The Schreier Refinement Theorem for Categories

By

RUDOLF FRITSCH and OSWALD WYLER

We use the preceding note [1] to prove the following theorem.

Theorem. Any two normal series of subobjects of an object G of a pointed category C have isomorphic refinements if C satisfies \mathbb{Z}_2 , and the following condition.

Z1*. C has cokernels of kernels, and kernels of any composition e'e of two cokernels e and e'.

We note first that Z1* implies that every cokernel has a kernel, since every identity morphism is a cokernel of a zero morphism, and we have the following three lemmas.

Lemma 1. Z1* is equivalent to the following statement: C has cokernels of kernels, and every possible pullback square

$$\begin{array}{c}
\stackrel{m'}{\longrightarrow} \\
\downarrow^{e'} & \downarrow^{e} \\
\vdots & \longrightarrow
\end{array}$$

for a kernel m and a cokernel e with the same target, exists in C.

Proof. If $Z1^*$ is valid, let e_1 be a cokernel of m and m' a kernel of e_1e . Then em'=me' for a morphism e', and this obviously is the desired pullback. For the converse, we observe first that a cokernel of an identity morphism (which is a kernel of a zero morphism) produces a zero object. If $e:A\to B$ and $m=0:Z\to B$ for a zero object Z, then m is a kernel of id B, and a pullback produces a kernel m' of e. Now if e_1e is the composition of two cokernels and m a kernel of e, then a pullback produces a kernel m' of e_1e .

Definition. A morphism m of $\mathscr C$ will be called a *subkernel* if m is the composition in $\mathscr C$ of kernels in $\mathscr C$, and (A, a) will be called a *subnormal subobject* of G if $a: A \to G$ is a subkernel in $\mathscr C$.

Lemma 2. (i) The intersection of any two subnormal subobjects (A, a) and (B, b) of an object G of C exists in C and is a subnormal subobject of C.

(ii) If mm' is defined in C and m is a subkernel, then mm' is a subkernel if and only if m' is a subkernel.

Proof. Let $a = a_{10}a_{20} \cdots a_{h0}$ and $b = b_{01}b_{02} \cdots b_{0k}$ for kernels a_{i0} and b_{0j} . If $a_{i,j-1}$ and $b_{i-1,j}$ are defined and kernels, then a pullback

$$\begin{array}{c}
\stackrel{a_{ij}}{\longrightarrow} \\
\downarrow b_{ij} \\
\downarrow a_{i,j-1} \\
\downarrow \\
\vdots \\
\downarrow b_{i-1,j}
\end{array}$$

exists in \mathscr{C} , for kernels a_{ij} and b_{ij} , by the dual of 2.3 in [1]. This defines kernels a_{ij} and b_{ij} recursively for $1 \leq i \leq h$ and $1 \leq j \leq k$. If $a' = a_{1k}a_{2k} \cdots a_{hk}$ and $b' = b_{h1} b_{h2} \cdots b_{hk}$, then a' and b' are subkernels, and the commutative square

$$\downarrow b' \qquad \downarrow b$$

in $\mathscr C$ is the composition of $h\cdot k$ pullback squares, and hence a pullback. Thus $a\cap b$ exists and is subnormal.

The "if" part of (ii) is trivial. For the "only if" part, put a = mm' and b = m in (i). Then we can carry out the construction of (i) if m and mm' are subkernels, and we obtain $a' \cong m'$. Thus m' is a subkernel.

Lemma 3. If f is a cokernel and m a subkernel so that fm is defined, then f[m] and $f^{-1}[f[m]]$ exist in $\mathscr C$ and are subnormal, and $f[f^{-1}[f[m]]] \cong f[m]$ in $\mathscr C$.

Proof. Let $f: A \to B$, and let $m = a_1 a_2 \cdots a_h$ for kernels a_i . Put $m_0 = \operatorname{id} A$ and $m_i = m_{i-1} a_i$ for $1 \le i \le h$, so that $m_h = m$. Define kernels b_i and cokernels e_i recursively in \mathscr{C} , using Z2, by putting $e_0 = f$, and $e_{i-1} a_i = b_i e_i$ for $1 \le i \le h$. If we put $m'_0 = \operatorname{id} B$ and $m'_i = m'_{i-1} b_i$ for $1 \le i \le h$, then $m'_i e_i = f m_i$, and m'_i is a subkernel. Thus $f[m_i] \cong m'_i$, and $f[m] \cong m'_h$ exists and is subnormal.

Now we construct recursively the following diagram

$$\begin{array}{c}
\stackrel{c_i}{\downarrow} \stackrel{e'_i}{\longrightarrow} \stackrel{m''_{i-1}}{\downarrow} \stackrel{f}{\longrightarrow} \stackrel$$

beginning with $e'_0 = f$, $m'_0 = \operatorname{id} B$ and $m''_0 = \operatorname{id} A$. We assume that the righthand square is a pullback, with m''_{i-1} a subkernel and e'_{i-1} a cokernel. This is satisfied for i=1. By Lemma 1, the lefthand square can be constructed as a pullback, and then c_i is a kernel, the rectangle is a pullback, and $m''_i = m''_{i-1}c_i$ defines a subkernel m''_i . Thus the construction can go on if e'_i is a cokernel. To see that e'_i is a cokernel, put $b_i e'_i = e'_{i-1}c_i = b'_i e''_i$ for a cokernel e''_i and a kernel b'_i , using Z2. Then $b'_i \leq b_i$ since (e'_i, b'_i) is an image. On the other hand, $fm_i = m'_i e_i$, and thus $m_i = m''_i u_i$, $e_i = e'_i u_i$, for a morphism u_i , and $b_i e_i = b'_i e''_i u_i$ follows. But then $b_i \leq b'_i$ since (e_i, b_i) is an image. Thus $b'_i = b_i x$, $e'_i = x e''_i$, for an isomorphism x, and e'_i is a cokernel.

Now $f^{-1}[m_i'] \cong m_i''$, and $f[m_i''] \cong m_i'$, and the lemma is proved.

All results of [1] now become available, except for 4.2, if we restrict ourselves to subnormal subobjects. The last part of Lemma 3 replaces 4.2 in proofs in [1]; no other changes are needed. Subobjects occuring in a normal series are ipso facto subnormal. Thus the Zassenhaus Lemma is valid for these subobjects, and the usual proof of the Schreier Theorem goes through without any changes.

Reference

[1] O. WYLER, The Zassenhaus Lemma for categories. Arch. Math. 22, 561-569 (1971).

Eingegangen am 21. 6. 1971

Anschrift der Autoren:

Rudolf Fritsch

Fachbereich Mathematik der Universität

775 Konstanz

Jacob-Burckhardt-Str.

Oswald Wyler

Department of Mathematics

Carnegie-Mellon-University

Pittsburgh, Pennsylvania 15213, USA