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The Schreier Refinement Theorem for Categories

By

Ruporr FrirscH and Oswarp WYLER

We use the preceding note [1] to prove the following theorem.

Theorem. Any two normal series of subobjects of an object G of a pointed category €
have isomorphic refinements if € satisfies Z2, and the following condition.

Z1*. € has cokernels of kernels, and kernels of any composition e’'e of two cokernels
eande'.

We note first that Z1* implies that every cokernel has a kernel, since every
identity morphism is a cokernel of a zero morphism, and we have the following three
lemmas.

Lemma 1. Z1%* is equivalent to the following statement: € has cokernels of kernels,
and every possible pullback square

for a kernel m and a cokernel e with the same target, exists in €.

Proof. If Z1%* is valid, let e¢; be a cokernel of m and m’ a kernel of e;e. Then
em’ = me’ for a morphism e’, and this obviously is the desired pullback. For the
converse, we observe first that a cokernel of an identity morphism (which is a kernel
of a zero morphism) produces a zero object. If e: 4 — B and m = 0:Z — B for
a zero object Z, then m is a kernel of id B, and a pullback produces a kernel m/’
of e. Now if e;e is the composition of two cokernels and m a kernel of e, then a pull-
back produces a kernel m’ of eye. |

Definition. A morphism m of € will be called a subkernel if m is the composition
in € of kernels in %, and (4, a) will be called a subnormal subobject of G if a: 4 — G

is a subkernel in %.

Lemma 2. (i) The intersection of any two subnormal subobjects (4, a) and (B, b) of
an object G of € exists in € and is a subnormal subobject of €.

(i) If mm' is defined in € and m is a subkernel, then mm’ is a subkernel if and
only if m' is a subkernel.
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Proof. Let @ = a10@a0 - anp and b = boibes -+~ bor for kernels a;o and boj. If
a;,j—1 and b;_3,; are defined and kernels, then a pullback

(222}

> o

lbﬂ lbt-u

ai,5-1

exists in &, for kernels a;; and b;;, by the dual of 2.3 in [1]. This defines kernels a;;
and by recursively for 1 <7 < hand 1 £j <k If @' = ayxasy - apr and o' =
= bp1 bpa *-- brk, then a’ and b’ are subkernels, and the commutative square

P

b

———

in € is the composition of % - k pullback squares, and hence a pullback. Thus @ N b
exists and is subnormal.

The “if” part of (ii) is trivial. For the “only if”’ part, put @ = mm’ and b = m
in (i). Then we can carry out the construction of (i) if m and mm' are subkernels,
and we obtain @’ o~ m’. Thus m' is a subkernel. |

Lemma 3. If f is a cokernel and m a subkernel so that fm is defined, then f[m] and
fLf[m]] exist in € and are subnormal, and f[f-1[f[m]]] == f[m] in €.

Proof. Let f: 4 — B, and let m = ayaz2--- a5 for kernels a;. Put mo =id 4
and m; = m;—1a; for 1 <1 < &, so that my = m. Define kernels b; and cokernels ¢;
recursively in €, using Z2, by putting ep = f, and e;1a; = b;e; for 1 <4 < h.
If we put my = id B and m; = m;_,b; for 1 < i < h, then mje; = fm;, and m; is
a subkernel. Thus f[m;] = m;, and f{m] = m; exists and is subnormal.

Now we construct recursively the following diagram

la
[ M1

- —_— > .
le; le;_, lf
b1 mi_y

beginning with ey = f, mg = id B and mq = id 4. We assume that the righthand
square is a pullback, with m;_, a subkernel and e;_; a cokernel. This is satisfied for
t = 1. By Lemma 1, the lefthand square can be constructed as a pullback, and
then ¢; is a kernel, the rectangle is a pullback, and m; = m;_,¢; defines a subkernel
m; . Thus the construction can go on if e; is a cokernel. To see that e; is a cokernel,
put bse; = e;_, ¢; = bse; for a cokernel ¢; and a kernel b;, using Z2. Then b, < b;
since (¢;, b;) is an image. On the other hand, jm; = mye;, and thus m; = m; u;,
e = e;ui, for a morphism w%;, and b;e; = bge;'ui follows. But then &; < b; since
(e, b;) is an image. Thus b; = b;z, ¢; = we; , for an isomorphism z, and e; is a
cokernel.
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Now f-1[{m;] = m; , and f[m; ] = m;, and the lemma is proved. ||

All results of [1] now become available, except for 4.2, if we restrict ourselves to
subnormal subobjects. The last part of Lemma 3 replaces 4.2 in proofs in {1]; no
other changes are needed. Subobjects occuring in a normal series are ipso facto sub-
normal. Thus the Zassenhaus Lemma is valid for these subobjects, and the usual
proof of the Schreier Theorem goes through without any changes.
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