffices
to show \ - m k + z + i wn(Rywn)y. This follows from the Variable Rule, since from
\ - z

0 n we get l-Q k+* n by the Substitution Lemma. < X - R u l e . The claim follows
from the induction hypothesis and the <i-Rule. Case 0. Obvious. Case S.
By the Variable Rule h^y, hence h £ y by the <i-Rule, hence h £ + 1 Sy by the
Closure Rule 5 , hence h £ 2 Sy again by the <i-Rule. Case Axr. By induc­
tion hypothesis f -£* ry, which says h £ * (Axr)xy, since both terms have the
same normal form and hence are identified. Case t s . By induction hypothesis
h £ * * y y and r-%k sx. Also r-£' f cy,-y;. Note that by the <i-Rule we can assume
that we have the same k in all cases. Then \-%k+ltsy by the Cut Rule, hence
h%(k+1)tsy by the <!-Rule. •

Now we obtain the desired estimate of instances in existential proofs, in terms
of the slow growing hierarchy.

Theorem 4.8. Let r be a closed term of type nat —• nat. Then there is an m
such t h a t for all n > m

\ r n \ < G D 0 D ? + * o (n) -

S i m i l a r l y , l e t r be a closed d e r i v a t i o n of a closed f o r m u l a Vx3ySpec(x,y) w i t h
Spec(x,y) atomic, a n d l e t u:Vy-»Spec(x,y) be an assumption v a r i a b l e . Then
there is an m such t h a t for all n > m

\ r n u \ < G D o D T + 2 Q (n) .

98 SCHWICHTENBERG: Proofs as programs

Proof. We only treat the second part, since the proof of the first part is
identical (just leave u out). Consider r (S x) u . By the Embedding Lemma 4.7

we find an m such that h £ m r (S x) u . Hence hg r (S x) u with c := D J 1 (£2 • m) by
the Cut Elimination Lemma 4 .3. Since h g n (n - 1) (by the Closure Rules and
the <i-Rule) we get h o (n + 1) m u by the Substitution Lemma 4.2, and then
hg \rnu\ with a := D 0 (c • (n + 1)) by the First Collapsing Lemma 4.4. Hence
\mu\ < G a (l) by the Second Collapsing Lemma 4 . 5 and the Value Lemma 4.6.
So by Lemma 3 . 5 we get \ r n u \ < G < t (n) with d := D Q D ^ ^ O , for all n > m. •

5 . C O M P L E X E X I S T E N T I A L P R O O F S
We have just seen that for any closed derivation r of a closed formula of the
form Vx3ySpec(x,y) with Spec(x,y) atomic there is an m such that for all n > m
the instance \ r n \ provided by the existential derivation 3ySpec(n,y) is bounded
by G D o D m + 2 Q (n) . We now show that this bound is sharp: We consider the
particular specification

(D o £>r + 2 0)M y = °-

By Section 2 we already know that

Vx3y(D 0 Z>r + 2 0)W y = 0

is true; here we show that for any m this formula is actually derivable in an
arithmetical system. Since by the definition of the slow growing hierarchy in
Section 3 the least k such that (D0D™+2Q)[n]k = 0 is > G D o D m + 2 0 (n) (if we let
a[n] := a[0] for r(a) = l), we can conclude that the bound of Section 4 is best
possible.

The arithmetical system we work with is taken to deal with tree notations
directly. However, of course we do not use any kind of transfinite induction
but only structural induction on the build-up of tree notations. More pre­
cisely, we take the system T of tree notations treated in Section 2 based on
the fixed v = 2; let a,b,c,z ränge over T . Then the function a[z] giving the
z - t h element of the fundamental sequence for a is defined by the structural
recursion in Section 2. We also use a [z] k : = a [z) [z] . . . [z] .

Let Wn = { a e T i \ 3 k a [n] k = 0}, and call a formula tp(a) n - p r o g r e s s i v e if

Va.W e |r(a)| n : ? (a [z)) - tf«)

where := Wn, | w | n := {n}, | l | n := { n } and ||0||„ := 0.

Lemma 5 . 1 . Let ip(a) be the f o r m u l a D 0 a € W n . Then (p(a) is n - p r o g r e s s i v e ,
i.e.

Va.Vz € |r(a)| n : D 0 a [z] G Wn —• D 0 a 6 Wn

SCHWICHTENBERG: Proofs as programs 99

Proof. Let a be fixed. Assume

V z e l T (a) \ n ' - D 0 a [z } e W n . (1)

We have to show that D Q a £ Wn, i.e. that 3 k (D 0 a) [n] k = 0. Case a = 0. The
claim follows from u[n] = n and m[n]k = m - k. Case r(a) = 1. Note first that
the set Wn clearly is closed against addition. Since (D 0 a) [n] = (D 0 a [n]) • (n + 1),

the claim follows from (1), which in our case is D 0 a [n] £ Wn. Case r (a) - w.

Then (D 0 a) [n] = D 0 a [n] , and D 0 a [n] £ Wn by (1). Case r (a) = Q. Then (D o a) [0] =

D 0a[w], (D 0 a) [m + 1] = D o a [(D 0 a) [m]] . We show (D0a)[m] £ Wn by induction on
m. For m = 0 we get jD0a[w] £ Wn by (1), since u £ Wn (see Case a = 0). For
the induction step we can assume (D o a) [m] £ Wn. But then D o a [(D 0 a) [m]] £ Wn

by (1). •

Lemma 5.2. If the f o r m u l a \j){o) i s n - p r o g r e s s i v e , then so i s

i p m (a) := Vc.^(c) — ^(c + Dia) .

Proof. Let *p(a) be n-progressive, i.e.

Va.Vz € | r (a) |„ : V(a[z]) - *(a). (2)

We have to show that ip*(d) is n-progressive. So let a be given and assume
that

Vz € | r (a) |„Vc . t f (c) - *(c + DmM). (3)

We must show t/>*(a). So let also c be given and assume i p (c) . We have to show
il>(c + D \ a) . By (2) it suffices to prove

V z G | | r (D 1 a) | | n : ^ c + (D 1a)W). (4)

Case a = 0. We must show Vz G W„ : V(c + z), i.e. z G T i —• z[n]* = 0 ->
T/)(C + z). This is done by induction on Jb. For k = 0 the claim follows from our
assumption *p(c). For the induction step, assume z £ T i . Then ||r(z)||n = {n}

(if z / 0, but the case z = 0 is obvious). Hence by (2) with c + z for a it
suffices to show ^(c + z[n]). But since (z[n])[n]* = z[n]* + 1 = 0 this follows from
the induction hypothesis. Case r(a) = 1. We must show ip(c + (£>ia)[n]) , i.e.
V>(c+(£>ia[n])-(n+1)) . We prove V>(c+(I>ia[n])-m) by induction on m. For m = 0 we
have *p(c) by our assumption. For the induction step, (3) with c+(Dia[n])-m for
c and the induction hypothesis yield ^(c+(Dia[n])-m+Dia[n]). Case r (a) =

Since in this case r(£>ia) = r(a) and (£>ia)[z] = £>ia[z] we get the claim (4) from
(3) and our assumption i > (c) . O

100 SCHWICHTENBERG: Proofs as programs

Theorem 5.3. For any m, we can f o r m a l l y p r o v e i n a r i t h m e t i c

Vx3y(A)Z?rO)M y = 0.

Proof. We give an informal proof which can easily be formalized. Let n be
fixed. Since the formula <p(a) = D 0 a e W n is n-progressive by Lemma 5.1,
we know from Lemma 5.2 that also y>*(a), y?**(a),.. .,y?m(a) are n-progressive.
Hence we have ^ m (0) , hence < p m ~ l { D \ G) by the definition of hence induc­
tively ^ p ? - 1 *)) , hence ^ (DfO) , hence 3y(D0DT?0)[n)» = 0. •

Note that in this proof we had to use induction axioms of complexity (alter-
nating quantifiers) depending on m. The main idea here, i.e. the definition
of j>*(a) as a kind of "lift by an exponential of a", again goes back to early
work of Gentzen.

A P P E N D I X : A N I M P L E M E N T A T I O N O F P R O O F S
We now describe in some more detail our implementation of arithmetical
terms and proofs, specifically of the proofs of the combinatorial theorems
in Section 5. These proofs are of particular interest since — in spite of
their simplicity — they exhaust the strength of arithmetic, in the sense that
although V n 3 k (D o D ? Q) [n] k = 0 is provable for any fixed m, the general theorem
V r n V n 3 k (D o D x

l 0) [n] k = 0 is not. We also use these implemented proofs to discuss
the proofs-as-programs paradigm, and report on some experiments where we
have used some of these proofs as programs. Finally we have some comments
on how our implementation of proofs relates to others (like Lambda and
Isabelle).

Obviously normalization of proofs is the central subject for the use of proofs
as programs, and as already mentioned in the introduction, we implement
normalization by the built-in evaluation mechanism of SCHEME. This is pos-
sible since we can work with the -+V-fragment of Gentzen's natural deduction
calculus, for then the logical rules are just introduction and elimination rules
for —> and V, which correspond exactly to A-abstraction and application.

However, to carry out this plan we have to overcome a difficulty: Derivations
in natural deduction style generally contain free assumption variables u:<p
where tp can be any formula. Now when we want to normalize this derivation
by evaluating it, we have to assign something to the variable u:<p. A moments
reflection will show that this should be a procedure of the same "arity" a x —•
... -+ a n —• 0 as the formula <p (where the arity a(<p) of a formula (p is defined by
a (A) = 0 for an atomic formula A , a(<p —• t/>) = a(<p) —• a (i p) and a(Vxy?) = 0 —• a(<p)

), and should be such that when it is applied to argument procedures / i , . . . , / n ,

SCHWICHTENBERG: Proofs as programs 101

then the outcome should be a term where n is a lambda-term whose
value is fc. We call this procedure the result of making u self-evaluating at
the arity of the formula (p attached to u. From the above description it is
rather clear that a precise definition of how u is made self-evaluating will
involve another Operation of independent interest, which inverts evaluation
in the following sense: When it is given a procedure obtained by evaluating
a (typable) lambda-term, it returns a lambda-term which evaluates to this
very procedure.

An implementation of such Operations make-seif-evaluating and proc-
>expr in SCHEME can be given by simultaneous recursion: (For a treatment
of the same problem in the general theory of functional programming lan-
guages, which avoids SCHEME's operational gensym-construct for creating
new bound variables, cf. (Berger and Schwichtenberg 1991)).

(define (mse expr ar i ty) ;mse for make-seif-evaluating
(i f (equal? 0 ar i ty)

expr
(lambda (arg)

(mse (l i s t expr (proc->expr arg (arg-arity a r i ty)))
(va l -a r i ty a r i ty)))))

(define (proc->expr proc a r i ty)
(i f (equal? 0 ar i ty)

proc
(let* ((arityO (arg-arity a r i ty))

(symbol (gensym-of-arity arityO)))
(l i s t 'lambda (l i s t symbol)

(proc->expr
(proc (mse symbol arityO))
(va l -a r i ty a r i ty))))))

Another point in our implementation of proofs is that we want to shift the
"computational part" of an arithmetical proof as much as possible to a rewrite
system. Hence terms occurring in formulas are always normalized according
to the recursive definitions of the function symbols occurring in the term.
Since normalization is done by evaluation, we have to deal with the same
problem just discussed for derivations. The Solution is the same: make the
free variables self-evaluating. However, since we only treat first-order terms
we can make a variable self-evaluating by just quoting it. So we want e.g.

102 SCHWICHTENBERG: Proofs as programs

((+-nat 2) 3) => 5
((+-nat 2) 'x) => ((+-nat 2) x)
((+-nat 'x) 0) => x
((+-nat 'x) 2) => (suc-nat (suc-nat x))
((+-nat 2) (suc-nat 'x)) => (suc-nat ((+-nat 2) x))

This can be achieved if we define +-nat by:

(define +-nat (lambda (m) (lambda (n)
(cond ((zero-nat? n) m)

((suc-nat? n) (suc-nat ((+-nat m) (pred-nat n))))
(eise (l i s t (l i s t '+-nat m) n))))))

Here we have used

(define (suc-nat x) (i f (and (integer? x) (not (negative? x)))
(+ 1 x)

(l i s t 'suc-nat x)))

(define (zero-nat? x) (and (integer? x) (zero? x)))

(define (suc-nat? x)
(or (and (integer? x) (positive? x))

(and (pair? x) (equal? 'suc-nat (car x)))))
(define (pred-nat x)

(cond ((and (integer? x) (positive? x)) (- x 1))
((and (pair? x) (equal? 'suc-nat (car x))) (cadr x))
(eise (error "can't form" 'pred-nat x))))

*-nat is defined similarly.

To implement proofs we first have to build formulas from terms. Since the
formulas serve as types in derivations and in particular determine which rules
are to be applied we must be careful never to "compute" say propositional
formulae, since this will destroy their logical form and hence spoil the cor-
rectness of a derivation. So we distinguish between boolean objects on the
one side (where the propositional connectives can be computed) and formulas
or objects of type prop on the other side (where such computations are not
allowed). Specifically, equality is taken as a binary boolean-valued function
=-nat, i.e. ((=-nat 3) 5) evaluates to the boolean object #F (also denoted

SCHWICHTENBERG: Proofs as programs 103

by ()), whereas the corresponding prime formula is given by (atom ((=-nat
3) 5)) (which evaluates to (atom ()), our prime formula for falsity), where
atom transforms a boolean expression into an expression of a formula. The
formal definitions of =-nat and atom are

(define =-nat (lambda (m) (lambda (n)
(cond ((zero-nat? m)

(cond ((zero-nat? n) true)
((suc-nat? n) false)
(eise (l i s t (l i s t ' « -na t m) n))))

((suc-nat? m)
(cond ((zero-nat? n) false)

((suc-nat? n)
((=-nat (pred-nat m)) (pred-nat n)))

(eise (l i s t (l i s t '=-nat m) n))))
(eise (l i s t (l i s t ' » -na t m) n))))))

(define (atom x) (l i s t 'atom x))

<=-nat is defined similarly.

Also, we have two versions of implication: imp# to build boolean terms and
imp to build formulas, such that e.g.

((imp# #T) #F) => ()
(imp (atom #T) (atom #F)) => (imp (atom #T) (atom ()))

This is achieved by defining

(define imp# (lambda (p) (lambda (q)
(cond ((false? p) true)

((true? p) q)
((true? q) true)

(eise (l i s t (l i s t 'imp# p) q))))))

(define (imp x y) (l i s t 'imp x y))
The universal quantifier over natural numbers is taken as a l l -na t of type
(nat->prop)->prop. For instance, the formula Vn : 0 + n = n is represented
as the self-evaluating SCHEME object

104 SCHWICHTENBERG: Proofs as programs

(a l l -nat (lambda (n) (atom ((=-nat ((+-nat 0) n)) n))))

The precise SCHEME definition of a l l -na t is

(define (a l l -nat proc)
(let ((symbol (gensym "X~0_")))

(l i s t ' a l l -na t
(l i s t 'lambda (l i s t symbol) (proc symbol)))))

where gensym is used to avoid clashes of bound variables.

For the implementation of proofs first note that we can describe a proof
by three objects: a context, a formula and an expression which evaluates
— provided the context symbols are made self-evaluating — to itself in
case formula is of level 0, and to a procedure in case the formula is not
of level 0. So the expression is a (type-free) lambda term corresponding
to the build-up of the derivation from axiom-constants and assumption-
variables by elimination and introduction rules. A context is an association
list { { X I Q I) .. . (x m g m) (u n p i) . . . { u n i p n)) (not necessarily in this order) assigning
types and formulas to symbols, where

• the symbols x i , . . . , x m , u x , . . . , u n are distinct,
• if y is a symbol in the context of an assumption formula v?t-, then y does not

appear among x i , . . . , x m , and
• the contexts of all assumption formulas are consistent; their sup is called the

critical context of the given context.

(X I Q I) .. . (x m Q m) is called the free context, the sup of the free context and
the critical context the object context, and (u \ (p i) . . . (u n i p n) the assumption
context of the given context.

To give an example of an implemented proof, let us see how the usual inductive
proof of Vn : 0 + n = n can be represented. We first write this proof in a self-
explaining natural deduction notation, which in our implementation is also
machine-readable.

(define 0+n=n-proof
(elim (ind-axiom-at |(n)(0+n=n)|)

truth-axiom
(intro (var 'IH |0+n=n|)

(l i s t 'IH |0+n=n|)

SCHWICHTENBERG: Proofs as programs 105

(l i s t 'n nat))))

where the induction axiom at Vn : 0 + n = n is of course an axiom-constant of
the formula

0 + 0 = 0 — (Vn.O + n = n — 0 + Sn = Sn) — Vn : 0 -f n = n.

Note that the formula 0 + 0 = 0, i.e. (atom ((=-nat ((+-nat 0) 0)) 0)),
evaluates to and hence is identified with (atom #T), and similarly the for­
mula 0 -f Sn = Sn, i.e. (atom ((=-nat ((+-nat 0) (suc-nat n))) (suc-
nat n))), evaluates to and hence is identified with 0 + n = n, i.e. with (atom
((=-nat ((+-nat 0) n)) n)). This is the reason why in the above proof
the initial case of the induction is just the truth axiom of the formula (atom
#T), and in the induction step the induction hypothesis is identical with the
claim.

The internal representation of this proof is a three-element list consisting of
the context — which is empty in this case — , the derived formula and the
expression

(((ind-at (quote . . .))
truth-axiom-symbol)
(lambda (n) (lambda (IH) IH)))

where . . . is to be replaced by the internal representation of the formula
Vn : 0 + n = n we make induction on.

To give an example of a proof from assumptions, let us derive Vmn : n < n + m
from Vn : n < Sn and reflexivity and transitivity of <.

(define leq-proof jproves (mn)(n<=n+m)
(elim (ind-axiom-at |(mn)(n<=n+m)|)

(var 'Refl-<= |(n)(n<=n)I) j i n i t
(intro ;step

(elim (var 'Trans-<= I(nmk)(n<=m->m<=k->n<=k)I)
InI In+ml |S(n+m)|
(elim (var 'IH I(n)(n<=n+m)|) |n |)
(elim (var 'Lemma I(n)(n<=Sn)I) |n+m|))

(l i s t 'n nat)
(l i s t 'IH I(n)(n<=n+m)I)
(l i s t 'm nat))))

106 SCHWICHTENBERG: Proofs as programs

In the internal representation of this proof, the context now consists of the
three pairs (Lemma . . .1) , (Refl-<- . . .2) and (Trans-<= . . .3) , where
. . . 1, . . . 2 and . . . 3 are the internal representations of the respective formu­
las. The expression in this case is

(((IND-AT (QUOTE . . .))
REFL-<=)
(LAMBDA (M) (LAMBDA (IH) (LAMBDA (N)

(((((TRANS-<= N) ((+-NAT N) M)) (SUC-NAT ((+-NAT N) M)))
(IH N))
(LEMMA ((+-NAT N) M))))))))

There is one more point which can be demonstrated in this example. If from
the above proof of Vmn : n < n -f m we want to conclude Vn : n < n + 2 by the
rule of V-elimination, we just apply the procedure defined by the expression
above to 2, that is we evaluate

((((IND-AT (QUOTE . . .))
REFL-<=)
step)
2)

where step Stands for the expression above. Now (ind-at (quote . . .))
is defined to be a procedure which when supplied with in i t , step and arg
where arg is a natural number gives the result of applying step as many times
as arg says to in i t . In our case, we get the outcome of the evaluation of

((step 1) ((step 0) Refl-<=))

that is of

((step 1) (LAMBDA (n) (((((TRANS-<= n) n) (SUC-NAT n))
(REFL-<= n))
(LEMMA n))))

that is of

(LAMBDA (n)
(((((TRANS-<= n) (SUC-NAT n)) (SUC-NAT (SUC-NAT n)))

(((((TRANS-<= n) n) (SUC-NAT n))

SCHWICHTENBERG: Proofs as programs 107

(REFL-<= n))
(LEMMA n)))

(LEMMA (SUC-NAT n))))

So Vn : n < n + 2 is derived in the indicated way by two applications of the
transitivity of < and one application of the reflexivity of <, but without an
application of an induction axiom. The precise definition of ind-at is

(define (ind-at all-formula)
(lambda (i n i t)

(lambda (step)
(lambda (arg)

(cond ((zero-nat? arg) i n i t)
((suc-nat? arg)
((step (pred-nat arg))
((((ind-at all-formula)

i n i t) step) (pred-nat arg))))
(eise . . .))))))

(define (ind-axiom-at all-formula)
(l i s t (context-of-formula all-formula) ;should be empty

(formüla-of- ind-at all-formula)
(l i s t ' ind-at (l i s t 'quote all-formula))))

Here . . . describes how the expression is to be reproduced in case arg is
neither 0 nor a successor. Written out fully . . . is

(let* ((i n i t - a r i t y (arity-of-formula
(specialize all-formula zero-nat-term)))

(step-arity (cons-arity 0 (cons-arity i n i t - a r i t y
i n i t - a r i t y))))

(mse (l i s t (l i s t (l i s t (l i s t ' ind-at (l i s t 'quote
all-formula))

(proc->expr i n i t i n i t - a r i t y))
(proc->expr step step-arity))

arg)
i n i t - a r i t y))

We now treat a slightly more complex example of an arithmetical proof, which
can be used to demonstrate the proofs-as-programs paradigm in an easy case.

108 SCHWICHTENBERG: Proofs as programs

We prove by induction on n that n can be divided by m+1 with some quotient
q and remainder r, as follows

(define quot-rem-proof
(elim

(ind-axiom-at I(nm)(Eqr)(n=(m+l)*q+r&r<=m)|)
(intro ; i n i t

(elim (var ' u l |(qr)(0=(m+l)*q+r->r<=m->falsity)I)
I01 I0I truth-axiom truth-axiom)

(l i s t ' u l I(qr)(0=(m+l)*q+r->r<=m->falsity)I)
(l i s t 'm nat))

(intro ;step
(elim

(var ' IV |(m)(Eqr)(n=(m+l)*q+r&r<=m)|)
Iml
(intro

(elim
(var 'Lemma-<=

I (mr) (r<=m->-(r+l<=m)->-(r=m)->f a l s i t y) |)
Iml I r l
(var 'u2 |r<=ml)
(intro

(elim
(var 'u3 I(qr)(n+l=(m+l)*q+r->r<=m->falsity)I)
Iql l r + l |
(var 'u4 |n=(m+l)*q+rI)
(var 'u5 |r+K=m|))

(l i s t 'u5 |r+K=m|))
(intro

(elim
(var 'u3 |(qr)(n+l=(m+l)*q+r->r<=m->falsity)|)
Iq+ll 101
(elim

(var 'Lemma-=
I(nmqr)(r=m->n=(m+l)*q+r->n=(m+l)*q+m)I)

l n | |m| Iql I r l
(var 'u6 |r=m|)
(var 'u4 |n=(m+l)*q+rI))

truth-axiom)
(l i s t 'u6 |r=m|)))

(l i s t 'u2 |r<=m|)

SCHWICHTENBERG: Proofs as programs 109

(l i s t 'u4 |n=(m+l)*q+r|)
(l i s t ' r nat)
(l i s t ' q nat)))

(l i s t 'u3 I(qr)(n+l=(m+l)*q+r->r<=m->falsity)I)
(l i s t 'm nat)
(l i s t ' IV l(m)(Eqr)(n=(m+l)*q+r&r<=m)|)
(l i s t 'n nat))))

This clearly formalizes the informal proof by cases: If r < m let q' = q and
r' = r + 1, and if r = m let q' = q + 1 and r' = 0. Note that in the formal proof
above we have freely used true n-assumptions as lemmata, since they have
no computational content and hence don't affect the use of this proof as a
program.

If we now specialize this proof to particular numbers (using V-elimination)
and then normalize it, all uses of induction axioms disappear as we just
have demonstrated. As described in Section 4 we can then read off the first
instance provided by the resulting refutation from n-assumptions. Formally,
we can easily implement a procedure instance-from-refutation-of-Pi­
as sumptions by the same recursion as in Section 4, and with

(define (qr n m)
(instance-from-refutation-of-Pi-assumptions

(normal-form-of-proof
(elim quot-rem-proof n m))))

we obtain (in a few seconds even on a PC)

(qr 7-term 2-term) => ((() NAT 2) (() NAT 1))

since 7 divided by 3 has quotient 2 and remainder 1.

Finally we come to an implementation of the proofs in Section 5. The tree
notations we have to deal with are viewed as a free algebra generated from 0 by
one unary constructor S and two binary constructors C 0 and C \ . Intuitively,
C 0 (a , 6) corresponds to the tree notation written a + D0b in Section 2, and
Ci(a,6) corresponds to a + D i b ; for example, C o(0,0) = u and C*i(0,0) = Q. Now
=-tree, +-tree and *-tree can be defined in the obvious way, similarly to
what we did for nat. The functions r(a), a[z], a[z]k and the predicate T i can
be defined by the same recursions as in Section 2.

110 SCHWICHTENBERG: Proofs as programs

To implement our proofs we have to start with the initial 0-case of Lemma 5.1
and prove D o 0 G Wn, i.e. 3 k (D 0 0) [n] k = 0. Note that D o 0 denotes w and is
represented here as C o(0,0). We obtain this proof easily from the Lemma
(D o 0) [n] n + l = 0. The next case of Lemma 5.1 is that of a successor tree Sa, i.e.
we prove

D 0 a e W n ^ D o (S a) 6 Wn (0.1)

or more explicitely 3 k (D 0 a) [n] k = 0 3 k (D 0 S a) [n] k = 0. Again the construction
of the second k from the first one can be given explicitely with our tree
functions available, and hence we can use the ü-formula (D 0 a) [n } k = 0 -+

(D o S a) [n] s (k n + k) = 0 as a lemma. The complete proof is

(define P-01
;proves (na)((Ek)(COOa)[n]~k=0->(Ek)(C00(Sa))[n]~k=0)

(intro
(elim

(var 'u |-(k)-(C00a)[n]~k»0|)
(intro

(elim
(var 'v |(k)-(C00(Sa))[n]Äk=0|)
(elim

(var 'Lemma-Ol
I(nak)((COOa)[n]~k=0->(C00(Sa))[n]~(S(k*n+k))=0)I)

In| | a | Ik|
(var ; v l(C00a)[n]~k=0|)))

(l i s t 'w l(C00a)[n]~k=0|)
(l i s t 'k nat)))

(l i s t 'v l(k)-(C00(Sa))[n]~k=0|)
(l i s t 'u |-(k)-(C00a)[n]~k=0|)
(l i s t ' a tree)
(l i s t 'n nat)))

The w-case of Lemma 5.1, i.e. the proof of

r (a) = u > - + D 0 a [n] € Wn —* D 0 a 6 Wn (O-w)

is similar; we use r(a) = u —• (£> 0 a[n])[n]* = 0 — { D 0 a) [n] k + l = 0 as a lemma.
More interesting is the final Q-case of Lemma 5.1, i.e. the proof of

r (a) = Q-^(VzeWn: D 0 a [z) 6 Wn) - D 0 a € Wn (O.fi)

or somewhat more explicitely of

r (a) = — 6 T i — z [n] k = 0 — 3 k (D 0 a [z]) [n] k = 0) — 3 k (D 0 a) [n] k = 0.

SCHWICHTENBERG: Proofs as programs 111

As in the proof of Lemma 5.1 we use here an auxiliary theorem

r(a) = ß — (Vkz.z e T i -> z[n]k = 0 — 3 k (D 0 a [z]) [n] k = 0) ^ 3 k (D 0 a) [m] [n] k = 0,

which is proved separately by induction on rn, using the lemmata

r (a) = Q - > (D Q a) [m] 6 T i

r(a) = Q —• (A>a)[0] = £>0a(u;]

r(a) = 0 — (D 0 a) [m + 1] = D 0a[(D 0a)[m]]

(D o 0) [n] n + 1 = 0

Note that we do not give an explicit form of our theorem (i.e. with open
premises), as in the previous cases. The reason is that the resulting k is
obtained roughly by n-fold iteration of the function given by the premise

Vkz.z € T i - z[n]k = 0 -> 3 k (D 0 a [z]) [n] k = 0

and our term language does not contain a construct for function-iteration.
Rather, we use the proofs-as-programs paradigm here to provide such a con­
struct.

The last proof we have implemented is that of the initial 0-case (which in
fact is the most complex case) of Lemma 5.2 for the formula D 0 a € W n , which
was proved to be n-progressive in Lemma 5.1. So we have to prove

D 0 c eWn-+ D 0 (c + Q) 6 Wn. (1.0)

This is obtained from (0.Q) with c + Q for a. So we have to prove its second
premise from the assumption DQC € W N , i.e.

3 k (D 0 c) [n) k = Q->zeTl-+ z[n]k = 0 — 3 k (D 0 (c + z)) [n] k = 0. (1.0 - auxl)

This is done by induction on k, where in the induction step we need the
lemma z e T i —• z[n] e T i and

z £ Ti —• 3 k (D 0 (c + z[n]))[n]fc = 0 - 3 k (D 0 (c + z)) [n] k = 0. (1.0 - aux2)

This is proved by cases on z (formally by tree-induction on z), using our
previous theorems (0.1), (O.u;) and also the lemma ((c + a) + D 0 b) [n] = c +

(a + D 0 b) [n] . Note that we do not give an explicit form of (1.0-aux2), since
this would require a lazy if-then-else-construct in our term language, which
we don't have. In fact, addition of such a construct to our term language is
impossible in our present SCHEME-implementation, since SCHEME employs

Mathematische? Institut
der Universität München

112 SCHWICHTENBERG: Proofs as programs

eager evaluation. Rather, we again use the proofs-as-programs paradigm here
to provide such a construct.

Now when we come to actually use these proofs as programs, there is the
obvious practical difficulty that the proofs were just designed to require very
fast growing functions to instantiate the existential quantifier. For instance,
already the proof of D 0 u e W n requires an exponential function (roughly n n)
for its instantiation. So only very small initial cases like D 0 2 e W n can actually
be tested, and we have successfully done so.

Now let us look back and ask ourseives what we have achieved by our imple­
mentation of these proofs. First, of course, we have machine-checked them
and can be sure that we have not overlooked some cases or assumptions; this
has been the motivation for de Bruijn's Automath-project (cf. (de Bruijn
1990) for a recent survey). On the other hand, since we have the whole proof
available (without eating up too much space, since we don't need to code for­
mulas in the proof, but just the build-up from introduction and elimination
rules for -* and V, i.e. just a type-free lambda term), we can use it e.g. as a
program, as done here.

A further possibility is to modify the proof if the specification is changed, or
eise to "prune" it (this is the terminology of (Goad 1980)) when we have some
additional knowledge on the input data and use this knowledge to derive some
of the assumptions in case distinctions, making these case distinctions super-
fluous and hence the whole proof prunable. Note that the new pruned proof
can yield an extensionally diiferent program for the same specification; hence
we have a program transformation here which in fact changes the function
computed by the program.

All this is a sufficient reason for us to actually carry the whole proof along
in an interactive proof system. This is in contrast to e.g. Paulson's Isabelle
(cf. Paulson 1990) or Fourman's Lambda system (cf. Finn, Fourman, Francis
and Harris 1990), who do the opposite and only save theorems, throwing their
proofs away.

BIBLIOGRAPHY
1. Abelson, H., Sussman, G.J. (1985) Structure and interpretation of Computer

programs. MIT Press, Cambridge.

2. Arai, T. (1989) A Slow Growing Analogue of Buchholz' Proof. Nagoya Uni­
versity, Department of Mathematics. To appear in Annais Pure Appl. Logic.

SCHWICHTENBERG: Proofs as programs 113

3. Berger, U . , Schwichtenberg, H. (1991) An inverse of the evaluation functional
for typed lambda calculus. Proc. 6th IEEE Symp. on Logic in Computer
Science, pp. 203-211.

4. Buchholz, W. (1987) An independence result for (nj - C A) + BI. Annais Pure
Appl. Logic 3 3 , 131-155.

5. Buchholz, W., Wainer, S. (1987) Provably computable functions and the fast
growing hierarchy. Logic and Combinatorics. Contemp. Math. 65, AMS,
pp. 179-198.

6. Constable, R. et al. (1986) Implementing mathematics with the Nuprl proof
development system. Prentice Hall, Englewood Cliffs, New Jersey.

7. de Bruijn, N.G. (1990) A plea for weaker frameworks. In: BRA Logical
Frameworks Workshop, Sophia Antipolis.

8. Finn, S., Fourman, M.P., Francis, M . , Harris, R. (1990) Formal System Design
— Interactive Synthesis Based on Computer-Assisted Formal Reasoning. In:
L.J .M Claasen (ed.). Formal VLSI Specification and Synthesis, I, North-
Holland, Amsterdam, pp. 139-152.

9. Girard, J .Y. (1981) I^-Logic. Annais Math. Logic 2 1 , 75-219.

10. Goad, C. (1980) Computational uses of the manipulation of formal proofs.
Stanford Dept. of Computer Science, Report No. STAN-CS-80-819.

11. Howard, W.A. (1972) A system of abstract constructive ordinals. J. Symbolic
Logic 37, 2, 355-374.

12. Howard, W.A. (1980) Ordinal analysis of terms of finite type. J. Symbolic
Logic 4 5 , 3, 493-504.

13. Martin-Löf, P. (1980) Constructive mathematics and Computer program­
ming. In: Logic, Methodology and the Philosophy of Science VI. North
Holland, Amsterdam, pp. 153-175

L4. Paulson, L.P. (1990) Isabelle: the Next 700 Theorem Provers. In: P. Od-
difreddi (editor), Logic and Computer Science. Academic Press, London,
pp. 361-386.

15. Rees, J., Clinger, W. (eds) (1986) Revised3 report on the algorithmic language
Scheme. AI Memo 848a, MIT, Cambridge.

L6. Schmerl, U . (1982) Number theory and the Bachmann/Howard ordinal. In:
J. Stern (ed.) Proc. Herbrand Symposium. North Holland, Amsterdam,
pp. 287-298.

17. Schwichtenberg, H. (1986) A normal form for natural deductions in a type the­
ory with realizing terms. Atti del Congresso Logica e Filosofia della Scienza,
oggi. San Gimignano 1983. Vol. I - Logica, CLUEB, Bologna, pp. 95-138.

