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tion pedigrees. Imprinting could clearly be detected for mix-
tures of mainly ASPs and only few AHSPs with the common 
parent of the imprinted sex, even though no parental geno-
types were available. Conclusion: Our results provide guid-
ance to researchers regarding the possibility to estimate 
trait-model parameters by a MOD score analysis, including 
the degree of imprinting, with certain types of pedigrees.
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Introduction

Trait Inheritance and Pedigree Analysis
The inheritance of a trait is defined as the mechanism 

by which the joint phenotypic distribution of the particu-
lar trait in pedigree members can explicitly be described 
[1]. A pedigree can be considered as a discrete unit of a 
population for which the relationship connecting any 
pair of pedigree members is unambiguously known. 
There is hence no other individual for which a relation-
ship to any of these pedigree members can be established. 
Under the assumption that pedigrees implicitly contain 
information about details of the mode of inheritance of a 
trait through the covariation and cosegregation of the 
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Abstract
Background/Aims: Theoretically, the trait-model parame-
ters (disease allele frequency and penetrance function) can 
be estimated without bias in a MOD score linkage analysis. 
We aimed to practically evaluate the MOD score approach 
regarding its ability to provide unbiased trait-model param-
eters for various pedigree-type and trait-model scenarios. 
We further investigated the ability of the MOD score ap-
proach to detect imprinting using affected sib pairs (ASPs) 
and affected half-sib pairs (AHSPs) when all parental geno-
types are missing. Methods: Simulated pedigree data were 
analyzed using the GENEHUNTER-MODSCORE software 
package. Parameter estimation performance in terms of bias 
and variability was evaluated with regard to trait-model type 
and pedigree complexity. Results: Generally, parameters 
were estimated with lower bias and variability with increas-
ing pedigree complexity, especially for recessive and over-
dominant models. However, dominant and additive models 
could hardly be distinguished even when using 3-genera-
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trait characteristics among its members, collecting and 
analyzing samples of pedigrees can be used to study the 
trait inheritance. In genetics, inference about trait inheri-
tance by pedigree analysis is made assuming that the main 
factors underlying the inheritance are genes. Mathemat-
ical-genetic models can then be used to describe the trait 
inheritance, and these models are tested using pedigree 
samples drawn from the population. 

If the genetic model of trait inheritance is inferred on 
the basis of the pedigree sample, which contains the neces-
sary information through the joint phenotypic cosegrega-
tion in the pedigree members, such an analysis is called 
“segregation analysis” [1]. If the purpose of the analysis is 
to map the putative disease gene(s), whose existence may 
have been previously established by segregation analysis 
to specific chromosomal segments by investigation of 
cosegregation of DNA marker alleles and the trait pheno-
type, such an analysis is called “linkage analysis” [1]. Now-
adays, pure segregation analysis is of less practical impor-
tance than it has been a few decades ago. With increasing 
availability of DNA marker maps and rapid and cost-ef-
fective DNA genotyping techniques, linkage analysis has 
become the state-of-the-art technique of pedigree analy-
sis. In addition, association analysis can be performed 
with pedigrees as well as samples of unrelated individuals. 
However, software packages for segregation analysis like 
PAP [2], S.A.G.E. [3], and MORGAN [4, 5] continue to be 
available and provide great flexibility with respect to fit-
ting the model for the mode of inheritance (see also e.g. 
Kriszt et al. [6] for a recent publication using complex seg-
regation analysis with keratoconus pedigrees).

Linkage Analysis
In earlier times, linkage analysis has been used to map 

genes that were already known to exist. In the meantime, 
linkage analysis serves 2 purposes: (1) to prove the exis-
tence of a disease gene and (2) to map it [7]. Linkage anal-
ysis methods can be distinguished as model-based or 
model-free [8]. The former is also known as parametric 
or LOD score linkage analysis for which a certain set of 
trait-model parameters regarding the segregation of the 
disease is explicitly assumed in the genetic likelihood. The 
latter, which is also known as nonparametric linkage 
analysis, proceeds without such explicit models. These 2 
types of linkage analysis are, however, closely related to 
each other. It can be shown that certain nonparametric 
and parametric linkage tests are equivalent for any type 
of pedigree [9, 10] and can be considered as different ways 
to parametrize the allele-sharing probabilities, i.e., the 
probabilities of allele(s) shared identical-by-descent 

(IBD) by affected pedigree members, in the genetic likeli-
hood.

Mode of Inheritance and Trait-Model Parameters
A crucial factor in linkage analysis is the true mode of 

inheritance. Under the term “mode of inheritance,” 2 
concepts are often subsumed that need, however, to be 
distinguished. The first concept is the genetic mechanism 
of the disease involving the number of loci, the number 
of alleles at each locus, and the segregation parameters 
including the recombination fraction among the trait loci 
as well as between them and any marker(s) [11]. The sec-
ond concept is the genotype-phenotype relation, which is 
defined by the penetrance function, i.e., the probability 
that an individual with a certain number of copies of the 
disease allele is affected by the disease. The genetic mech-
anism of the disease, apart from the recombination frac-
tion, is assumed to be known for linkage analysis. In the 
case of a binary trait governed by a single diallelic autoso-
mal locus, which is assumed throughout this paper, the 
disease allele frequency p and the 3 penetrances f0, f1, and 
f2, with fi denoting the probability that an individual with 
i copies of the disease allele is affected by the disease, can 
be subsumed under the term “trait-model parameters.” 
In the case of parametric linkage analysis, trait-model pa-
rameters can either be prespecified according to results 
from previous segregation analyses or maximized along 
with the recombination fraction in a joint segregation and 
linkage (JSL) analysis. A specific type of this approach is 
the MOD score analysis, which was first proposed by 
Risch [12]. If the genetic mechanism of the trait is not 
modelled correctly, however, which is expected in prac-
tice due to the large number of possible inheritance 
modes, parameter estimates obtained from a MOD score 
analysis will be asymptotically biased [11, 13].

Likelihood and Sample Space
In pedigree analysis, the likelihood given a particular 

sample of pedigrees can be defined as the probability to 
observe the data available for the individuals in the pedi-
gree, constructed under a certain genetic model. In fact, 
any formulation that is proportional to this probability 
can be used as the likelihood. The pedigree samples used 
for pedigree analysis are collected from what is called the 
“real” population that is defined on the basis of usually 
unknown factors like the population’s origin and history. 
This real population is mapped into a set of disjoint ped-
igrees by the use of those relationships between members 
of the real population that can unambiguously be estab-
lished [1]. These disjoint pedigrees are then further deter-
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mined by the predefined sampling design, which parti-
tions the pedigrees into substructures of certain inheri-
tance relations, e.g., sibships with all other relationships 
outside sibships being ignored. The resulting structures 
are called “true pedigrees.” As described in Ginsburg et 
al. [1], pedigree analysis is performed on sampled pedi-
grees collected from the set of true pedigrees. The subset 
of pedigrees that in principle can be sampled according 
to the sampling design is called the “sample space.” The 
sampling procedure involves the pedigree ascertainment 
(primary selection), the intrafamilial extension (inclusion 
of additional relatives), and the selective inclusion in the 
analysis (censoring). 

In the following, we will assume that ascertainment 
takes place through probands. For each true pedigree, 
there are members who could “potentially” become pro-
bands due to prespecified proband characteristics, e.g., 
geographic area, age, sex, but independently of their phe-
notypes. This subset of potential probands in the true 
pedigree, including both their relationships and pheno-
types, is called the “proband sampling frame” (PSF, [14]). 
It can be shown that assuming the wrong mode of inher-
itance and/or the wrong model for the sampling proce-
dure leads to asymptotically biased trait-model parame-
ters and nuisance parameters of the sampling model 
when performing maximum likelihood estimation [15]. 
In order to obtain unbiased parameter estimates, the ped-
igree likelihood is defined as the probability of the par-
ticular pedigree data having been sampled (ascertained, 
extended, and included in the analysis) on the sample 
space generated by the sampling procedure under the giv-
en mode of inheritance [1]. The sample space for the giv-
en sampling procedure is the probability that at least 1 
pedigree is sampled from the set of true pedigrees [1]. In 
this general form, however, the pedigree likelihood can-
not be calculated using only the sampled data [1]. This 
would demand knowledge about the distribution of pos-
sible PSFs to calculate the sample space on which the like-
lihood is defined. Therefore, pedigree likelihoods are 
conditioned on specific parts of the sampled data to cir-
cumvent this problem and – by the same token – to retain 
unbiasedness of parameter estimates. In the following 
sections, pedigree likelihoods, which are conditioned on 
specific parts of the sampled data, are briefly introduced 
in the context of JSL analysis.

Sampling Model-Based Likelihood
As was explained in the previous section, the pedigree 

likelihood provides consistent estimates of the trait-mod-
el parameters if it is conditioned on the pedigree having 

been sampled, i.e., ascertained, extended, and included in 
the sample under analysis [16]. This also holds true for 
JSL analysis. In parametric JSL analysis, which is the main 
focus of this paper, the likelihood is formulated using the 
trait-model parameters, i.e., the disease allele frequency p 
and the penetrances f0, f1, and f2, as well as the marker al-
lele frequencies and the recombination fractions – and, if 
applicable, linkage disequilibria (LD) between loci. These 
parameters can be subsumed under the term “joint trait-
marker inheritance parameters” [16]. In addition, infor-
mation about the following aspects must also be included 
in the likelihood: (1) the whole PSF structure and its pop-
ulation distribution, which is relevant for ascertainment, 
(2) the pedigree extension procedure, and (3) the condi-
tions relevant to inclusion, which could be specific mark-
er genotypes of certain pedigree members. Since the pop-
ulation distribution of the PSF structure is unknown, the 
pedigree likelihood can be conditioned on the substruc-
ture of the pedigree that is “relevant to sampling” (RS), in 
order to make the likelihood calculable and to properly 
take the sampling procedure into account. The structure 
RS corresponds to all PSF members of the true pedigree 
under study – i.e., the part of the pedigree “relevant to as-
certainment” (RA) – and those pedigree members re-
sponsible for the inclusion of the pedigree in the sample. 
Importantly, the likelihood is only conditioned on the 
structure RS but not on the phenotypes of the corre-
sponding pedigree members. Since the likelihood in-
cludes explicit details of the sampling procedure, it is 
termed “sampling model-based (SMB) likelihood” [16]. 
The SMB likelihood provides asymptotically unbiased es-
timates of all joint trait-marker inheritance parameters, 
including the mode of inheritance, as well as of the pa-
rameters determining the ascertainment, extension, and 
inclusion procedure [1].

Sampling Model-Free Likelihood
A sampling model-free (SMF) likelihood can be for-

mulated using a more robust procedure initially proposed 
by Ewens and Shute [17] in the context of segregation 
analysis, in which uncertainties about the ascertainment 
procedure are controlled by conditioning the likelihood 
on that part of the pedigree data RA. The latter approach 
is called “ascertainment assumption-free” (AAF) and can 
readily be extended to be SMF, if the likelihood is also 
conditioned on that part of the data RS [16]. The part of 
the data RS is the data RA and that part of the data rele-
vant to inclusion, which could be, e.g., certain parental 
marker genotypes. In contrast to the SMB likelihood, 
which is conditioned only on the structure RS, the SMF 
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likelihood is conditioned on the data RS, i.e., structure as 
well as marker and trait values RS. This SMF likelihood 
provides asymptotically unbiased estimates of all joint 
trait-marker inheritance parameters, including the mode 
of inheritance, as well as of the extension parameter [1].

Likelihood in a MOD Score Analysis
The question arises which kind of likelihood underlies 

a JSL analysis using the MOD score, and if it is in prin-
ciple possible to obtain unbiased parameters from this 
procedure. As shown by Clerget-Darpoux et al. [18] and 
later also by Elston [11], maximizing the LOD score in the 
context of a MOD score analysis is equivalent to maxi-
mizing the likelihood of the marker data, conditional on 
the pedigree structure and conditional on all the trait 
data, i.e., not only on that part RS. This conditional like-
lihood – from now on referred to as “MOD score likeli-
hood” – does not depend on the ascertainment scheme, 
provided that the sampling of pedigrees is independent of 
marker data. Hence, this means that selective inclusion of 
pedigrees based on marker genotypes (i.e., marker-de-
pendent sampling) is not controlled in the MOD score 
likelihood, because it does not contain the inclusion pa-
rameter. As a consequence, the MOD score will yield bi-
ased estimates of the joint trait-marker inheritance pa-
rameters if there is association between disease and mark-
er alleles (LD > 0), because ascertainment is no longer 
marker-independent in that case [19]. 

The following conditions must be satisfied to obtain 
unbiased estimates of the joint trait-marker inheritance 
parameters from a MOD score analysis [1, 19]: (i) the 
marker locus must be truly linked to the trait locus, (ii) 
the genetic mechanism of the trait (number of loci and 
number of alleles at each locus) is known, (iii) sampling 
is marker-independent, (iv) the model for the pedigree 
extension procedure is known, and either (v) trait values 
are available for all members of the PSF, which has to be 
completely known, or (vi) the ascertainment is proband-
independent (PI) or single in the sense described by 
Hodge and Vieland [20], i.e., all pedigrees have equal 
probabilities of being ascertained, independent of pedi-
gree size or structure, or (vii) the joint probability of the 
unobserved trait phenotypes of the members of the PSF, 
conditional on the trait and marker phenotypes of all the 
observed pedigree members, does not depend on the 
marker phenotypes. Condition (v) reflects that the MOD 
score likelihood can be derived from the SMB likelihood 
by conditioning the latter on the trait values of all indi-
viduals, including all PSF members, in addition to the 
structure RS. Condition (vi) is due to the fact that the 

MOD score likelihood does not include an ascertainment 
parameter as opposed to the SMB likelihood, which con-
tains such a parameter. The probability of ascertainment, 
however, actually depends on the joint trait-marker in-
heritance parameters, if sampling is not PI or single [21]. 
Only with PI or single ascertainment, the probability of 
ascertainment no longer depends on these parameters 
and can, therefore, be omitted in the likelihood without 
influencing the estimates of the parameters [1]. Without 
specifying details of the sampling procedure, parameter 
estimates are also consistent when missing trait values of 
the PSF members do not depend on marker phenotypes 
(condition [vii]). However, this only holds in the case of 
no LD and no linkage between trait and marker locus, or 
if the trait phenotype unambiguously defines the trait 
genotype [19]. 

The MOD score likelihood differs from the SMF likeli-
hood by the fact that it is conditioned on all trait values 
(i.e., not only of the PSF members) in addition to the data 
RS, and that it assumes PI or single ascertainment as well 
as marker-independent sampling, rather than specifying 
some value for the ascertainment probability in the likeli-
hood. This is why the MOD score likelihood can be con-
sidered to be somewhere between SMB and SMF. If sam-
pling is marker-independent, but conditions (i), (ii), and 
(iv) are not simultaneously satisfied, parameter estimates 
obtained from MOD score analyses will be biased. If con-
ditions (i)–(iv) hold, but neither condition (v), (vi), nor 
(vii) is met, the estimate of the recombination frequency 
will only slightly be biased [1]. In this case, it is of note 
that estimates of the recombination fraction are biased 
even when trait-model parameters are fixed at their true 
values [22].

Summary of Conditions to Obtain Unbiased 
Parameter Estimates from a MOD Score Analysis
The pedigree likelihood of the MOD score approach 

delivers asymptotically unbiased estimates of the joint 
trait-marker inheritance parameters (recombination 
fraction, allele frequency, and penetrances, but not the 
LD parameter), if the following conditions are satisfied 
(see also Malkin and Elston [19]):
i The marker is truly linked.

AND
ii The genetic mechanism of the trait (number of loci 

and number of alleles at each locus) is known.
AND

iii Sampling (ascertainment, extension, inclusion) of 
pedigrees is independent from marker data.
AND
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iv The model of extension is known.
AND

At least 1 of the following 3 conditions is satisfied:
v All members of the pedigree PSF must have measured 

trait values (if not sampled, information on trait values 
can be gathered using a questionnaire as proposed by 
Ginsburg et al. [16]).
OR

vi The ascertainment procedure is PI or single in the 
sense of Hodge and Vieland [20].
OR

vii The joint probability of the unobserved trait pheno-
types of the members of the PSF, conditional on the trait 
and marker phenotypes of all the observed pedigree 
members, does not depend on the marker phenotypes.
Hence, unbiased estimates of the joint trait-marker 

inheritance parameters can in principle be obtained 
without explicitly formulating the ascertainment and in-
clusion procedures. It should further be noted that the 
likelihood correction in a MOD score analysis directly 
follows from the AAF method proposed in Ewens and 
Shute [17]. Whereas conditions (i)–(iii) are crucial, con-
ditions (v)–(vii) may be of minor impact on the bias of 
parameter estimates in practice [20, 23]. With respect to 
condition (v), if members of the pedigree PSF are not 
sampled and trait values cannot be gathered using a 
questionnaire, an approximate likelihood using the sam-
ple mean of the trait value can be constructed [1]. Condi-
tion (iv) could be satisfied as follows. PI sampling implies 
that fixed pedigree structures are sampled, which renders 
a specification of the extension parameter pointless. 
With single ascertainment, the pedigree extension mod-
el could be chosen to be trait-independent, such that any 
initially sampled subpedigree is further extended using 
all available relatives, regardless of their phenotypes and 
with a random, trait-independent stopping rule. If this 
holds true, an extension parameter does not have to be 
formulated in the likelihood. Despite being hard to 
achieve in practice, conditions (iv)–(vii) can in theory be 
fulfilled. If not, the resulting bias in parameter estimates 
is argued to be small [20], but numerical quantification 
of the bias of the joint trait-marker inheritance parame-
ters obtained from a MOD score analysis under many 
different sampling schemes is not available so far. This 
would demand an extensive simulation study to prove 
that the MOD score approach is robust with regard to its 
ability to estimate parameters, even if some necessary as-
sumptions do not hold. Even if all necessary conditions 
are satisfied, a bias of maximum likelihood estimates can 
nevertheless occur for finite sample sizes. In addition, 

variances of the obtained estimates are expected to be 
rather large using the MOD score likelihood due to a loss 
of pedigree information by conditioning not only on the 
pedigree structure but also on the trait data of all indi-
viduals [24]. 

The focus of the present paper is the proof-of-principle 
of the ability of a MOD score analysis to obtain asymptoti-
cally unbiased joint trait-marker inheritance parameters in 
practice, given that conditions (i)–(iv) and at least one of 
(v)–(vii) are satisfied. In particular, the identifiability (see 
also next section) of these parameters using various pedi-
gree types and realistic sample sizes will be investigated.

Identifiability of Inheritance Parameters
Even if the conditions under which the MOD score 

provides unbiased estimates of the joint trait-marker in-
heritance parameters are fulfilled, the identifiability of 
these parameters is restricted by the type(s) of pedigrees 
in a given sample. In a model-based linkage analysis, such 
as a MOD score analysis, the penetrances, disease allele 
frequency, and the recombination fraction represent a re-
parametrization of the truly underlying allele-sharing 
classes [9, 10, 25, 26]. In other words, allele-sharing prob-
abilities (classes) of a given pedigree type can be expressed 
in terms of the joint trait-marker inheritance parameters. 
In the case of an affected sib pair (ASP), these allele-shar-
ing classes are z0, z1, and z2 that an ASP shares 0, 1, or 2 
allele(s) IBD with restrictions to genetically possible 
models [27]. With z2 = 1 – z0 – z1 and restrictions z1 ≤ 0.5 
and 2×z0 ≤ z1, the allele-sharing classes of ASPs form a 
2-dimensional parameter space – the so-called “possible 
triangle” [27]. Hence, as there are only 3 – 1 = 2 free pa-
rameters that can be estimated from ASP data, there will 
be many sets of f0, f1, f2, p, and the recombination fraction 
θ that correspond to the estimated ẑ0, ẑ1, and ẑ2. With 
larger pedigrees, and hence more allele-sharing classes, 
the degree to which the trait-model parameters can be 
correctly determined should be higher. However, the cor-
responding allele-sharing configurations have hitherto 
only been formulated for unilineal, affected relative pairs 
(e.g., affected half-sib pairs [AHSPs] [10]), ASPs [27], and 
affected sib triplets (ASTs) [28]. The parameter space for 
AHSPs is degenerated to a single line [10]. Hence, many 
different sets of trait-model parameters correspond to the 
same point on this so-called “possible line.” 

Using the formulas in Knapp [28], it is possible to draw 
the 3-dimensional parameter space for ASTs with empiri-
cally assessed restrictions for genetically possible models 
(Fig. 1). However, the parameter restrictions have not been 
derived in closed form so far. The parameter spaces for 
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larger pedigrees involve a larger number of dimensions, 
and the corresponding restrictions for genetically possible 
models are expected to have an even more complicated 
form [10, 28]. It is of note that for any type of affecteds-
only analysis, the absolute values of penetrances cannot be 
determined, because multiplication of all penetrances by 
the same factor does not change the result. However, their 
ratios are not defined if the penetrance in the denominator 

of the ratio is estimated to be 0. Additionally, the ratio is 
subject to the estimation variance of both the penetrance 
in the numerator and in the denominator.

Imprinting
Genomic imprinting implies dependence of an indi-

vidual’s liability to develop a disease on the parental ori-
gin of the mutated allele(s), leads to a deviation from the 
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classic Mendelian assumption of equal contribution of 
parental genomes to the progeny and is, therefore, called 
a “parent-of-origin effect” [29]. In the context of a para-
metric linkage analysis, imprinting can be modelled using 
a 4-penetrance formulation distinguishing the heterozy-
gotes according to the parental origin of the disease allele: 
f = (f0, f1,pat, f1,mat, f2), as implemented in the program 
GENEHUNTER-MODSCORE (GHM) [25, 30–32], 
which is a further development of GENEHUNTER-IM-
PRINTING [33]. In the nonparametric context, the al-
lele-sharing class z1 of an ASP is split up into z1,pat and 
z1,mat according to the parental origin of the shared allele. 
The corresponding parameter space of ASPs, hence, ex-
tends to a 3-dimensional tetrahedron which accounts for 
disease models with z1,pat ≠ z1,mat, i.e., for imprinting [34]. 
In the case of AHSPs, the allele-sharing class z1 is distin-
guished as either being z1,pat or z1,mat, depending on the 
sex of the common parent, i.e., male or female, respec-
tively. Although the information contained in AHSPs on 
all trait-model parameters is limited, the information for 
imprinting may be high, such that parameter estimates 
for f1,pat and f1,mat using a sample of AHSPs having a com-
mon father and of AHSPs having a common mother 
should indicate imprinting if it was really present. In the 
case of an informative marker, this even holds if parental 
genotypes are missing. 

In contrast, imprinting information contained in ASPs 
with untyped parents is 0, even in the case of a fully infor-
mative marker, because alleles shared IBD through the 
father cannot be distinguished from those shared IBD 
through the mother. However, we hypothesize that  
the information on linkage and imprinting gained from 
AHSPs can be combined with the pure linkage informa-
tion contained in ASPs in the analysis to compensate for 
missing parental marker genotypes. If there is sufficient 
evidence for linkage, this pedigree scenario should lead to 
trait-model parameter estimates reflecting at least some 
degree of imprinting. Using GHM, imprinting can be 
quantified by looking at the imprinting index I [35], cal-
culated from the estimated penetrances. The imprinting 
index equals the difference between the 2 heterozygote 
penetrances, normalized by the difference of the homo-
zygote penetrances in order to properly take the case of a 
non-0 phenocopy rate or reduced penetrance into ac-
count:

1, 1,

2 0

.pat matf f
I

f f
-

=
-

 

An imprinting index of I = 1, therefore, indicates com-
plete maternal imprinting (cmi), whereas I = –1 indicates 
complete paternal imprinting (cpi). If penetrances are not 
restricted to f0 < f1 < f2 in the analysis, the penetrances f1,pat 

Fig. 1. Graphical depiction of the allele-sharing parameter space 
for affected sib triplets (ASTs). The axes notations are defined as 
follows (see also Knapp [28]). Axis z1: allele-sharing class z1 with 
range {0; 3/14}. Axis z2: z2 with range {0; 0.75}. Axis z3: z3 with 
range {0; 1}. The panels top and at the left correspond to “top view.” 
The boundary of the parameter space, which is defined by the ge-
netically possible models, was empirically determined by varying 
the trait-model parameters {f0, f1, f2, p} in the formulas given in 

Knapp [28]. p, disease allele frequency; fi, penetrances, with fi de-
noting the probability that an individual with i copies of the disease 
allele is affected by the disease. Light green, dark green, and black 
lines were drawn by varying p between 0 and 1. For more details, 
see table below. Figures were drawn using rgl: 3D Visualization 
Using OpenGL, R package version 0.95.1441 (2016) by Adler, 
Murdoch, and others.

Boundary region
Specific point

Trait model type

Light green “protruding” region f1 > f0, f2 or f1 < f0, f2; f0 ≠ f2
Dark green “bottom” region f2 > f1 > f0 or f0 > f1 > f2; f1

2 > f0f2; f0 or f2 = 0
Black “top” region f1

2 < f0f2; 0 ≤ f0, f2 ≤ 1; f1 = 0
Yellow plane (reached from the “top”) f1

2 < f0f2; f0f2 → f1
2

Yellow plane (reached from the “bottom”) f1
2 > f0f2; f0f2 → f1

2

Large black sphere H0 (z1, z2, z3) = (0.1875, 0.375, 0.1875)
Large blue sphere (0, 0.75, 0.25) genetically strongest additive/dominant model
Large violet sphere (0, 0, 1) genetically strongest recessive model
Large green sphere (3/14, 3/7, 1/7) genetically strongest overdominant model
Violet spheres Recessive models R3, with p = 0.01 closer to H0
Blue spheres Additive models A3, with p = 0.1 closer to H0
Red spheres Dominant models D3, with p = 0.1 closer to H0
Green spheres Overdominant models U3, with p = 0.01 near the red sphere, and U4 near the green sphere
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and f1,mat can, therefore, be estimated to be <f0 and >f2. 
Thus, the imprinting index may exceed 1 or fall below –1. 
In the case of f0 = f2, the imprinting index is defined to be 
0. In a work by Haghighi and Hodge [36], it was shown 
that asymptotically unbiased estimates of parent-of-ori-
gin effects can be obtained using a likelihood formulation 
for segregation analysis without including an ascertain-
ment parameter when ascertainment is single. The same 
should hold true for the method by Strauch et al. [33] ap-
plied in this paper in the context of parametric linkage 
analysis according to the arguments given by Ginsburg et 
al. [1] and Malkin and Elston [19], provided that the for-
mulation with 4 penetrances correctly reflects the genetic 
mechanism of genomic imprinting.

Aims of the Present Study
The aim of the present study was to evaluate how ac-

curately penetrances, or penetrance ratios in the case of 
affecteds-only analyses, and the disease allele frequency of 
a monogenic, dichotomous trait can be estimated in a 
MOD score analysis. To this end, we performed a simula-
tion study to determine the bias and variability of trait-
model parameter estimation for 6 pedigree types (AHSP, 
ASP, AST, discordant sib triplets [DST], discordant sib 
quadruplets [DSQ], and 3-generation [3-G] pedigrees) 
and 4 types of generic models (recessive, dominant, addi-
tive, and overdominant) as well as an imprinting model. 
A single marker locus linked with θ = 0 to the disease locus 
was considered. It is of note that we did not consider the 
estimation of the recombination fraction θ or any LD pa-
rameter in our analysis. That is because the primary focus 
of this paper is on the estimation of trait-model parame-
ters, which do not include the recombination fraction. 
However, the recombination fraction is confounded with 
the trait-model parameters, especially for smaller pedigree 
types, like the ones considered in our study, having only a 
limited number of allele-sharing classes (see also “Identifi-
ability of Inheritance Parameters” above). In addition, LD 
parameters cannot be estimated using GHM so far. 

We avoided the problem of an additional bias due to a 
possible misspecification of the sampling model for the 
likelihood correction. This was done by designing the 
simulation study in a way that conditions (i)–(iv) and (vi) 
mentioned above to obtain asymptotically unbiased pa-
rameter estimates from a MOD score analysis were satis-
fied as follows (note that only one of conditions [v]–[vii] 
needs to be fulfilled):
i The marker was truly linked (θ = 0).
ii A diallelic autosomal binary trait locus, which is usu-

ally assumed as the mode of inheritance in a MOD 

score analysis, was used for the simulation of pedigree 
data.

iii Sampling of pedigrees was marker-independent.
iv Extension of pedigrees was trait-independent.
v –
vi Ascertainment was single in the sense of Hodge and 

Vieland [20].
vii –

Hence, the questions we aimed to answer in our study 
were:

1. For each pedigree type, can the MOD score ap-
proach differentiate between the trait-model types? That 
is, are, for example, recessive models recognized as being 
recessive, irrespective of the accuracy of the individual 
parameter estimates?

2. How does the estimation accuracy change from ASP 
to AST, i.e., when adding an affected sibling?

3. How does the estimation differ between an analysis 
using only affecteds vs. both affecteds and unaffecteds?

4. How does the estimation accuracy change from DST 
to DSQ, i.e., when adding a second unaffected sibling?

5. How does the estimation accuracy change when 
more complex pedigrees are considered?

6. How well can imprinting be detected and estimated 
in a sample of AHSPs and in a mixture sample of AHSPs 
and ASPs when parental genotypes are missing?
The answers to these questions are summarized in the 
Results section.

Methods

Nomenclature
Parameters written in capital letters (P, D, F0, F1,pat, F1,mat, F1, 

F2, I) denote theoretical parameters and the parameters that were 
used for simulation (“true” parameters). Lowercase letters (p, d, f0, 
f1,pat, f1,mat, f1, f2, i) denote the parameters that were estimated from 
simulated data.

Data Generation
The 5 pedigree types shown in Figure 2 (top and middle row) 

were chosen for the simulations. We used a sample size of 500 
families for each pedigree type to ensure sufficient power to detect 
linkage while maintaining reasonable computation times. For cer-
tain trait-model scenarios, we performed additional analyses with 
a sample size of 1,000 families to assess the degree by which param-
eter estimates are biased due to finite sample sizes. Disease and 
marker locus genotypes were simulated using FastSLINK [37–39]. 
For each pedigree-type-trait-model scenario, we simulated 1,000 
replicates. Affection statuses were assumed to be unknown for all 
founders. Nonfounders were either affected or unaffected (Fig. 2).

Recessive, additive, dominant, and overdominant trait models 
were considered in the simulations. An overview of the simulated 
trait models is given in Table 1. Trait models were named accord-
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ing to their generic type, i.e., “R” for a recessive model, “D” for a 
dominant model, “A” for an additive model, and “U” for an over-
dominant model. For each of the 4 generic types, 3 trait models 
with a particular combination of penetrances were simulated 
(trait-model names 1–3; Table 1). The setup of the trait-model 
parameters was inspired by Xing and Elston [40]. Each of the 3 
trait models was simulated with a disease allele frequency P = 0.1 
or 0.01. For the lower disease allele frequency P = 0.01, an addi-
tional trait model was simulated with a sample size of 1,000 fami-
lies per replicate for each of the 4 generic types (Table 1). This 
amounts to 28 simulated scenarios. Furthermore, an overdomi-
nant model with a different combination of penetrances was sim-
ulated (model U4). For the recessive, dominant, and additive trait 
models, 2 further models similar to those in Flaquer and Strauch 
[41] were considered (models preceded by “AF” in Table 1). One 
of these models was simulated with sample sizes 500 and 1,000, 
whereas the other model was simulated with sample size 500 only. 
The total number of simulated scenarios, therefore, amounts  
to 38.

We furthermore analyzed AHSP and ASP pedigrees under a 
model of cpi or cmi. Differing from the scenarios in Table 1, sam-
ples contained a mixture of 2 pedigree types. Three scenarios were 

considered. In the first scenario, each replicate simulated under the 
cpi model contained 100 AHSPs who had a common father and 
100 AHSPs who had a common mother (Fig. 2, bottom row). In 
the second scenario, each replicate simulated under the cpi model 
contained 100 AHSPs who had a common mother and 100 ASPs 
(Fig. 2, bottom row). In the third scenario, 20 AHSPs who had a 
common mother and 180 ASPs were simulated under the cmi 
model. Again, 1,000 replicates were simulated for each scenario 
(see Table 2 for an overview of the imprinting simulations). Im-
printing was simulated using the SLINK extension SLINK Im-
printing [42].

For the imprinting model, all founder genotypes were removed 
after data generation. The rationale behind this approach is the 
following: if the founder genotypes of AHSPs and ASPs are un-
known, information about imprinting can only be inferred from 
AHSPs, with ASPs contributing only information about linkage. 
As a reference for comparison, a corresponding no imprinting (ni) 
model was considered.

Data Analysis
We used GHM version 3.1 [25] for MOD score calculation and 

trait-model parameter estimation. In particular, we used the GHM 

ASP

43

21
??

AST

543

21
??

DST

543

21
??

DSQ

543 6

21

??

3-G

4 53

1 2

876

?

? ?

AHSP 1

54

321
???

AHSP 2

54

321
???Fig. 2. Pedigree types used for the simula-

tions. ASP, affected sib pair; AST, affected 
sib triplet; DST, discordant sib triplet; 
DSQ, discordant sib quadruplet; 3-G, 
three-generation pedigree; AHSP 1, affect-
ed half-sib pair with common father; AHSP 
2, affected half-sib pair with common 
mother; ?, unknown phenotype; filled sym-
bols, affected; empty symbols, unaffected.
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Table 1. Overview of the simulated scenarios using trait models of the generic types “recessive,” “dominant,” “additive,” and “overdom-
inant”

Model type Name P F0 F1 F2 Sample size

Recessive R1 0.01; 0.1 0.01 0.01 0.2 500 and 1,000; 500
R2 0.01; 0.1 0.01 0.01 0.5 500
R3 0.01; 0.1 0.01 0.01 0.8 500
AFR1 0.2 0.04 0.04 0.2 500 and 1,000
AFR2 0.25 0.003 0.05 0.5 500

Dominant D1 0.01; 0.1 0.01 0.2 0.2 500 and 1,000; 500
D2 0.01; 0.1 0.01 0.5 0.5 500
D3 0.01; 0.1 0.01 0.8 0.8 500
AFD1 0.05 0.04 0.2 0.2 500 and 1,000
AFD2 0.25 0.003 0.5 0.5 500

Additive A1 0.01; 0.1 0.01 0.1 0.2 500 and 1,000; 500
A2 0.01; 0.1 0.01 0.2 0.5 500
A3 0.01; 0.1 0.01 0.5 0.8 500
AFA1 0.1 0.03 0.13 0.23 500 and 1,000
AFA2 0.5 0.003 0.25 0.5 500

Overdominant U1 0.01; 0.1 0.01 0.2 0.01 500
U2 0.01; 0.1 0.01 0.5 0.01 500
U3 0.01; 0.1 0.01 0.8 0.01 500 and 1,000; 500
U4 0.35 0.01 0.9 0.01 500

P, disease allele frequency; F0, F1, F2, penetrances with Fi denoting the probability that an individual with i copies of the disease allele 
is affected by the disease.

Table 2. Overview of simulated trait models with imprinting and corresponding no imprinting model

Pedigree structure Model name P F0 F1,pat F1,mat F2

Model with 
imprinting

1. 100 AHSPs with a common father + 
100 AHSPs with a common mother

cpi 0.01 0 0 1 1

2. 100 AHSPs with a common mother + 
100 ASPs

cpi 0.01 0 0 1 1

3. 20 AHSPs with a common mother + 
180 ASPs

cmi 0.01 0 1 0 1

Comparison 
model

All structures ni 0.01 0 0.5 0.5 1

AHSP, affected half-sib pair; ASP, affected sib pair; P, disease allele frequency; F0, F1, F2, penetrances with Fi denoting the probabil-
ity that an individual with i copies of the disease allele is affected by the disease; F1,pat, F1,mat, heterozygote penetrances distinguished by 
the parental origin of the disease allele (pat: paternally inherited, mat: maternally inherited); cpi, complete paternal imprinting; cmi, 
complete maternal imprinting; ni, no imprinting.
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options “modcalc single,” “penetrance restriction off,” “allfreq re-
striction off,” “maximization dense,” and “dimensions 4” or “di-
mensions 5” for ni models and imprinting models, respectively. 
“modcalc single” enables a separate maximization for each genetic 
position. “penetrance restriction off” allows for over- and under-
dominant models, i.e., allows heterozygote penetrance(s) to be 
varied freely between 0 and 1 during the maximization. This also 
affects the dominance index, which is defined as

1, 1, 0 2

2 0

.pat matF F F F
D

F F
+ - -

=
-

 

D = 1 indicates a fully dominant model, whereas D = –1 indicates 
a fully recessive model. However, if the penetrances are not re-
stricted to F0 < F1 < F2, the dominance index may also exceed 1 or 
fall below –1. Note that the dominance index is defined to be 0 for 
models with F2 = F0, i.e., strictly overdominant or strictly under-
dominant models. “allfreq restriction off” allows the disease allele 
frequency to be estimated >0.5. “maximization dense” indicates 
that the MOD score is calculated for a greater number of pre-
defined models before the fine maximization than in the standard 
setting. “dimensions 4” or “dimensions 5” allows all parameters 
(disease allele frequency plus 3 penetrances in the case of ni mod-
els or disease allele frequency plus 4 penetrances in the case of im-
printing models) to be varied simultaneously in the maximization. 
For the models with imprinting, we ran 2 analyses. For the first, 
“imprinting” was set to “off” and “dimensions” to “4,” and for the 
second, they were set to “on” and “5,” to obtain ni and imprinting 
MOD scores, respectively. Estimates of trait-model parameters 
were obtained from the model yielding the highest MOD score in 
the analysis.

Results

Estimated values of the trait-model parameters of each 
simulation scenario are reported as medians based on 
1,000 replicates. Sometimes, penetrances of a given repli-
cate were estimated to be exactly 0, rendering penetrance 
ratios undetermined. In this case, penetrance ratios were 
either set to a very large number (106) or to 1, in case both 
the numerator and the denominator of the penetrance 
ratio were 0. Hence, no information for the estimation of 
the median was lost. To facilitate the comparison of the 
quality of estimation across pedigree types, we construct-
ed graphics that display all 5 pedigree types using various 
trait models. Bias was defined as the deviation of the me-
dian estimate of a parameter from its expected value. The 
corresponding measure of variability is the median abso-
lute deviation (MAD). In general, a good estimation 
shows both small bias and MAD (high efficiency). Impact 
of bias can be considered of minor importance when 
MAD is high. In addition to absolute penetrances, the 
corresponding evaluation of bias and MAD of penetrance 
ratios for ASPs and ASTs will be given in a dedicated sec-

tion. MOD scores for each model and pedigree type are 
displayed in Table 3. Parameter estimation result tables 
for each model and pedigree type can be found in the Ap-
pendix.

Recessive Models
The parameter estimation results for recessive models 

can be found in Figure 3 and Appendix Tables A1, A5, 
and A9. With regard to recessive models, bias and MAD 
were often higher for ASPs compared to ASTs (Fig. 3). 
This is due to the fact that only 2 out of 4 parameters (3 
penetrances and the disease allele frequency) are identifi-
able. With ASTs, 3 out of 4 parameters should be identifi-
able. It is of note that it is impossible in the case of affect-
eds-only analysis to estimate absolute penetrance values; 
here, only penetrance ratios, which correspond to geno-
type relative risks, are identifiable in the best case. Con-
sider, for example, the 2 sets of penetrances resulting in 
the same MOD score: f0, f1, f2 = 0.1, 0.5, 1 and f0, f1, f2 = 
10–3, 0.005, 0.01, with the first set being more likely to be 
evaluated in the analysis due to the predefined trait mod-
els initially tested by GHM before the fine maximization. 
Generally, for all types of models (recessive, dominant, 
additive, and overdominant), higher MOD scores were 
obtained for ASTs compared to ASPs.

With ASPs, most recessive models were recognized as 
such, indicated by a median dominance index d < 0. Only 
R1, a model with an extremely reduced penetrance, was 
estimated as being additive (median d = 0) for P = 0.01. 
This is due to the fact that affected persons are more like-
ly to be phenocopies in the context of a strongly reduced 
penetrance and a small disease allele frequency, which re-
duces the amount of allele sharing among affected sib-
lings. An equivalent explanation for this can be found in 
Figure 4, which shows the projection of the estimated 
trait-model parameters for ASP pedigrees on the triangu-
lar parameter space as described in the Introduction (sub-
section “Identifiability of Inheritance Parameters”). For 
all models, the estimated values scattered around the true 
values without systematic deviation. However, the true 
value for model R1 with P = 0.01 lies close to the point of 
no linkage in the upper right corner of the triangle. In the 
proximity of this point, all types of generic models (reces-
sive, dominant, additive, and overdominant) accumulate 
and are hard to distinguish from each other.

For ASTs, all recessive models were clearly recognized 
as such. Estimation accuracy of the dominance index D 
improved from ASPs to ASTs for most recessive models. 
Intriguingly, ASTs even showed the best parameter esti-
mation performance in terms of small bias and MAD 
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across all investigated pedigrees for models R2 and R3 
both with P = 0.01 (Fig. 3). This might be explained as fol-
lows: although only penetrance ratios can in theory be 
estimated using ASTs, the corresponding set of absolute 
values of the penetrances resulting in such high ratios 

(F2/F1: 50 for R2 and 80 for R3) is limited in a maximiza-
tion starting with a fixed grid of genetically plausible val-
ues (the genotype relative risk of model R1 with P = 0.01 
obviously was too low to show the aforementioned ef-
fect). Further, despite the small disease allele frequency, a 
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Fig. 3. Illustration of bias and variability of the parameter estima-
tion for recessive models using different pedigree types. The trait-
model parameters used for the simulations are given above the 
panels for each trait model. Estimations of the individual param-
eters are depicted by five unique symbols. For each parameter, the 
median absolute deviation (MAD) and bias, defined as bias = me-

dian (true parameter value – estimated value), are plotted. Pedi-
gree types (for details, see Fig. 2 and its legend) are displayed on 
the x-axis with increasing complexity, i.e., ASPs are located on the 
very left side and 3-G pedigrees are located on the very right side. 
p, disease allele frequency; fi, penetrances; d, dominance index.

(Figure continued on next page.)
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low phenocopy rate together with a high penetrance en-
sures enough information for the estimation of F2 in rela-
tion to F0 and F1 in the context of ASTs. In addition, the 
number of degrees of freedom in an AST MOD score 
analysis is lower compared to an analysis with pedigrees 
containing healthy individuals, which can lead to a high-
er power of an affecteds-only analysis (see also Flaquer 
and Strauch [41]) and hence to a more efficient parameter 
estimation for some model types (up to a constant factor 
multiplied to all penetrances).

With regard to DSTs and DSQs, all models were cor-
rectly classified as being recessive, and the median dom-
inance index was mostly close to its expected value. In 
most cases, median estimates of all parameter values 
were similar for the 2 pedigree types. When the true dis-
ease allele frequency was small (P = 0.01), it was always 
overestimated. When it was large (P ≥ 0.1), it was always 
underestimated. Penetrances F0 and F1 were estimated 
with high accuracy for models R1–R3 with P = 0.1 and 
model AFR2. For models R1–R3 with P = 0.01, F0 and F1 
were overestimated. In the case of model AFR1, F0 was 
underestimated; however, F1 was estimated with good 
accuracy. Median estimates of F2 were close to their ex-

pected values for most models, with higher accuracy for 
DSQs compared to DSTs. In general, F2 could be esti-
mated more accurately for stronger genetic models, 
which is the case for the investigated recessive models 
with higher penetrance and disease allele frequency. 
MOD scores were comparable for DSTs and DSQs (Ta-
ble 3), except for models R2 (F2 = 0.5) and R3 (F2 = 0.8) 
with P = 0.1 as well as model AFR2 (F2 = 0.5). This is due 
to the fact that an additional healthy individual increases 
linkage information only if penetrance and genotype rel-
ative risk are sufficiently high (F2 >> F0, F1 for a recessive 
model).

Using 3-G pedigrees, median estimated dominance in-
dices were all close to their expected values except for 
model R1 with P = 0.01. The estimation of the disease al-
lele frequency was accurate for models R2 and R3 both 
with P = 0.1 and AFR2 with P = 0.25. The median F0 and 
F1 penetrances were estimated with good accuracy for 
models R3 with P = 0.1, R2, and AFR2. The homozygous 
mutant penetrance F2 was estimated with good accuracy 
for models R2 with P = 0.1, R3, and AFR2. However, in 
all other cases, the estimated median F2 was still larger 
than the corresponding medians for F0 and F1.
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With regard to DSTs, DSQs, and 3-G pedigrees,  
bias was often smaller than MAD across all models,  
yet especially large MADs were obtained for penetrance 
F2 and models R2 and R3 both with P = 0.01 as well as 
for AFR1. Values for bias and MAD did not consistent-
ly decrease when moving from DSTs over DSQs to  
3-G pedigrees, except for the weak genetic model R1 
with P = 0.01 and AFR2 (Fig. 3). Better parameter iden-
tifiability when moving from ASTs to DSTs as mea-
sured by a reduction in bias, especially of the F2 pene-
trance, could only be observed for models R1 with P = 
0.1 and AFR1.

Dominant Models
Parameter estimation results for dominant models are 

given in Figure 5 and Appendix Tables A2, A6, and A10. 
The estimation of individual parameters for ASPs and 
ASTs was not very accurate, which is in line with the fact 
that exact penetrances cannot be estimated for affecteds-
only pedigrees, as explained above. The median domi-
nance index was underestimated for all models, some of 
which were even misclassified as being additive. In the 
case of ASPs, this can be explained by the proximity of 
both model classes in the triangular parameter space 
(Fig. 6, 7). In particular, dominant models without phe-
nocopies are represented by the dashed line, whereas ad-
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Fig. 4. Recessive models: projections of trait-model parameter es-
timates on the possible triangle parameter space of affected sib 
pairs (ASPs). The trait-model parameters used for the simulation 
are given above the panels for each trait model, and its projection 
in terms of allele-sharing is depicted by a red dot. z0, allele-sharing 

probability that an ASP shares no allele identical-by-descent (IBD); 
z1, allele-sharing probability that an ASP shares 1 allele IBD; trait-
model parameters used for the simulation: disease allele frequency 
P and penetrances F0, F1, F2.
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ditive models lie on the upper edge of the triangle. Hence, 
models D1–D3 with P = 0.01 and AFD1, which are lo-
cated closest to the upper edge of the triangle, showed a 
median estimated dominance index d close to 0, corre-
sponding to an additive model. The estimation of the 
dominance index improved when analyzing ASTs instead 
of ASPs for most models. The same holds for the disease 
allele frequency, albeit to a lesser degree.

For DSTs and DSQs, many models were misclassified 
as rather additive for both pedigree types when looking 
at their corresponding dominance indices. Only the me-
dian dominance index d for model D3 with P = 0.1 clear-
ly pointed to dominance (d = 0.81 for DSTs and d = 0.88 
for DSQs). Otherwise, median dominance indices for 
models D2, D3, and AFD2 were all positive but clearly 
below 1 for both pedigree types. Models D1 and AFD1 
even showed median d values around 0 and below 0, re-
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Fig. 5. Illustration of bias and variability of the parameter estimation for dominant models using different pedi-
gree types. For more details, see Figure 3.

(Figure continued on next page.)
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spectively. The disease allele frequency was estimated ac-
curately for models D1–D3 with P = 0.1, overestimated 
for models D1–D3 with P = 0.01 and the AFD1 model, 
and underestimated for the AFD2 model. Estimates of P 
were comparable between both pedigree types. Pene-
trance F0 was mostly underestimated for models D1–D3 
and AFD1 using both pedigree types. With regard to F1, 
models D2, D3, and AFD2 showed good accuracy for 
both pedigree types, whereas it was underestimated for 
models D1 and AFD1. F2 was often overestimated. Simi-
lar to recessive models, MOD scores were comparable 
between DSTs and DSQs (Table 3), except for models D2 
(F1, F2 = 0.5), D3 (F1, F2 = 0.8), and AFD2 (F1, F2 = 0.5). 
As before, this is due to the fact that an additional healthy 
individual increases linkage information only if pene-
trance and genotype relative risk are sufficiently high (F1, 
F2 >> F0 for a dominant model). Only in this case, pen-
etrance estimation is also improved for DSQs compared 
to DSTs.

In the case of 3-G pedigrees, median d values pointed 
towards dominance for all models. Median dominance 
indices were close to their expected values for models D2 

and D3 with P = 0.1 as well as model AFD2. Estimates of 
the disease allele frequency showed good accuracy for 
models D1 with P = 0.1, D2, and D3. Estimates for F0 were 
mostly close to the expected value. Estimates for F1 and 
F2 were very close to their expected values, with the high-
est accuracy for models D2 and D3.

With respect to dominant models, bias and MAD de-
creased when moving from ASPs over ASTs, DSTs, and 
DSQs to 3-G pedigrees for models D1, D2, and D3 all with 
P = 0.1 (Fig. 5). Median bias for F2 seemed to be unduly 
small for ASPs for model D2 with P = 0.01. This can be 
explained by looking at the corresponding parameter dis-
tribution for ASPs (data not shown), which showed that 
F2 was mostly estimated near 0 (<0.1 in 25.3% of the rep-
licates) or 1 (>0.9 in 36.6% of the replicates). This is also 
reflected in the high MAD of F2 (Fig. 5). Generally, for all 
dominant models, bias and MAD mostly decreased when 
moving from affecteds-only pedigrees over DSTs and 
DSQs to 3-G pedigrees. Only for model AFD1, the results 
were similar across all pedigree types. Bias was mostly 
smaller than MAD across all models for DSTs, DSQs, and 
3-G pedigrees.
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Additive Models
Parameter estimation results for additive models are 

depicted in Figure 8 and Appendix Tables A3, A7, and 
A11. For ASPs, the projection of estimated trait-model 
parameters on the triangular parameter space, as dis-
played in Figure 7, illustrates that all additive models are 
very close to the upper edge of the triangle. Model AFA2, 
which has the weakest genetic effect among the investi-
gated additive models, shows the largest distance to strict-
ly dominant models (dashed line in Figure 7) within the 
allele-sharing parameter space of ASPs. The median esti-
mated dominance indices d were close to their expected 
values for both ASPs and ASTs, except for model A2, 
which showed deviation towards dominance, and model 
A3. For most models and both pedigree types, the median 

estimated disease allele frequency p was also close to the 
expected value. Again, the estimation of individual pen-
etrances for ASPs and ASTs was not very accurate, given 
that these pedigree types contain only affected individu-
als.

For DSTs and DSQs, the median dominance indices 
tended towards their expected values, but were not ac-
curate for most models. The estimation of the disease al-
lele frequency was comparable between DSTs and DSQs 
and showed good accuracy for models A1 with P = 0.01 
as well as models A2 and A3 both with P = 0.1. Otherwise, 
models with P = 0.01 showed an overestimated disease 
allele frequency (A2, A3), whereas for models with P ≥ 
0.1 it was underestimated (A1, AFA1, AFA2). Penetranc-
es F0 and F1 were estimated accurately for all models and 
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Fig. 6. Dominant models: projections of trait-model parameter estimates on the possible triangle parameter space 
of ASPs. For more details, see Figure 4.
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both pedigree types, with a slight underestimation in 
some cases. F2 was estimated with acceptable accuracy 
for both pedigree types; however, it was always underes-
timated, most prominently for model A2 with P = 0.01 
(F2 = 0.5; f2 = 0.335 for DSTs and f2 = 0.35 for DSQs). The 
parameter estimation did not substantially improve 
when using DSQs instead of DSTs (Fig. 8). This is in line 
with the MOD scores in Table 3, which were comparable 
between DSTs and DSQs, with only a slight increase for 
models A3 and AFA2. As before, this is due to the fact 
that models A3 and AFA2 show the highest penetrance 
and genotype relative risk among the investigated mod-
els, such that an additional healthy individual can con-
tribute at least some extra linkage information in the 
analysis.

The accuracy of median d values for additive models 
was not very high when using 3-G pedigrees in the analy-
sis. However, most dominance indices still pointed to ad-
ditivity. The results for the disease allele frequency showed 
good accuracy for models A1 and A2, each with P = 0.1, 
A3, and AFA1. The estimates for penetrance F0 showed 
good accuracy for most models. Median estimates for F1 
were mostly identical to their expected value. Penetrance 
F2 was estimated with good accuracy for models A1 and 
A2, each with P = 0.1, A3, AFA1, and AFA2.

The results for the additive models in Figure 8 showed 
a general trend towards less bias when moving from af-
fecteds-only pedigrees over DSTs and DSQs to 3-G pedi-
grees, except for model AFA1. When moving from DSTs 
over DSQs to 3-G pedigrees, MAD slightly decreased ex-
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Fig. 7. Additive models: projections of trait-model parameter estimates on the possible triangle parameter space 
of ASPs. For more details, see Figure 4.
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cept for models A3 with P = 0.01 and AFA1. Bias was 
mostly smaller than MAD across all models for DSTs, 
DSQs, and 3-G pedigrees.

Overdominant Models
Parameter estimation results for overdominant mod-

els are given in Figure 9 and Appendix Tables A4, A8, and 
A12. As already mentioned above, the dominance index 
D is defined to be 0 for models with F0 = F2, because the 
denominator would be 0. Therefore, D cannot serve as a 
performance measure for the analyzed overdominant 

models. For ASPs and most models, the median disease 
allele frequency p was estimated close to the expected val-
ue. Overdominance, i.e., F0 < F1 and F2 < F1, was correct-
ly assessed for models U1–U3 with P = 0.1 and U3 with  
P = 0.01 and a sample size of 1,000 pedigrees (Appendix 
Table A4). All other models were classified as rather ad-
ditive (e.g., U1 with P = 0.01) or dominant (e.g., U2 with 
P = 0.01). The projections of the estimated trait-model 
parameters in the parameter space of ASPs are shown in 
Figure 10. The allele-sharing estimates of particular mod-
els were not evenly distributed around the true point (e.g., 
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U2 with P = 0.1 and U3 with P = 0.1), which might be due 
to peculiarities of the parameter space. The true point for 
model U1 with P = 0.01 lies between the upper edge of the 
triangle, which corresponds to additive models, and the 
dashed line, representing dominant models. The location 
and distribution of the estimates for this model resembled 
those of the additive model A3 with P = 0.1 depicted in 
Figure 7. Indeed, the median estimates for U1 with P = 
0.01 and A3 with P = 0.1 were similar for all penetrances 
as well as the disease allele frequency.

With regard to ASTs, the median disease allele fre-
quency p was estimated close to the true value for all mod-
els. Overdominant models could be better distinguished 
from other model types when using ASTs instead of ASPs, 
because the corresponding allele-sharing values form a 
unique, separated compartment of the 3-dimensional pa-
rameter space (Fig. 1). Hence, overdominance was cor-
rectly assessed for all models except model U4 (Fig.  9, 
ASTs). Why model U4 was so difficult to be classified as 
overdominant for ASPs and ASTs can be explained as fol-
lows. As can be seen from Figures 1 (ASTs) and 10 (ASPs), 
model U4 occupies a distinct part of the parameter space 
as compared to models U1–U3. For both pedigree types, 
however, it can be shown that this distinct part of the pa-

rameter space can as well be occupied by underdominant 
models, i.e., F0 > F1 and F2 > F1, which is reflected by the 
corresponding median penetrance estimates for ASTs 
(Appendix Table A4).

For DSTs and DSQs, estimates of the disease allele fre-
quency for models U1–U3 with P = 0.1, model U3 with  
P = 0.01, and model U4 showed good accuracy; otherwise, 
it was clearly overestimated. Median F0 penetrances were 
estimated around their expected value (0.01) for both 
pedigrees, albeit slightly underestimated. Estimations of 
the median F1 penetrance were accurate for all models, 
except model U1. Estimating penetrance F2 proved to be 
difficult, since only models U3 with P = 0.1 and U4 showed 
values that were near their expectations. Generally, an es-
timation of F2 is difficult when the disease allele frequen-
cy is low, because only a few individuals of the dataset 
actually have a homozygous mutant genotype and can 
contribute information to the estimation of F2. Therefore, 
the relations F0 < F1 and F2 < F1 were only identified for 
models U2 and U3 both with P = 0.1 and U4 with P = 0.35 
for both pedigree types. As explained above, the addition-
al healthy individual in DSQs can increase the MOD 
score only if the penetrance and the genotype relative risk 
are sufficiently high, which is the case for models U2, U3 
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and U4 (Table 3). By the same token, when adding a sec-
ond healthy individual, penetrance estimation was also 
improved for model U3 with P = 0.01, which pointed to 
overdominance only for DSQs but not for DSTs (Appen-
dix Table A8).

Using 3-G pedigrees, the estimation of the disease al-
lele frequency showed good accuracy for most models, 
especially for models U1–U3 with P = 0.1 and model U4. 
The median penetrances F0 were estimated near their 
expected value (0.01) for all models, albeit slightly un-
derestimated in most cases. Penetrance F1 was estimated 
with very high accuracy, with all but one medians esti-
mated exactly at the expected value. The accuracy of the 
estimation of F2 depended on the disease allele frequen-
cy – models with P ≥ 0.1 showed good accuracy, where-

as F2 was always overestimated for models with P = 0.01. 
As mentioned above, when the disease allele frequency 
is low, the dataset contains too few individuals with a 
homozygous mutant genotype that can contribute to the 
estimation of F2. However, median estimates of F2 were 
significantly lower than those of F1, which clearly indi-
cates overdominance, except for model U1 with P = 
0.01.

For models U1–U3 with P = 0.01, median bias of F2 
was high, especially for ASPs, DSTs, and DSQs (Fig. 9). 
This is due to the fact that ASPs, DSTs, and DSQs contain 
only 2 affected individuals, compared to ASTs and 3-G 
pedigrees having 3 affected individuals. The additional 
affected individual results in a larger number of mutant 
alleles per pedigree and hence in a larger number of ho-
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Fig. 10. Overdominant models: projections of trait-model parameter estimates on the possible triangle parameter 
space of ASPs. For more details, see Figure 4.
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mozygous mutant individuals. Bias and MAD decreased 
when moving from DSTs over DSQs to 3-G pedigrees for 
most models. Better identifiability of parameters as mea-
sured by a reduction in bias when using pedigrees with 
unaffected individuals could only be observed for models 
U1 with P = 0.01, U3 with P = 0.1, and U4. In DSTs, DSQs, 
and 3-G pedigrees, bias was often larger than MAD for F2. 
As can be seen from Figure 9, parameter estimation re-
sults were best for models with P ≥ 0.1, especially when 
using 3-G pedigrees.

Penetrance Ratios for ASPs and ASTs
As already mentioned above, the exact numerical val-

ues for trait-model parameters cannot be obtained from 
affecteds-only analyses. However, the corresponding 
penetrance ratios can in principle be estimated. In Ta-
ble 4, we present the estimation of pairwise ratios of the 
penetrances F0, F1, F2 for all models in our affecteds-only 
analyses with ASPs and ASTs. Generally, the variability 
(as measured by MAD in our case) for penetrance ratios 
is expected to be higher than for the corresponding indi-
vidual penetrances, especially when the expected pene-
trance ratio is high.

For recessive models and ASPs, the 3 penetrance ratios 
(F1/F0; F2/F0; F2/F1) were estimated with best accuracy for 
models R1, R2, and R3 with the larger disease allele fre-
quency P = 0.1. The ratio between F1 and F0, which equals 
1 for all recessive models except model AFR2, was usu-
ally well recognized, whereas F2/F0 and F2/F1 were under-
estimated for models with P = 0.01. There was a clear im-
provement in the estimation of the penetrance ratios 
F2/F0 and F2/F1 when using ASTs for the models with dis-
ease allele frequency P = 0.01 and the AFR1 model. Only 
the models R1, R2, and R3, each with P = 0.1, as well as 
AFR1 showed a smaller bias than MAD for both ASPs and 
ASTs and for all penetrance ratios. While bias of pene-
trance ratios often decreased when using ASTs instead of 
ASPs, the corresponding MAD was often higher, espe-
cially for models with P = 0.01 (Table 4).

For dominant models, the penetrance ratio that was 
close to 1, i.e., F2/F1, was overestimated for ASPs, albeit 
only slightly for models D1–D3 with P = 0.1 and D1 with 
P = 0.01. The ratios F1/F0 and F2/F0 were mostly underes-
timated for models D1–D3 with P = 0.1 and AFD2, or 
mostly overestimated for models D1–D3 with P = 0.01 
and AFD1. The estimation of ratios improved with ASTs 
compared to ASPs only for models D1–D3 with P = 0.01. 
In the case of ASPs, bias was smaller than MAD for all 
penetrance ratios and models, except for AFD1n1000 and 
AFD2. For ASTs, in addition to AFD1n1000 and AFD2, 

higher bias than MAD was also obtained for models D2 
and D3, each with P = 0.1.

For additive models, penetrance ratios were estimated 
best for models AFA1 and A1, which were strictly addi-
tive or close to strictly additive, respectively. In general, 
the benefit for the accuracy of the estimation of pene-
trance ratios when using ASTs instead of ASPs was not as 
clear-cut as for the other models. Here, the estimation 
mostly improved for one ratio and deteriorated for an-
other one. For ASPs and ASTs, bias was smaller than 
MAD for all penetrance ratios and models, except for 
models A2 and AFA2, and, in the case of ASTs, model A3 
with P = 0.1.

Results for the overdominant models and ASPs showed 
that the penetrance ratio F1/F0 was underestimated for 
models U1 and U2 with P = 0.1 as well as model U4 with 
P = 0.35, and overestimated for models with P = 0.01. The 
other 2 ratios, F2/F0 and F2/F1, were always overestimated, 
even to a higher degree for models with P = 0.01. The pen-
etrance ratios for model U4 could not be estimated accu-
rately, for neither ASPs nor ASTs, due to the confounding 
of over- and underdominant models, as explained above. 
In most other cases, there was a clear improvement in es-
timation accuracy of all 3 penetrance ratios when using 
ASTs compared to ASPs. For both pedigree types, bias 
was mostly smaller than MAD for all penetrance ratios 
and models.

Summary of Trait-Model Parameter Estimation 
Results
The results are summarized as answers to questions 

(1)–(5) given in the Introduction section.
(1) The ability of the MOD score approach to differen-

tiate between the trait-model types (recessive, dominant, 
additive, and overdominant) was limited by the underly-
ing parameter spaces of the corresponding pedigrees in 
the analysis. Among the recessive models, a stronger ge-
netic effect provided a better discrimination from other 
model types across all sorts of investigated pedigrees. 
Adding one unaffected individual to an ASP pedigree was 
mostly sufficient to identify and correctly estimate the pa-
rameters of the recessive model. Additive and dominant 
models were generally hard to discriminate using affect-
eds-only data due to their spatial proximity in the corre-
sponding allele-sharing parameter space. The discrimi-
nation between additive and dominant models improved 
by adding unaffected individuals and when using 3-G 
pedigrees. The correct classification of overdominant 
models substantially improved from ASPs to ASTs. With 
3-G pedigrees, trait-model parameters of overdominant 
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models were mostly estimated with good accuracy, 
whereas DST and DSQ data sometimes showed larger 
bias than MAD for specific parameters.

(2) As was expected, the estimation of trait-model pa-
rameters and penetrance ratios improved when adding 
an affected sibling to an ASP, resulting in an AST. The 
identifiability of the trait-model type depended on the 
true point of allele-sharing in the corresponding param-
eter space. The parameter space for ASPs is the possible 
triangle, whereas the parameter space for ASTs has not 
been graphically depicted so far. However, using the for-
mulas given by Knapp [28], we were able to empirically 
draw the parameter space for ASTs (Fig. 1), and hence to 
hypothesize which model types could be better discrimi-
nated using ASTs compared to ASPs. As was expected 
from the structure of the parameter spaces for both pedi-
gree types, estimation accuracy using ASTs was particu-
larly higher for overdominant models compared to ASPs. 
Discrimination of additive and dominant models, espe-
cially when the genetic effect was small to moderate, re-
mained difficult. Recessive models were generally identi-
fied as such using either ASPs or ASTs due to their clear 
spatial separation in the parameter space from other 
model types.

(3) In line with our expectations, the identifiability of 
absolute values of the penetrances instead of pairwise ra-
tios could be achieved when unaffected pedigree mem-
bers were included in the analysis, i.e., DSTs and DSQs as 
well as 3-G pedigrees.

(4) Interestingly, the identifiability of trait-model pa-
rameters was only slightly better when adding a further 
unaffected sibling to DSTs, i.e., when using DSQs. The 
number of allele-sharing classes of DSTs hence seemed to 
be sufficient for the identification of the trait-model pa-
rameters.

(5) With more complex pedigrees, the identifiability of 
trait-model parameters further improved for some mod-
els. While the median estimates were mostly similar, us-
ing 3-G pedigrees instead of DSTs or DSQs often led to a 
reduction in MAD of the parameters.

Imprinting Models
The results of the imprinting scenarios can be found 

in Table 5. All parental genotypes were removed for both 
AHSPs and ASPs prior to the analysis.

NI Model
Using pedigree structure 1, i.e., AHSPs with one half 

of the sample having a common father and the other 
half having a common mother, the disease allele fre-Ta

b
le

 5
. R

es
ul

ts
 o

f t
he

 im
pr

in
tin

g 
m

od
el

s

M
od

el
 

na
m

e
P

F
G

H
M

 a
na

ly
sis

 w
ith

 im
pr

in
tin

g
G

H
M

 a
na

ly
sis

 w
ith

ou
t i

m
pr

in
tin

g
Es

tim
at

ed
 m

ed
ia

n 
pa

ra
m

et
er

s (
M

A
D

)
Es

tim
at

ed
 m

ed
ia

n 
pa

ra
m

et
er

s (
M

A
D

)
M

O
D

p
f 0

f 1,
pa

t
f 1,

m
at

f 2
i

M
O

D
p

f 0
f 1

f 2

cp
i (

I =
 –

1)
0.

01
0;

 0
; 1

; 1
pe

d 
1

26
.0

 
(2

.6
6)

0.
00

8
(0

.0
03

)
0.

00
02

 
(0

.0
00

3)
0.

00
03

(0
.0

00
4)

0.
94

 
(0

.0
89

)
0.

94
 

(0
.0

89
)

–1 (0
.0

)
9.

26
(2

.4
2)

0.
1

(0
.0

)
0.

01
(0

.0
)

0.
54

(0
.6

15
)

0.
5

(0
.6

38
)

cp
i (

I =
 –

1)
0.

01
0;

 0
; 1

; 1
pe

d 
2

39
.6

1
(2

.8
1)

0.
00

3
(0

.0
04

)
0.

0
(0

.0
)

0.
0

(0
.0

)
0.

95
(0

.0
74

)
0.

55
5

(0
.6

45
)

–0
.1

(1
.2

8)
39

.4
9

(2
.9

3)
0.

00
2

(0
.0

)
0.

00
01

(0
.0

00
1)

0.
43

(0
.1

63
)

1.
0

(0
.0

)
cm

i (
I =

 1
)

0.
01

0;
 1

; 0
; 1

pe
d 

3
24

.1
7

(2
.6

3)
0.

00
8

(0
.0

03
)

0.
00

03
(0

.0
00

4)
0.

9
(0

.1
48

)
0.

00
1 

(0
.0

02
)

0.
7

(0
.4

45
)

0.
93

(0
.1

3)
18

.8
1

(2
.7

8)
0.

05
(0

.0
1)

0.
00

03
(0

.0
00

4)
0.

12
(0

.0
59

)
0.

51
(0

.4
15

)
ni

0.
01

0;
 0

.5
; 0

.5
; 1

pe
d 

1
43

.8
9 

0.
01

 
0.

00
02

0.
71

0.
76

0.
94

0
43

.8
6

0.
01

0.
0

0.
2

0.
9

(4
.0

)
(0

.0
)

(0
.0

00
3)

(0
.4

23
)

(0
.3

56
)

(0
.0

89
)

(0
.4

4)
(3

.9
9)

(0
.0

)
(0

.0
)

(0
.2

74
)

(0
.1

48
)

pe
d 

2
34

.4
5

0.
00

8
0.

00
05

0.
38

0.
43

0.
92

0
34

.3
5

0.
00

8
0.

00
05

0.
48

0.
83

(0
.2

52
)

(3
.4

8)
(0

.0
03

)
(0

.0
00

7)
(0

.5
61

)
(0

.4
15

)
(0

.1
19

)
(0

.7
6)

(3
.4

)
(0

.0
)

(0
.0

00
4)

(0
.3

56
)

pe
d 

3
27

.0
6

0.
00

8
0.

00
04

0.
00

1
0.

44
0.

67
–0

.0
35

26
.8

9
0.

00
8

0.
00

03
0.

48
0.

85
(3

.1
7)

(0
.0

03
)

(0
.0

00
6)

(0
.0

01
)

(0
.4

74
)

(0
.4

89
)

(0
.8

5)
(3

.1
2)

(0
.0

1)
(0

.0
00

4)
(0

.3
34

)
(0

.2
22

)

cp
i, 

co
m

pl
et

e p
at

er
na

l i
m

pr
in

tin
g;

 cm
i, 

co
m

pl
et

e m
at

er
na

l i
m

pr
in

tin
g;

 n
i, 

no
 im

pr
in

tin
g;

 M
A

D
, m

ed
ia

n 
ab

so
lu

te
 d

ev
ia

tio
n,

 ad
ju

st
ed

 b
y 

a c
on

st
an

t (
1.

48
26

) f
or

 as
ym

p-
to

tic
al

ly
 n

or
m

al
 co

ns
ist

en
cy

; I
, t

ru
e v

al
ue

 fo
r t

he
 im

pr
in

tin
g 

in
de

x;
 P

, t
ru

e v
al

ue
 fo

r t
he

 d
ise

as
e a

lle
le

 fr
eq

ue
nc

y;
 F

, t
ru

e v
al

ue
s f

or
 th

e p
en

et
ra

nc
es

 (F
0; 

F 1
,p

at
; F

1,
m

at
; F

2)
; p

ed
, 

pe
di

gr
ee

 st
ru

ct
ur

e;
 M

O
D

, M
O

D
 sc

or
e;

 p
, e

st
im

at
ed

 d
ise

as
e 

al
le

le
 fr

eq
ue

nc
y;

 f i
, e

st
im

at
ed

 p
en

et
ra

nc
es

; i
, e

st
im

at
ed

 im
pr

in
tin

g 
in

de
x.



Estimation of Trait-Model Parameters in 
a MOD Score Linkage Analysis

Hum Hered 2016;82:103–139
DOI: 10.1159/000479738

129

quency P and the penetrance F0 were estimated with 
high accuracy for the ni model in a MOD score analysis 
without taking imprinting into account. However, pen-
etrances F1 and F2 were both underestimated, with more 
downward bias for F1. It is of note that only 1 free pa-
rameter can in principle be identified from AHSP data 
in a MOD score analysis. In the case of the correspond-
ing analysis taking imprinting into account, P and F0 
were estimated with high accuracy. Penetrance F2 was 
estimated close to its expected value; however, the het-
erozygote penetrances were both clearly overestimated. 
The median values for the heterozygote penetrances 
F1,pat, and F1,mat were comparable, which was expected 
for the ni model. The correct imprinting index I = 0 was 
obtained in the analysis of pedigree structure 1 and the 
ni model. MOD scores were comparable between the 2 
analyses, i.e., with and without taking imprinting into 
account, whereby the imprinting MOD score is per def-
inition always as large as the corresponding ni score. In 
the case of the ni model, MOD scores were generally 
highest using pedigree structure 1 and lowest for pedi-
gree structure 3.

Using pedigree structure 2, i.e., 100 ASPs and 100 AH-
SPs having a common mother, the estimated median dis-
ease allele frequency P and penetrances F0 and F1 were 
close to the expected value in the analysis without taking 
imprinting into account. Penetrance F2 was underesti-
mated. In the case of the analysis taking imprinting into 
account, P and F0 were estimated close to the expected 
value, whereas the heterozygote penetrances F1,pat and 
F1,mat as well as F2 were underestimated. As was with ped-
igree structure 1, the correct imprinting index I = 0 could 
be obtained from the analysis of pedigree structure 2. 
MOD scores of both analysis types were comparable.

The corresponding values for the trait-model param-
eters for pedigree structure 3, i.e., 180 ASPs and 20 AHSPs 
with a common mother, were comparable to those of ped-
igree structure 2 for the ni analysis. When imprinting was 
taken into account in the analysis, penetrances F1,pat and 
F2 were estimated lower (f1,pat = 0.001; f2 = 0.67) compared 
to pedigree structure 2 (f1,pat = 0.38; f2 = 0.92). Most strik-
ingly, penetrance F1,pat was estimated close to 0, which 
reflects the unidentifiability between paternal imprinting 
and ni models when parental genotypes have been re-
moved. It appears counterintuitive at first sight that an 
apparently stronger indication of paternal imprinting is 
obtained for pedigree structure 3, which contains only 20 
AHSPs, compared to pedigree structure 2, which contains 
100 AHSPs (Table 5). However, with a larger number of  
AHSPs in pedigree structure 2, it is more likely that 2 half-

sibs have received the disease allele from the 2 separate 
fathers rather than from their joint mother, which reduc-
es the likelihood of a paternal imprinting model. The es-
timated median imprinting index was estimated close to 
its expected value, albeit slightly below 0 due to the un-
derestimation of F1,pat.

Imprinting Models
In contrast to the ni model, the presentation of the re-

sults for the imprinting simulations starts with the MOD 
scores taking imprinting into account, which are then 
compared to the ni results. Using pedigree structure 1 and 
the cpi model, the disease allele frequency and the pene-
trances were estimated with good accuracy in a MOD 
score analysis taking imprinting into account. The cor-
rect imprinting index I = –1 could be obtained as well. 
With regard to the corresponding ni analysis, the median 
estimated trait-model parameters of the cpi model were 
difficult to interpret due to the following: since the ni 
MOD score analysis assumes the equivalence of parental 
genomes, i.e., the equivalence of AHSPs having a com-
mon father and AHSPs having a common mother, this 
leads to a reduced likelihood and to bias of trait-model 
parameter estimates. This is because the truly underlying 
genetic mechanism, i.e., the imparity of parental ge-
nomes, is misspecified in a ni MOD score analysis, which 
cannot be compensated by maximizing over the ni trait 
model. If complete imprinting is really present but not 
modelled in the analysis, only the meioses of those AHSPs 
with a common parent of the non-imprinted sex contrib-
ute linkage information, whereas the other AHSPs point 
at no linkage. Therefore, the MOD score dropped from 
26.0 with imprinting to 9.26 without imprinting taken 
into account in the analysis, and trait-model parameter 
estimates for the ni model were distorted.

Using pedigree structure 2, trait-model parameters 
could be estimated with good accuracy in an imprinting 
MOD score analysis, except for F2, which was clearly un-
derestimated. In fact, F2 was mostly estimated as either 0 
or close to 1 (data not shown). This was most likely due 
to the fact that a paternal imprinting model with pene-
trances (F0, F1,pat, F1,mat, F2) = (0; 0;1; 1) can hardly be dis-
tinguished from an overdominant model with penetranc-
es (0; 0;1; 0) using ASP data. This was also reflected by a 
median imprinting index with a smaller absolute value 
than expected (i = –0.1), because i is defined to be 0 if the 
estimates of F0 and F2 are equal, and a high MAD for the 
F2 penetrance (0.645; Table 5). Owing to the AHSPs with 
a common mother, however, the relation F1,pat << F1,mat 
could mostly be determined. With regard to the corre-
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sponding ni analysis, trait-model parameters were esti-
mated with good accuracy, whereby the median hetero-
zygote penetrance f1 was estimated close to the mean of 
the penetrances F1,pat and F1,mat that were used for the cpi 
model simulation. MOD scores of the ni analysis were 
comparable to those of the imprinting analysis for pedi-
gree structure 2, because assuming strong maternal allele 
sharing is almost as likely as an additive model, for which 
allele sharing can take place through parents of both sex-
es. In other words, maternal allele sharing in AHSPs with 
a common mother does not imply random (non-excess) 
paternal allele sharing in ASPs with untyped parents.

Using pedigree structure 3 and the cmi model, the 
combined sample of 180 ASPs and 20 AHSPs having a 
common mother led to trait-model parameter estimates 
reflecting maternal imprinting, albeit with an underesti-
mation of F1,pat and F2 (f1,pat = 0.9; f2 = 0.7). The reason 
why F2 was underestimated is the same as it was for ped-
igree structure 2. In contrast to pedigree structure 2, the 
imprinting analysis yielded substantially higher MOD 
scores than the ni analysis, because the non-excess allele 
sharing of AHSPs with a common mother can only be 
explained by maternal imprinting, whereas for the ni 
analysis the non-excess sharing of maternal alleles in  
AHSPs reduces linkage information. This goes along with 
distorted trait-model parameter estimates for the com-
bined dataset. The imprinting index I was estimated close 
to its expected value reflecting maternal imprinting.

Summary of Imprinting Results
The imprinting results are summarized as an answer 

to question (6) given in the Introduction section.
Imprinting could reliably be detected in samples that 

include AHSPs having a common father as well as AHSPs 
with a common mother, even if the parents are untyped 
(pedigree structure 1). When analyzing an equal mixture 
of ASPs and AHSPs having a common mother, all with 
untyped parents, imprinting could in part be declared 
when looking at the imprinting index I obtained from the 
imprinting MOD score analysis and the cpi model. How-
ever, the difference between the ni and imprinting MOD 
score seemed to be marginal, such that there was no sig-
nificant evidence for imprinting. However, using 180 
ASPs and 20 AHSPs having a common mother, again 
with untyped parents, the results for the cmi model clear-
ly showed that information on imprinting can be extract-
ed when adding a few AHSPs with a common parent of 
the imprinted sex to a sample of ASPs with untyped par-
ents, which only harbor information on linkage, to obtain 
substantial evidence of imprinting.

Discussion

The ability of a pedigree analysis to estimate parame-
ters of trait inheritance has been extensively discussed in 
the literature [1, 11, 16, 19–23]. More specifically, the pos-
sibility to jointly estimate linkage and segregation param-
eters in a MOD score analysis has been debated. A MOD 
score analysis does not perform classical segregation 
analysis in the sense of determining whether or not there 
is major gene segregation, but it estimates some segrega-
tion-model parameters together with parameters for 
linkage, which we denote joint trait-marker inheritance 
parameters (recombination fraction, LD parameters, and 
trait-model parameters: disease allele frequency and pen-
etrances). Since the publication of the AAF method pro-
posed by Ewens and Shute [17], the MOD score has often 
been referred to as being AAF, such that it delivers as-
ymptotically unbiased estimates of the trait-model pa-
rameters [11]. It is of note that estimates obtained from 
maximum likelihood techniques are naturally biased for 
finite sample sizes. However, the problem of ascertain-
ment or sampling was often neglected and most theoreti-
cal work on parameter estimation in linkage analysis as-
sumed what is called PI sampling, i.e., sampling of fixed 
pedigree structures independent of any proband. Hence, 
if no correction of the likelihood as to the ascertainment 
procedure is applied, the estimates of the joint marker-
trait inheritance parameters will be biased.

Over the years, the problem of ascertainment/sam-
pling for linkage analysis was gradually elaborated [1, 16, 
19–23]. Presumably the most comprehensive and most 
detailed work on these aspects of pedigree analysis is the 
book by Ginsburg et al. [1], who claimed that unbiased 
estimates can in fact be obtained from a pedigree analysis 
(see also Ginsburg et al. [16]). They provided a general 
likelihood framework that can be used to accommodate 
the likelihood for many aspects of the sampling proce-
dure and also showed how to accomplish sampling cor-
rection in practice. Although their focus was not on the 
MOD score approach per se, they provided the above-
mentioned conditions (i)–(vii), under which the MOD 
score delivers asymptotically unbiased parameter esti-
mates. Along these lines, one of the goals of the present 
paper was to investigate the ability of a MOD score anal-
ysis to obtain unbiased trait-model parameter estimates 
in practical situations. To this end, we have thoroughly 
recapitulated the theoretical background, including con-
ditions under which the parameter estimates should be 
asymptotically unbiased. We then evaluated the param-
eter estimation performance of a MOD score analysis in 
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a simulation study. The first condition of correctly speci-
fying the mode of inheritance referring to the number of 
loci and the number of alleles at each locus is presumably 
most crucial. Therefore, a diallelic autosomal binary trait 
locus was used for the simulation of pedigree data, which 
is usually assumed as the mode of inheritance in a MOD 
score analysis. Although complex disorders are expected 
to follow more complicated modes of inheritance, e.g., 
involving a larger number of trait loci, the number of pos-
sible models, i.e., degrees of freedom, to be tested in a 
MOD score analysis would be prohibitively large and 
procedures to avoid inflated type I error rates would pre-
sumably diminish power. The second condition of mark-
er-independent sampling is often ignored in practice. 
However, when performing linkage analysis in the era of 
densely available markers, this assumption is likely to 
hold, since the limiting step is often the recruitment of an 
individual rather than obtaining informative genotypes. 
Conditions (iii)–(vi) refer to the sampling procedure, 
which is often assumed to be PI. Admittedly, only few 
linkage studies are really PI. However, even in this case, 
parameter estimation remains free of bias if the sampling 
procedure can be controlled. This is the case if either all 
members of the PSF have measured trait values (see con-
dition [v]), e.g., by using a questionnaire to include infor-
mation on potential probands not sampled (see Ginsburg 
et al. [16]), or sampling is single in the sense of Hodge and 
Vieland [20] (see condition [vi]), and the model of exten-
sion is random (see condition [iv]). Then, the MOD score 
can readily be used to obtain asymptotically unbiased 
joint marker-trait inheritance parameter estimates.

Previous work using simulated pedigree data has 
shown that the maximum LOD score is obtained for the 
truly underlying genetic model, provided that there is 
enough power to detect linkage [43]. However, the focus 
of the aforementioned work was only on strictly domi-
nant (f1 = f2) and strictly recessive models (f1 = 0) without 
phenocopies (f0 = 0) and with the disease allele frequency 
fixed at the true value for the analysis. In addition, maxi-
mization was done using a limited set of penetrance val-
ues [43]. In our simulation study, the MOD score with a 
more exhaustive maximization as implemented in GHM 
was used. Furthermore, we studied a wider range of trait 
models and pedigree structures. We did not investigate 
the ability of the MOD score to estimate the recombina-
tion fraction and any LD parameters. The recombination 
fraction is confounded with the trait-model parameters, 
i.e., with the disease allele frequency p and the 3 pene-
trances f0, f1, and f2, and was hence excluded from the es-
timation, but rather fixed at the true value of θ = 0. Oth-

erwise, it would not be possible to distinguish confound-
ing of parameters and bias from each other. In the current 
program version of GHM, LD is not modelled. As stated 
earlier, to obtain unbiased trait-model parameter esti-
mates, LD between markers and disease locus must in fact 
be absent, otherwise sampling is no longer marker inde-
pendent. As noted by Malkin and Elston [19], such a situ-
ation is unlikely when using marker panels of densely 
spaced single nucleotide polymorphisms. However, se-
lective inclusion of only a subset of markers can ensure 
linkage equilibrium at least between these markers, while 
still retaining sufficient information for linkage analysis. 
With such a sparser set of markers, it is also less likely that 
one of them is in LD with a disease allele. If LD between 
marker and disease alleles happens to be present, the ex-
pected bias in parameter estimates is so far unknown. 
Further, we did not consider bias of trait-model param-
eters due to gene-environment interactions, which are 
usually not controlled in a linkage analysis. In addition, 
we did not investigate the ascertainment or sampling bias 
that may occur when recruiting families in practice. Still, 
the problem of ascertainment or sampling for linkage 
analysis with estimation of joint trait-marker inheritance 
parameters has been thoroughly reviewed and discussed 
in the Introduction section.

Another aspect of estimating trait-model parameters 
is their identifiability. It has been shown by Strauch [10] 
that the identifiability of trait-model parameters depends 
on the truly underlying number of allele-sharing classes. 
In addition, only penetrance ratios can be estimated from 
affecteds-only data. The identifiability is expected to in-
crease with larger sibships or more complex pedigrees. 
Therefore, we were interested in the degree to which the 
identifiability of trait-model parameters increases when 
adding affected or unaffected siblings to an ASP or when 
analyzing a 3-G pedigree.

In this study, we were able to show how trait-model 
parameters can in principle be estimated in a MOD score 
linkage analysis and to what extent the identifiability de-
pends on the pedigree types in the dataset. Our findings 
can provide guidance to researchers aiming to estimate 
parameters by a MOD score linkage analysis using family 
data. Parameter estimation generally showed smaller bias 
and MAD with increasing pedigree complexity for all in-
vestigated model types. Identifiability of trait-model pa-
rameters increased with (a) more affected siblings in an 
affecteds-only analysis of nuclear families, although only 
ratios of parameter values can be identified in this case, 
(b) adding unaffected siblings to nuclear families, and for 
some models with (c) adding a generation (3-G pedi-
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grees). Penetrance estimation performance was substan-
tially affected by confounding of the trait-model param-
eters in terms of their proximity or identity in the corre-
sponding nonparametric allele-sharing parameter space. 
This is equivalent to the more “parametric” notion that 
the degree of information to accurately estimate param-
eters given their identifiability still depends on the pro-
portions of disease locus genotypes that are induced by 
the number of affected and unaffected individuals in a 
pedigree, together with the truly underlying trait-model 
parameters. Therefore, especially additive and dominant 
models can hardly be distinguished, even when analyzing 
more complex pedigrees. A sufficient number of pedi-
grees in the sample is a further prerequisite to be able to 
actually estimate the parameters in practice, according to 
the identifiability that is theoretically possible with a cer-
tain pedigree type. Furthermore, we have shown under 
which scenarios imprinting can be detected even if all 
parents have missing genotypes. Imprinting could reli-
ably be estimated in terms of the imprinting index I [35] 
with the datasets containing both AHSPs having a com-
mon father as well as a common mother. We were also 
able to show that it is possible to combine pure linkage 
information from ASPs with imprinting-sensitive linkage 
information from AHSPs having a common mother to 
obtain substantial evidence for maternal imprinting. This 
finding indicates that adding AHSPs with a common par-
ent of the imprinted sex draws the trait-model parameter 

estimates of the combined ASP/AHSP sample towards 
the truly underlying imprinting model.

In essence, asymptotically unbiased parameter esti-
mates can be obtained from a MOD score analysis, given 
that certain conditions are satisfied ([i]–[vii], see Intro-
duction section). In most real-life situations, these condi-
tions can hardly be fulfilled. The extent to which a viola-
tion of any of these conditions or a combination of them 
causes bias is unclear and demands further investigations. 
Such a subsequent simulation study might reveal situa-
tions in which, despite, for example, an incorrect sam-
pling model, the parameter estimates obtained from the 
analysis are essentially correct, which has been referred to 
as the “man bites dog” criterion [11]. Along these lines, 
the results of our present study are an important prereq-
uisite for future investigations on robustness of MOD 
score-based parameter estimation under various sam-
pling schemes.
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