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Introduction 

Much has been written about the theorems of Jordan—Holder and Schreier after 
the publication of the original works of Jordan [9; 10, p. 42], Holder [7] and 
Schreier [ 15]. The most famous papers on this subject are those of Zassenhaus 
[17] and Ore [13, 14]. More recent notes were written by Hilton and Ledermann 
[6], Calenko, Sul'geTfer [2] and Wyler [16]. The aim of this paper is to give a 
common basis for these developments and to point out the difference between the 
Jordan-Hölder Theorem and the Schreier Theorem. 

The material in this paper is organized in the following manner: § 1 a general 
description of situations, the so called "Jordan—Holder-Schreier Situations", in 
which it is possible to ask whether the Jordan-Hölder and Schreier Theorems are 
valid. Some logical dependences between these two theorems are also mentioned. 
It seems hopeless to find a non-trivial necessary and sufficient condition for the 
validity of the theorems in general Jordan—Holder—Schreier Situations. Sufficient 
conditions with respect to the Jordan—Holder Theorem are given in §2, and much 
stronger ones which imply the Schreier Theorem by means of a "Zassenhaus Lemma" 
are given in §4. 

In this axiomatic approach the difference between the Jordan-Hölder Theorem 
and the Schreier Theorem lies in the fact that we need a notion of "union" 
(cf. section 0.4) in the latter but not in the former case. 

As examples for the Jordan-Hölder case we obtain in §3 the Jordan—Dedekind 
Chain Condition for semimodular lattices and a generalization of the classical case 
which needs slightly fewer assumptions than are used in the literature, e.g. [6]. 
§5 contains examples for the Schreier Theorem, firstly the lattice theoretical case 
of Ore [14] again and some derivations from it, secondly a Schreier Theorem for 
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semisimplicial sets as an example for a Schreier Theorem in functor categories and 
finally the classical case again under assumptions which are slightly weaker than 
those of Calenko and Sul'geifer [2] and Wyler [16]. 

§0. Notational preliminaries 

0.0 . N Q denotes the set of nonnegative integers and [r] the set consisting of 0, r 
and all integers between 0 and r, for all r E N Q . 

0 . 1 . If C is a category we denote by 

(0.1) I C , M C , E C 

the subcategories of all isomorphisms, monomorphisms and epimorphisms in C . 

0 .2 . For all morphisms/in a category C we denote by 

(0 .2 ) dorn/, c o d / 

the domain and the codomain of /considered as identity morphisms, If TV is a class 
of morphisms then "dorn N" is the class of all objects in C which appear as domain 
of an element of N. 

If C has a zero object we denote by 

(0 .3 ) ker / ,coker / 

the class of kernels and cokernels, respectively. 

0 .3 . If g and h are monomorphisms (epimorphisms) of a category C, then 

(0 .4) f~g 

means that there is a/ G I C with 

(0.5) fj=g(jf=g). 

0.4 . Unions. 

0 . 4 . 1 . Definition. Let C be a category and g, h a coterminal pair in M C. A union of 
g and h, denoted by g U /?, is a morphism in M C with 
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(0.6) g = (gUh)g+ ,h = (gUh)h+ 

for suitableg+, / i + G C satisfying the following universal property: 

(0.7) Iff0, g0, h0 E M C are given such that /Q^Q = g, f0h0 = /z f/zert there is a 
je Cwithfoj = gUh. 

We need some facts about these unions which are contained in the following 
lemmas. 

0.4.2. Lemma. Let C bea category with pullbacks and f g, h E M C begiven such 
that 

(0.8) dorn / - cod g = cod h. 

Then gV h exists in C iffifg) U (fh) exists in C. //this happens, the equation 

(0.9) f(gUh) = (fg)V(fh) 

holds. 

0.4.3. Lemma. Let C be a category and g, h, k, m € M C be given such that 

(0.10) h-km 

and 

(0.11) codg = cod h. 

U£ u heJC then gU k exists and belongs also to 1 C. 

0.5. Indecomposability. Let C be a category and S a class of morphisms in C . 

0.5.1. Definition. / £ S isS-indecomposable, if any equation 

(0.12) / = * 0 * l - - - * r 

withg; G 5 for all i E [r] implies the existence of an / E [r] and morphisms 
/ ' , / " E C such that 
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(0.13) g,=f'ff", 

(0.14) cod/= 
Sj-lf if/'#0, 

otherwise, 

(0.15) dom/= 
r II 

otherwise. 

0.5.2. Lemma. Let S be contained either in M C or in EC . Then fGSis S-indecom-
posable iffany equation 

with gi E S for all i E [r] implies that all except exactly one of the gj 's are iso-
morphisms. 

0.5.3. Notation. If S is a class of morphisms in a category C then we denote by SI 
the class of S-indecomposable morphisms in C. 

1.1. Definition. A Jordan-Holder-Schreier Situation (abbreviated JHSS) is a triple 
( C , S, ~) such that 

(1.1) C isa category, 

(1.2) Sisa subclass of C consisting of the socalled "subinvariant" morphisms, 

(1.3) ~ is an equivalence relation on S. 

In a JHSS one may ask if the theorems of Jordan-Hölder and Schreier are valid 
or not. To make this more precise we need some further definitions. 

Let a fixed JHSS ( C , Sf ~) be given. 

1.2. Definition. A subinvariant series is a finite sequence 

(1.4) Ö = ( ? o ^ l » - " > ^ / 9 ) 

of subinvariant morphisms such that 

(1.5) dom^/= cod# / + ] 

for all / E [ / f l - l ]. /(j is called the length of q. 

(0.16) f=g0g{...gr 

§ 1. Jordan—Holder—Schreier Situations 
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Later we will also need infinite sequences of this kind: A subinvariant sequence 
is an infinite sequence 

(1.6) ®=(*o . */>•••) 

of subinvariant morphisms such that (1.6) holds for all / E N Q . 

1.3. Notation. Subinvariant series are denoted by small and sequences by capital 
gothic letters, their elements by the corresponding latin letters plus a lower index. 
Further we set 

(1.7) l 9 l : = * o * i . . . £ / f l 

and 

(1.8) I C y / l - ^ 1 - - ^ / 

for a l l / E N 0 . 

1.4. Definition. The Jordan-Hölder Theorem is valid in the JHSS (C, 5, ~) if for 
any pair (13, f)) of subinvariant series with 

(1.9) lfll = |l)l 

a bijection n : [/g] -+ [1^] exists such that 

(1.10) grK{ 

for a l l / e [/ g]. 

In order to formulate the analogous definition for the Schreier Theorem we 
need further the notion of refinement. 

1.5. Definition. The subinvariant series 13 is a refinement of the subinvariant series t] 
if there is a strongly increasing map a : [/g] -* [ /g ] such that 

(1.11) gQ=g(£i...gaJ)> 

(1.12) ft+i=^a/)+i?(a/)+2...««(/ + i ) f o r a l l /G [ / f l - l ] , 

and 

(1.13) Q(/ij) = /g . 

1.6. Definition. The Schreier Theorem is valid in the JHSS (C, S, ~) , if for any pair 
(13, f)) of subinvariant series with (1.9) refinements 13, t) of 13 and l), respectively, 
and a bijection n : [/g] -» [/^] exist such that 
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(1.1(T) g r h n l 

for a l l / G [ / £ ] . 

The two following theorems are some trivial consequences of these definitions. 

1.7. Theorem. If the Jordan-Hölder Theorem is valid in the JHSS ( C , S, ~ ) , then 
(/) the Jordan-Hölder Theorem is valid in all JHSS ( C , S, ~a) with ~a coarser 

than ~, i.e. ~ C 
(ii) the Schreier Theorem is valid in the JHSS ( C, S, ~), 
(///) /zmfe composition of subinvariant morphisms is subinvariant. This im-

plies the subinvariant morphisms which are not isomorphisms are S-indecompos-
able. 

1.8. Theorem. //the Schreier Theorem is valid in the JHSS ( C , S, ^ ) , then 
(i) (analogous to (i) in Theorem 1.7.), 

(ii) the Jordan-Hölder Theorem is valid in the JHSS ( C, SI, ~) provided that 
no S-indecomposable morphism is equivalent to an isomorphism and 

(1.14) 

for all feSJ and suitable i, j G 7 C. 

§ 2. The validity of the Jordan-Hölder Theorem 

2.1. Many of the JHSS's in which the Jordan-Hölder Theorem is valid satisfy the 
following axioms, the existence axiom (JHE) and the quality axioms (JHQ. 1) to 
(JHQ.3) or their duals. 

Let ( C , S, ^) be a JHSS and let S C denote the subcategory of C, which is 
generated by S. 

2.2. Axioms. 
(JHE) A pullback exists in S C for any coterminal pair g, hES. 
(JHQ.O) ISC-S'ISCCSCMSC. 
( J H Q . l ) / / 

(2.1) 
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isapullback in SC withg, h€Sandg^ h, theng andh'also belong to 
S.* (If these axioms are valid, then SC has pullbacks). 

(JHQ.2) / / / ~ / w h e n e v e r / G S , i,j GJSCandifjisdefined. 

Now we are able to State our first main theorem. 

2.3. Theorem. The Jordan-Hölder Theorem is valid in the JHSS ( C, S, ~-) satis-
fying (JHE) and (JHQ.O) to (JHQ.2) ///(JHQ.4) are valid 
(JHQ.3) Either (g^g and h ~~ h') or (g ~ h andg ~ h') whenever (2.1) is a pull­

back over S. 
(JHQ.4) S contains no isomorphism. 

2.4. Proof. The necessity of (JHQ.3) is trivial, that of (JHQ.4) follows from the 
equation 

(2.2) H I I - 1 = H 

for any isomorphism /, namely, i G S would imply H GS by means of (JHQ.O), thus 
the equation (2.2) would contain only elements of S. But such an equation is im-
possible, if the Jordan-Hölder Theorem is valid. 

The remainder of the proof of the theorem follows by means of the well known 
induction argument from 

2.5. Proposition. Given a JHSS ( C , 5, ~ ) satisfying (JHE) and (JHQ.O) to (JHQ.4), 
then any equation 

(2.3) gQgx . ,.gr = hQh 

with r > 0, gi G S for all l G [r], /z 0 G S and hG SC implies the existence ofa de-
composition ofhin the form 

(2.4) h = hxh2...hr 

with hi+ j G S for all l G [r-\] and ofa bijection ir : [r] -+ [r] with 

(1.10) g^h^ 

for all le [r]. 

* Our considerations can be done analogously in the case where (JHE) and (JHQ.l) are weaken-
ed to the "quadrilateral condition" of Ore [13], but then (JHQ.3) has to be strengthened. 
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2.6. Proof. We form the diagram 

g 

< 
r'0 h' h'" 

*0 

x 

*1 *2 
< 

*3 

M-2) ,(/) 

(2.5) 
* 0 - 2 ) / 

y 

gf-2 

g(r-2) 

h ( r - 2 ) / 

x ^ 

8r-2 «r-1 

„ ( r + l ) 

-<-

choosing^^ and Step by Step, beginning on the left, such that every small 
parallelogram is a pullback. Since hQ G MSC the Square 

( 2 . 6 ) Ä Q identity 

#0^1 %r 

is also a pullback. This implies /z ( /* + 1 > G IS C 
It may be that some other M^ 's are also isomorphisms. Let / be the smallest 

number such that is an isomorphism. Then we derive from (JHQ.l) and (JHQ.4) 

(2.7) h0^g0 i f y = l , 

(2 .8) A C Z - D S ^ J i f / - l€=[ r ] , 

and further gW G IC. Then 

yd) 
(2 .9 ) 

if 1 < i < / 
i f / = ; 
i f / < / < r 
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gives the desired morphisms if / < r + 1. In case / = r + 1 (2.10) has to be slightly 
modified. 

Using (JHQ.3) now it is easy to construct the required bijection 7T. 

§ 3. Examples for the validity of the Jordan-Hölder Theorem 

3.1. Lattices. Let L be a lattice, considered as a category, S the set of indecompos-
able morphisms in {.* and 

(3.1) -:=SXS. 

In the JHSS (L, S, the axioms (JHE), (JHQ.O), (JHQ.2) - (JHQ.4) and their 
duals automatically hold. (JHQ.l) is exactly the condition of lower semi-modulari-
ty and its dual corresponds to upper semi-modularity [5, p. 120]. The resulting 
Jordan-Hölder Theorem is known as "Jordan—Dedekind Chain Condition" (or 
"Dedekindscher Kettensatz" [3; 5]). 

This and the more general case of preordered sets is treated excellently by Ore 
in [13] (cf. also [11]). Our approach in § 2 generalizes Ore's work in considering 
arbitrary equivalence relations instead of (3.1). 

3.2. The "classical" case 

3.2.1. The classical Jordan-Hölder Theorem works in a category C with zero object 
0 where the subinvariant morphisms belong to the class K of all kernels having co-
kernels and any two such classes are equivalent if they have isomorphic cokernels. 

In this section we do not take the AMndecomposable morphisms as subinvariant 
since the assumptions which we need in Order to prove the corresponding Jordan-
Hölder Theorem are strong enough to derive the Schreier Theorem. We therefore 
obtain this case by means of Theorem 1.8 from section 5.3. 

3.2.2. Let E be a class of objects in C, S the class of all kernels having a cokernel 
whose codomain belongs to E and Sy the class of all cokernels having a kernel in S. 

Then (JHQ.O) and (JHQ.2) hold automatically. (JHE) is valid iff a composition 
gh has a kernel wheneverg G 5 and h GS;(JHQ.4) is equivalent to 

(3.2) 0$E. 

Further we have, assuming (3.2), 

*f:A-+Bi& indecomposable iff B Covers ̂ 4 (cf. [5,p. 115)). 
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3.2.3. Lemma. If gh is either zero or a cokernel whenever gE S and h£Sy then 
(JHQ.l) and (JHQ.3) also hold. 

Proof. Let a pullback of the form (2.1) be given and letg, h be cokernels ofg and 
h, respectively, with codomain in E. The only nontrivial point to show is that 
gh = 0 iff hg = 0. 

Let us assumegft = 0. Then there is an epimorphism/such that 

(3.3) g = fh. 

If hg i= 0, then by assumption hg would be a cokernel. Therefore 

(3.4) f(hg)=gg 

would be also an epimorphism. But this gives 

(3.5) c o d g = 0 , 

in contradiction to (3.2). 

3.2.4. Corollary. The Jordan-Hölder Theorem is valid in the JHSS ( C, S ~) // 
(3.2) holds and gh either is zero or belongs to S whenever g G S and hGS. 

More familiär conditions are obtained if E is the class of simple objects. 

3.2.5. Definition. An object in C is simple if it is neither a zero nor a codomain of 
a nonisomorphic element of K. 

3.2.6. Now let E be the class of all simple objects and K the class of all cokernels 
having kernels. Then the condition 

(3.6) Any compositiongh withgGKand hGKcan bedecomposed into a 
composition tig, with h" £K andg' GK 

implies the hypotheses in Lemma 3.2.3 and Corollary 3.2.4. 
Condition (3.6) seems to be quite natural for generalizations of the notion of 

abeiian categories which include the category of groups. It may be found for 
example in [2, p. 46—47; 6;8; 16]. 

In [6] the following axioms are assumed. 
(I) . Every epi has a kernel, every mono a cokernel. 

(II) . Every / G C may be expressed as f= gh with g mono and h epi. 
(III). (Our condition (3.6)). 

Our development shows that (II) is completely superfluous and that (I) is too strong 
if one deals with "simple" objects as the cokernels of subinvariants. Also a weaker 
condition than (I) (cf. (5.8)) is sufficient to imply the Schreier Theorem and the 
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case of "indecomposables" mentioned above. The proof of the Jordan-Hölder 
Theorem in [6] uses "unions" of which the existence is estabÜshed by means 
of (I), but which are not intrinsic to this theorem. 

3.2.7. From 3.2.6 we can derive the Jordan-Hölder Theorem for the category of 
groups and its dual. We should remark that the notion "simple" and the condition 
(3.6) are self-dual. As MacLane [12] has already pointed out, the group theoretical 
Jordan-Hölder Theorem has nothing to do with the fact that the category of 
groups falls to be self-dual. 

A further example is the category of pointed sets where the two-point sets are 
simple. For more examples see [16, § 2 ] . 

§4. The validity of the Schreier Theorem 

4 . 1 . For the validity of Schreier's Refinement Theorem, we assume the following 
existence axioms (SE.l) to (SE.3) and the quality axioms (SQ.O) to (SQ.3) (or 
their duals). These axioms contain nothing about the equivalence relation, but we 
shall show that there is a canonical one such that the Schreier Theorem istrue. 
Thus in view of Theorem 1.8 (i), we obtain sufficient conditions for the validity 
of the Schreier Theorem. 

Let C be a category and S a class of morphisms in C . Without loss of generality 
we may assume for the remainder of §4 that C is generated by S. For the applica-
tions later on we have to replace C by S C in the following axioms. 

4.2. Axioms. 
(SQ.O) c o d S C S C M C (=»C = M C ) . 
If g and h belong to S and are coterminal, then 
(SE. 1) a pullback for g and h exists in C . 
(SQ.l) If (2.1) is a pullback in C, then g and h' also belong to S. 
(SE.2) gUh exists in C . 
(SQ.2) g U h belongs to 5. 

If 

< 
g 
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is a commutative diagram over S such that the lefthand Square is a pullback and 
g U / i an isomorphism, then 
(SE.3) {gk') U h exists in C , 
(SQ.3) (gk') U h belongs to S and the induced Square 

(4.2) (gk')uh 

is a pullback. 
Now we give immediate consequences of these axioms. 

4.3. Lemma. (/). I C C S, I C • S • I C C S. 
(ii) . gGSandghGS implies hGS. 
(iii) . C has pullbacks. 
(iv) . f(gUh)^fgUfh for all f,g,hGC with 

(4.3) dorn / = cod g = cod h, 

such that eithergUhorfgUfh exists. 

Next we define the canonical equivalence relation. 

4.4. Definition, h is (strongly) perspective to h* alongg, if g G C (gGS),gU h 
exists and belongs to I C and h* is a pullback of /z alongg. h is (strongly) 
perspective to h* if there is a ^ such that h is (strongly) perspective to h* along 

Thus perspectivity is a reflexive and transitive relation on C generated by the 
reflexive relation of strong perspectivity. These relations generate an equivalence 
relation of which the restriction to S is the canonical equivalence relation which 
we shall use in the following. It is denoted by 

Using these notions we may express (SE.3) and (SQ.3) in another form. 

4.5. Lemma. IfhGS is strongly perspective tok'm alongg with k' GS, then there 
are k, mGS with 

(4.4) h = km 

such that k is strongly perspective to k! along g and m is strongly perspective to m 
along the pullback of g along k. 

k' 
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Proof. By means of (SE.3) we define 

(4.5) k:=(gk')Uh. 

Let m and n be the inclusions of h and (gk'), respectively in k. The desired pull­
back properties then follow from (SQ.3). It remains to show that g U k G I C and 
n U m G I C . From Lemma 4.3 we obtain the existence o f n ü w i and 

(4.6) k(n Um) = (gk') Uh = k, 

which gives n U m G I C since is monic. Since 

(4.7) gUh = (gUkm) 

is an isomorphism we find by means of Lemma 0.4.3 thatgUk is also an isomorphism. 

It is clear that we may replace (SE.3) and (SQ.3) by the statement of this lemma 
if the other axioms are valid. Further, a simple induction argument shows 

4.6. Lemma. The statement following from Lemma 4.5 by cancelling the word 
"strongly " is also true, 

The key for the validity of the Schreier Theorem in the JHSS ( C , S, ~c) is 

4.7. Lemma. Let Qb bea subinvariant sequence and hGS with 

(4.8) cod h = cod# 0 . 

Then there is a (necessarily unique up to isomorphisms) subinvariant sequenceÜ 
with 

(4.9) 1 0 / l U / i s l f f j l 

for all l G NQ. / / Ä is such a subinvariant sequence then kl is perspective to 
gl U h.W for all natural numbers l where h^ denotes the pullback of h along 
I © / _ i I. 

Proof. We construct ff inductive by such that the inclusion m^ of h in | ff ^ | is 
perspective to h^1 + 1 ) along the inclusion n^ of | / 1 in | ff 11 . Taking 

(4.10) kQ=g0Uh 
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we obtain the diagram 

and 

(4.12) k0(n'Um')=g0Uh = k0, 

from which n U m G I C . Thus we can start the induction. 
In order to per form the induction step from / to / + 1 we use the abbreviation 

(4.13) k*=gl+l ü M / + i ) 

and denote by m* and w*+ { the inclusions of h(l +1> and gl + { i respectively in k*. 
Then we have the following diagram (füll lines): 

• <: 4 i < 
#0 *1 gl gl+l 

Now Lemma 4.6 gives (dotted lines) perspective to k* and m^ + I ^ perspective 
to m* along n*. Since m* is strongly perspective to M / + 2 ) along we get 
perspective to h^i + 2^ along 

(4.16) /!<' + l > : = / i % * + 1 . 

Finally we have 

(4.17) | f f / + 1 l = iÄ ' / + 1 | ( ^ + 1 ) U m ( / + 1 ) ) = | 8 / + 1 \Uh. 

Rearranging the morphisms in this proof we obtain the essential part of the familiär 
butterfly diagram which occurs in the Zassenhaus lemma. 
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Thus we can perform the proof of the Schreier Theorem in the Zassenhaus way and 
obtain 

4.8. Theorem. The Schreier Theorem is valid in the JHSS (C, S, ~ c ) , //(SQ.O) to 
(SQ.3) and (SE. 1) to (SE.3) are satisfied 

Since the canonical equivalence relation satisfies the conditions in Theorem 
1.8 (ii), we obtain the validity of the Jordan-Hölder theorem in the JHSS (C, S, ~c). 
But this is nothing new since we may derive the axioms (JHE) and (JHQ.O) to 
(JHQ.4) in this Situation. 

In concrete situations it is an interesting problem to give other characterizations 
of the canonical equivalence relation or a coarser one, that is to say "invariants" 
of the equivalence classes generated by the perspectivity. We list some results of 
this kind in our examples. 

4.9. Remark. The original proof of Schreier [15] uses (SQ.O), (SE.l) , (SE.2), 
(SQ.l), (SQ.2) and the following facts which are valid in an given JHSS (C, S, ~). 
(5.1) If(2.\) isa pullback such that gU h G IC, then g ~~gand h' ~ h. 
(5.2) Ifh~~ti and h' = k'm with h, h\ k', m GS then there are k, mGS with 

k' ~ k, m ~ m and h = km. 
Clearly (S.l) and (S.2) follow for the canonical equivalence relation in the presence 
of (SE.3) and (SQ.3). But (S.2) can become wrong if we replace the canonical equi­
valence relation by a coarser one. This clarifies the difference between Schreier's 
and Zassenhaus' method for proving the Refinement Theorem. 



224 R. Fritsch, Variations on the theorems of Jordan-Hölder and Schreier 

§ 5. Examples for the validity of the Schreier Theorem 

5.1. Lattices 

5.1.1. Let L be a lattice, considered as a category, and 

(5.1) S:=L 

Then all our axioms and their duals except the second part of (SQ.3) hold auto­
matically. (SQ.3) is equivalent now to (using lattice theoretical notation) 

(5.2) an(bUc) = b 

whenever (tf H c) C £ C 0. But this is exactly the condition of modularity which can 
be written in the self-dual form 

(5.3) an(bUc) = bU(anc) 

whenever b^a. 

An invariant of an equivalence class is the "quotient" of its morphisms (cf. [5, 
p. 118]). 

5.1.2. If C is any category and 

(5.4) S= M C , 

then the axioms in 4.2 are satisfied iff the subobjects of any object in C form a 
modular lattice. This is true for example for a topos, but not for arbitrary exact 
categories in the sense of Barr [1 ]. The latter follows from the fact that any pre-
ordered set can be considered as an exact category. 

5.2. Semisimplicial sets 

5.2.1. Let C be a category and S a subclass of C satisfying the axioms in 4.2; take 
for example, for C the category of sets and the class of injective maps. Let V be 
another category. We consider the functor category and in the class S#of 
all natural transformations F-+F' such that FA -+FA' belongs to S for all objects 
A in P .ThenSP satisfies also the axioms in 4.2. 

5.2.2. In particular, we consider the category of semisimplicial sets, i.e., C the cate­
gory of sets, V the category of finite ordinals. Let S be the class of injective maps, 
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then is the class of semisimplicial monomorphisms. If /z, ti € are canonically 
equivalent, then they have isomorphic quotients. 

A more interesting case is the canonical equivalence of S^-indecomposable 
morphisms. hES® is indecomposable iff there is a pushout diagram (cf. [4] for 
the notations) 

(5.5) ch 

A[n] < A[n] 
D 

The epic part of the semisimplicial map ch is an invariant of the equivalence class 
of an indecomposable semisimplicial monomorphism h. 

5.2.3. Since the category of sets also satisfies the duals of the axioms in 4.2, we 
have a canonical equivalence relation and a Schreier Theorem as well if we take 
the semisimplicial epimorphisms as subinvariants. We restrict our attention again 
to the indecomposables. A semisimplicial epimorphism h is indecomposable, iff 
there is a diagram 

(5.6) A[n] -^->A[n] Z—ZX-^-+Y, 

where the left-hand part is an equalizer and the right-hand part is a coequalizer. 
The nonnegative integer n then is an invariant of the equivalence class of h. 

5.3. The "classicaV'case (notations as in 3.2) 

5.3.1. If we take 

(5.7) S:=K, 

then (SQ.O) automatically holds and (SE.l) as well as (SQ.l) are valid iff a compo­
sition gh has a kernel whenevergGK and hGK. For example, this is satisfied if 
(3.6) is valid. But (3.6) is not enough to assure the existence of the desired unions. 

5.3.2. Lemma. (SE.2) and (SQ.2) are valid if (3.6) and 

(5.8) any composition h "g has a kernel in K whenever h", g GK 

hold. 
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Proof. We definegUh to be the kernel of h"g whereg is a cokernel ofgand h" a 
cokernel of the h" which arises in the factorization of gh by means of (3.6). 

In order to prove the union property for this ̂  U h we have to consider a com-
mutative diagram of the following form (füll lines) 

(5.9) 

wheref, tj and t) are subinvariant series and to construct a; GK (dotted line) such 
that 

(5.10) * U A = | f | / \ 

Since Lemma 4.3 (ii) is trivial in this Situation, we can assume 

(5.11) \<i\=g0Ji)\=h0. 

The remainder follows by induction on / j , showing moreover that the desired / is 
the kernel of h^ g^ (notation analogous to above), i.e. 

(5.12) j = g0UhQ. 

Thus we can assume 

(5.13) l j l = / 0 . 

Then the proof of the existence of / is easy (see e.g. [6, Theorem 3.3]). 
Thus it remains to show 

(5.14) K0g0j=0. 

This will be done in 5.3.4. We need the following 

5.3.3. Lemma. (First Noether Isomorphism Theorem). //(3.6) and (5.8) hold and 
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the out er Square in the diagram 
g' 

g 

is apullback overK then any cokernelg' ofg can be decomposedinto h+ followed 
by a cokernel g+ of g+. 

Proof. We decomposeg (g- U h) according to (3.6) into a cokernel of g+ and a kernel 
h GK.h" turns out to be a cokernel of h . This proves the lemma. 

5.3.4. In order to show (5.14) we observe first 

(5.16) ^ / * + = 0. 

Therefore we get a /" satisfying 

(5.17) ri+^j . 

Using Lemma 5.3.3 we find that (5.14) is equivalent to 

(5.18) h"Qrg' = 0, 

which follows from the equation 

(5.19) h'^f g' = h~Qg^h0 . 

This completes the proof of Lemma 5.3.2. For (SE.3) and (SQ.3) we need no 
further axioms. 

5.3.5. Lemma, 7/(3.6) and (5.8) hold, then (SE.3) and (SQ.3) are also valid. 

Proof. We consider a diagram of the form (4.1) and with the same properties. First 
we obtain 

(5.20) gh Gcokerg', ÄgGcoker/z' 

for all cokernelsand h of g and h, respectively. Using (3.6) we decompose (hg)kf 
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into a cokernel rrü of m followed by a kernel k" G K. Let k" be a cokernel of k" 
and k a kernel of k" h, which we obtain by means of (5.8). 

Since %"(ftg) is a cokernel of k\ the induced Square 

(5.21) k 

turns out to be a pullback and g^is a kernel of gk. Since g U k is an isomorphism 
gfc is also a cokernel of g Now take mGK such that 

(5.22) fcm = Ä. 

Then we haveg'u m G I C and therefore 

(5.23) * 9s Ä:(Fu m) = fe*') U h. 

This gives the existence of (gk') U /z with the desired properties. 

5.3.6. It is clear that the isomorphism classes of the codomains of the cokernels of 
elements of K are invariants with respect to the canonical equivalence. 

Therefore we have the following 

5.3.7. Theorem. If (3.6) and (5.8) hold, then the Schreier Theorem holds in the 
JHSS ( C , K, ~), where C is a category with zero and K the class of kernels having 
cokernels, any two of these classes being equivalent if they have cokernels with 
common codomain. 

5.3.8. Examples for the applicability of Theorem 5.3.7 are: The category of groups, 
the category of pointed sets, all categories satisfying the assumptions of [16] 
(where further examples are given). 

Finally we mention that it is easy to construct a category with zero satisfying 
(3.6) but not (5.8). Then we have a Jordan-Hölder Theorem in the sense of 3.2 
but not a Schreier Theorem as described here. But our construction gives a very 
artificial example and it may be void. 
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5.4. Normal and principal series. The theorems developed in 3.2 and 5.3 are 
generalizations of the classical theorems for subinvariant series (see e.g. [5]). One 
may ask if it is possible to generalize these theorems to include the case of principal 
and normal series in the sense of [5]. Without being precise we want to say that in 
both cases this needs a further axiom, viz. the dual of (5.8). This is not astonishing 
since in the category of groups one can consider principal series and composition 
series as being dual to each other [12]. 
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