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STRUKTUREN FUR DIE MENGE DER AFFINEN ENDOMORPHISMEN EINES

MODULS BZW. EINES AFFINEN RAUMES

Rudolf Fritsch und Gerhard Wolff

Einleitung.

C. Pickért hat in [5] die Menge der Endomorrhismen eines
Parallelogrammraumes mit einer Ringstruktur versehen. Nun sind
aber die Endomorrhismen eines Parallelogrammraumes, nach Lbe-
liebiger Wahl eines Grundpunktes, dasselbe wie die affinen
Endomornhismen einer abelschen Gruvpe. Genauer: Die Parallelo-
grammstruktur bestimmt zusammen mit einem Grundmunkt eine
kommutative Grupnenstruktur derart, das ein parallelogramm-
treuer Endomornhismus dasselbe ist wie ein (keziiglich der in-
duzierten Gruppenstruktur) affiner Endomorphismus1. Die Menge
der affinen Endomorrhismen einer abelschen Crupte besitzt aker
eine kanorische Addition ("punktweise") und Multinlikation
(Komposition). Nun liegt es nahe zu fragen:

(1) Welche Beziehung besteht zwischen den keiden Onerationen?

(2) Welcher Zusammenhang besteht mit den von Pickert kon-

struierten Operationen?

1Wir sollten in diesem Zusammenhang feststellen: (i) Die Kate--
gorie der Parallelogrammrdume mit CGrundpunkt und grundpunkt-
treuen Homomorphismen ist isomorph zur Kategorie der abelschen
Grupven und homomorphen Abbildungen. (ii) Die Kategorie der
Parallelogrammrdume mit Grundpunkt und "grundpunktignorierenden
Homomorohismen" ist isomorph zur Kategorie der abelschen Grup-
pen und affinen Abbildungen.
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Diese Fragen wollen wir im ersten Teil beantworten, wobei wir
an Stelle von abelschen Gruppen gleich allgemeiner Moduln iiber
einem kommutativen, unitdren Ring R untersuchen. Die Er-
gebnisse erscheinen uns freilich nicht sehr erhellend; deshalb
zeigen wir im zweiten Teil, wieviel klarer und durchsichtiger
die Situation wird, wenn man statt der Moduln die affinen

R&ume im Sinne von W. Bos [1] zugrunde legt.

I. AFFINE THEORIE IN MODULN

1. Vorbereitungen.

Sei R ein unitdrer, kommutativer Ring und M ein Modul {iiber

R . Eine affine Kombination von Elementen aus M ist eine

n

n
Linearkombination } rym, aus M mit Jr, =1.
1 1

M' sei ein weiterer Modul; eine affine Abbildung von M nach

M' ist eine Mengenabbildung f : M- M', die mit affinen Kombi-

nationen vertrédglich ist, d.h. fiir die gilt

n
f (2 rimi) = ; ri £ (mi) ’

n
falls 1 ry = 1 . Wichtige Beispiele fiir affine Abbildungen

1
sind die Translatiohen eines Moduls und alle konstanten Abbil-
dungen zwischen Moduln. Wir notieren zwei charakteristische
Eigenschaften einer affinen Abbildung £ , die fiir konkrete

Rechnungen niitzlich sind:
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(i) f(m+ m') = f(m+m' -0 = f£f(m) + £(m') - £(0) ,

(ii) f(r-m) = f(r-m+ (1-r) -0) =r -+ f(m) + (1-xr) - £(0) .

Eine Mengenabbildung £ : M— M' ist offenbar genau dann linear,
wenn sie affin ist und £(0) = O gilt. Sind f,g : M— M' affine
Abbildungen, so auch f + g und r-£f, r € R ; d.h. die affinen
Abbildungen M — M' bilden einen R-Modul. Ferner ist das Kom-

positum affiner Abbildungen affin.

Sei M" ein dritter Modul und b : M x M' - M" eine Mengenab-
bildung; b heiBt biaffin, wenn alle partiellen Abbildungen
b(m,-) : M - M" und b(-,m') : M- M" affin sind, m € M ,
' € M'. Genau dann ist b : M x M' - M" bilinear, wenn b
biaffin ist und die beiden partiellen Abbildungen b(0,-) ,

£ (-,0) Nullabbildungen sind.

Eine affine Algebra (iiber R) ist ein Modul M mit einer bi-

affinen Multiplikation M x M3 M ; eine solche affine Algebra
(31,0) ist genau dann eine Algebra, wenn das Nullelement der
Addition ein absorbierendes Element fiir die Multiplikation ©

ist, d.h. mo O=0=00°m, m€EM.

2. Die affine Algebra der affinen Endomorphismen.

Sei wieder M ein Modul. Mit EMV bezeichnen wir den Modul aller
af finen Endomorphismen von M, s. 1. EM besitzt eine
natiirliche Multiplikation, die durch die Komposition von Endo-
morphismen gegeben ist. Das folgende Pemma ist von grundlegender

)

Bedeutung.
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Lemma. Die Multiplikation o auf EM ist biaffin.

AuBer fiir M = 0 ist o nicht bilinear.

Beweis. Wie fiir lineare Abbildungen zeigt man fiir affine Endo-

n
morphismen f,g.l,...,gn €EM und r,,...,r € R mit ) r, =1
1
die Gleichungen
n n n n
fo [; rigi) = % r; (fog,), [% rigi) of = ; r; (g;o f).

Der Zusatz folgt aus foO # O fiir jedes f € EM mit £(0O)# O.

Zusammenfassend kénnen wir feststellen: EM ist hinsichtlich
seiner natilirlichen Strukturdaten (Addition, skalare Multipli-
kation, Komposition) eine affine Algebra, s. 1, aber i.a.

keine Algebra.

3. Die Algebra der affinen Endomorphismen eines Moduls.

Unser Ziel ist, die Multiplikation in EM so abzudndern, dasB
eine Algebra entsteht. Dies gelingt nach einem einfachen all-

gemeinen Schema, das in der gegebenen Situation angemessen ist.

Sei E ‘ein Modul und k : E x E— E eine biaffine Multipli-
kation. (Der Leser denke an (EM, o) ! )
Dann gibt es fiir k eine Darstellung der Form

k(£,9) = k(£,9) + 1,() + 1,(9) + e,

mit einer bilinearen Abbildung ﬁ, linearen Abbildungen 11, l2
und e, € E; dabei sind i, 11, 12 und e, eindeutig durch b

bestimmt, und zwar ist
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(1) k(£,9) = k(f,9) - k(£,0) - k(£,9) + k(0,0)
(i1) 1,() = k(£,0) - k(0,0)
(iii) lz(g) = k(0,q9) - k(0,0)

(iv) e, = k(0,0).2

Zur biaffinen Multiplikation o auf EM gehdrt also eine in
diesem Sinne assoziierte bilineare Multiplikation 8; wegen

(i) hat man fir £,g € EM die Gleichung

£8g = fog-fo0-00g+000 = fog- foO .

Damit erhalten wir den
Satz. EM = (EM,3) ist eine Algebra, wobei die Multiplikation
0 durch £%g = fog - foO gegeben ist.

(Der direkte Beweis ist einfach.)

4. Vergleich mit dem Resultat von Pickert.

Ein Parallelogrammraum bzw. allgemeiner ein R - Parallelogramm-
raum ([3],[4]) hat kein ausgezeichnetes Element. Die im vorigen
Abschnitt beschriebene Konstruktion einer Algebra-Struktur fir

die Endomorphismenmenge eines solchen Raumes M beruht auf der
willkiirlichen Auswahl eines Grundounktes O € M (s. Einleitung).

Dadurch wird aber ein Endomorphismus von M ausgezeichnet,

2Man hat ganz allgemein eine Isomorphie von Moduln

A(M,M';M") = L(M,M';M") & L(M;M") © L(M',M") & M" ;
dabei bezeichnet A(M,M';M") den Modul der biaffinen Abbildungen
M x M' - M" , L(M,M';M") den Modul der bilinearen Abbildungen
M x M' - M" , L(M;M") den Modul der linearen Abbildungen M — M"
und L(M';M") analog den Modul der linearen Abbildungen M' - M" .
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ndmlich die zu O gehdrige konstante Abbildung (sie ist das
neutrale Element der Addition). Dies ist unangemessen, denn

das einzige "von Natur aus" ausgezeichnete Element der Endo-
morphismenmenge von M ist die identische Abbildung, das neu-
trale Element der Komposition. In dieser Situation liegt es nahe,
die'Algebra-Strukfur von EM so zu transferieren, das die identi-
sche Abbildung die Rolle der Null einnimmt. Dies gelingt mit
Hilfe der involutorischen Bijektion EM * EM , £~ 1 - f .

Flir die resultierende Algebra-Struktur gilt:

(i) f

-+

g=1-[(01-f) + (1-)] = £ + g - 1
£

(ii) r =1 - [r-(1-£)] = x£ + (1-r) - 1

]
-

1
(ii) fog - [(1-f) 8 (1-g)] =£81+186g-£5g-=

[
Hh

o1~-foO0O+10g-100-fog+fs0-=

f+g-fog

Diese Algebra-Struktur fiir EM ergibt im Falle R = 2 gerade
die von G. Pickert konstruierte Ringstruktur. Zum Beweis geniigt
es zu iliberlegen, daB die Addition in (i) mit Pickerts Addition
tibereinstimmt, was sich leicht an Hand der Formel (3") von [5]

nachweisen 1l&8t.

II. STRUKTUREN FUR DIE ENDOMORPHISMENMENGE EINES AFFINEN RAUMES

1. Vorbereitungen

Wir betrachten nun affine Rdume im Sinne von W. Bos

(iber dem fest gewdhlten kommutativen, unitdren Grunéring R).
Danach besteht ein affiner Raum aus einer Menge A und zwei

Strukturabbildungen + : A x A x A—> A, (a, b, ¢) —»a + ¢ und
. b
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. :RxAxA>A, (r,b,c) »r 5 c , derart, daB die fiir jedes
feste b € A definierten zweistelligen Opmerationen ; und g
die Menge A mit einer Modulstruktur versehen und die zu verschie-
denen Elementen b und b' gehdrenden Modulstrukturen durch

"Translation" auseinander hervorgehen, d.h.

a+c = (a+c)+b, r.c = r.c+ (1 -1xr). b*,
b' b b’ b b b b

(s. [11,[7]); sind (A,+,:) und (A',+,-) affine Rdume, so
heiBt eine Abbildung f : A — A' affin, wenn sie mit den Struk-
turen vertrdglich ist, d.h.

f(a+c) = f(a) + £(c) , f(r ¢« ¢c) =r - f(c) .

b f(b) b f(b)

Wie sonst auch iiblich, bezeichnen wir im folgenden einen affinen
Raum einfach durch seine Menge A statt ausfiihrlich durch

(Al+l ) .

Die Kategorie der R-Parallelogrammrdume ist isomorph zu der
hier beschriebenen Kategorie der affinen KRdume [8]3. Ein ent-
scheidender Vorteil dieser Axiomatik ist, daB so die affinen
Rdume gleichungsdefinierte Algebren sind und damit allgemeine
Konstruktionsmethoden der universellen Algebra anwendbar werden

(s.2.).

3In [8] werden nach einem auch auf W. Bos zuriickgehenden Vor-

schlag die hier beschriebenen Strukturen "R-Kreisel" genannt,
um Verwechslungen mit anderen (natilirlich gleichwertigen) Defi-
nition von affinen Riumen (etwa Bourbaki's [2], Ch. 2. § 9) zu
vermeiden. Wir halten aber Bos' Vorgehen unter den Gesichts-
punkten der affinen Geometrie fiir so angemessen, das8 wir doch
den Ausdruck "affiner Raum" dafiir in Anspruch nehmen wollen.
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Sind A, A' und A" affine Rdume, so heiBt eine Abbildung
f : A xA'—> A" biaffin, wenn jede der partiellen Abbildungen
f(a,-) : A' - A" , f(-,a') : A -A" , a €A, a'e€Ar' affin

ist.

Eine affine Algebra besteht aus einem affinen Raum E und einer

biaffinen Abbildung o : E x E— E, (a,b) » a 0o b ? . Ein Ele-

ment e € E ist linksneutral (rechtsneutral) beziiglich o , wenn

gilt:

eoc = ¢ (coe=c), cE€E ;

e ist eine Eins - symbolisch "1" - , wenn es links- und rechts-

neutral ist. Ein Element a € E ist linksabsorbierend (rechts-

absorbierend) beziiglich o, wenn gilt

aoc = a (coa=a), c € E ;

a ist eine Null - symbolisch "O" - , wenn es links- und rechts-
absorbierend ist. Zu gegebener Multiplikation © gibt es h&ch-
stens eine Eins und h&chstens eine Null. Die linksabsorbierenden
Elemente bilden ein Ideal, d.h. einen affinen Unterraum Lab E
mit a ob € Lab E, falls a € Lab E oder b € Lab E, a,b € E .
Ist (E,o) eine affine Algebra, so erhdlt man nach Wahl eines be-
liebigen Punktes b € E als Grundpunkt eine affine Algebra Eg

im Sinne von I.1. E ist genau dann eine Algebra, wenn b

b
eine Null ist.

4Genau genommen miiBte man sagen "Algebra in der Kategorie der
affinen R&ume"; bei dem in I.1. eingefiihrten Begriff wiirde es
sich entsprechend um eine "Algebra in der Kategorie der Moduln
und affinen Abbildungen"handeln. Der Einfachheit halber verwen-
den wir fiir beides den Terminus "affine Algebra".
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2. Die affine Algebra der Endomorphismen eines affinen Raumes.

Durch reine Routineiliberlegungen der universellen Algebra ergeben

sich speziell die folgenden Aussagens.

(1) Fir jeden affinen Raum A und jede Menge X tridgt die Menge

(2)

(3)

Ax aller Mengenabbildungen X — A eine affine Struktur, die
durch die Struktur von A induziert ist. (Beispielsweise ist
fir £, g, h : X - A die Abbildung +(£f,g,h) "punktweise"

erklédrt, d.h. als Kompositum

x =8 5 xaxxaxx 229N A, a.ca —F 5 Al
(Diag.)

Fir jedes Paar (A',A) affiner R&ume bildet die Menge

Hom(A',A) aller affinen Abbildungen A' — A einen affinen

Raum (genauer gesagt einen Unterraum im Raum aller Mengen-

abbildungen A' = A , s.(1)).

Fliir jedes Tripel (A" ,A',A) affiner Rdume ist die Xomposi-

tion Hom(A",A') x Hom(A',A) — Hom(A",A) biaffin.

Aus (2) und (3) ergibt sich sofort: Die Endomorphismen eines

R-affinen Raumes A bilden hinsichtlich der natiirlichen Struktur-

daten (+,+) nicht nur einen affinen Raum End A, sondern zusam-

men mit der Komposition o als Multiplikation sogar eine asso-

5

Falls der Leser eine der "klassischen" Definitionen fiir affine

Rdume zugrundelegt, gelten diese Aussagen ebenso; ihr Beweis

ist jedoch vergleichsweise miihsam.
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ziative affine Algebra. Das ist die Struktur, die die Menge der
Endomorphismen eines affinen Raumes bzw. eines R-Parallelo-
grammraumes unseres Erachtens in natiirlicher Weise tré&gt.(End A,o)
hat eine Eins, die Identit&dt, und linksabsorbierende Ele-

mente, die konstanten Abbildungen, aber keine Null.

Bei Bedarf kann man der Menge End A jedoch auch Algebrenstruk-

turen aufprédgen, was wir im ndchsten Abschnitt vorfiihren.

3. Algebrastrukturen fiir den Endomorphismenraum eines affinen

Raumes.

Solche kann man auf zwei prinzipiell verschiedenen im wesent-
lichen aber gleichwertigen Wegen konstruieren.

(K1) Sei A ein affiner Raum. Da End A i.a. keine Null enthdlt,
erhalten wir durch Auswahl eines Punktes als Grundpunkt zwar
einen Modul und eine affine Algebra, aber keine Algebra. Eine
Algebra gewinnen wir dann aber (wie in I.3.) dadurch, da3 wir
den bilinearen Anteil der biaffinen Multiplikation als neue
Multiplikation nehmen. Fiihren wir das speziell filir die Eins
durch, so ergibt sich die folgende Multiplikation 6: (End A)1 x

x (End A)1 -» (End A)1:
fé6g=fog 7f01 371049 ; Tol=foggzfqgg.

(Man beachte, daB hier 1 neutrales Element sowohl bezliglich

der Addition T als auch beziliglich der biaffinen Multiplikation
A

o ist.) Die so erhaltene R-Algebra bezeichnen wir mit E.

(K2) Sei (E,+,°*) ein affiner Raum (Man denke an E = End A !)
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Flir jede Multiplikation o: E x E - E sei o*: E x E » E

definiert durch6

Xo*y=x=-Xoy+y (=+(xxo0 y,¥)).
Man beweist leicht die folgenden Aussagen:

(1) o** =o
(2) o biaffin (biaffin und assoziativ) «
o* biaffin (biaffin und assoziativ)
Fiir ein Xq € E gilt ferner die Aquivalenz:

(3) X ist links- bzw. rechtsneutral fiir o e

Xq ist links- bzw. rechtsabsorbierend fir o*.

Mit anderen Worten: Die Zuordnung o & o* definiert eine involu-
torische Bijektion auf der Menge aller (aller biaffinen) Multi-
plikationen von E; dabei korrespondieren die Multiplikat:ionen

mit 1 mit den Multiplikationen mit O.

Flir eine affine Algebra E = (E,o0) sei E* = (E,o*). Nach em
Vorangehenden definiert die Zuordnung E » E* eine Bijektion
zwischen den affinen Algebren mit 1 und den affinen Algebren
mit O; letztere sind aber im wesentlichen dasselbe wie R-Alge-

bren (s.1.).

Nach 2. ist E = (End A,0) eine affine Algebra mit 1 = id.;

A
also ist E* eine affine Algebra mit 1 als absorbierendem Ele-

ment, d.h.

6Fiir eine Ringmultiplikation o ist o* als das "Sternprodukt"

(zu o) bekannt. [6] § 97)
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E* = (End A,c*) ist eine Algebra, wobei

fo*g-=f 7 fog ? g .

Offenbar ist E ¥ E*, falls E keine O hat, wie beispielsweise
E = End A fiir einen nichttrivialen Raum A. Es gilt jedoch

ﬁ 2 E*; genauer gesagt ist die Spiegelung am Grundpunkt 1,
S: E-E, fw» 7 f, ein Isomorphismus der gewlinschten Art.
SchlieBlich stellen wir fest: Ist A ein 2-affiner Raum
(Parallelogrammraum), dann ist E* = (End A,o0*) wiederum

identisch mit Pickerts "Endomorphismenring".

4. Eine Kennzeichnung der affinen Algebren, die zu einer affi-

nen Endomorphismenalgebra isomorph sind.

Wir behandeln jetzt die Frage, unter welchen Bedingungen eine
affine Algebra E als Endomorphismenalgebra eines affinen Raumes
A darstellbar ist.7 Der Angelpunkt der folgenden Argumenta-

tion ist die Einsicht, daB8 man allein aus der multiplikativen
Struktur einer Endomorphismenalgebra End A den Raum A (bis auf
Isomorphie) zuriickgewinnen kann. Wir betrachten dazu die kano-
nische Abbildung i: A -» End A, die jedem a € A die zugehdrige
konstante Abbildung a € End A zuordnet. Offenbar ist i eine
affine Injektion, deren Bild gerade der affine Teilraum K (End A)
der konstanten Endomorphismen ist. Nun sind aber die konstanten

Endomorphismen genau die linksabsorbierenden Elemente von End A:

f konstant « f 0 g = f fiir alle g € End A. .

7 Diese Frage, wie auch unsere Antwort, sind durch die Uberlegungen

inspiriert, die G. Pickert in [5], S. 143 - 145 anstellt.
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Wir haben also einen affinen Isomorphismus

~

: A

i

jA Lab(End A). Daraus ergibt sich ilibrigens die Implikation:

End A = End A' = A = A'.

n

Der Isomorphismus jA: A - Lab(End A) induziert den Algebren-

Isomorphismus 1 : End A » End(Lab(End A)), f b jAOijA-1.

End A
Somit haben alle Endomorphismen von Lab(End A) die Form
lEnd A(f) und sind offenbar nichts anderes als Linksmultipli-
kationen mit Eleﬁenten von End A:

long a(E) (@) =, o f(a) = T(a) = £ 0 a, a € A.
Sei nun E eine beliebige assoziative affine Algebra mit 1. Lab E,
die Menge der linksabsorbierenden Elemente von E, bildet ein
Ideal; die Multiﬁlikation o auf E 1ld8t sich also einschré&dnken zu
einer Linksoperation E x Lab E -» Lab E von E auf Lab E. Diese
induziert den Algebrenhomomorphismus lE: E - End(Lab E), a »
(ao -). (Die Bezeichnung 1E steht in Ubereinstimmung mit der
obigen Definition von 1End A')
Satz. Fiir E wie oben sind die folgenden Aussagen &dquivalent:
(1) Zu E existiert ein affiner Raum A mit E = End A
(2) lé ist ein Isomorphismus.
(3) a) Jeder Endomorphismus Lab E -» Lab E 1&8t sich als
Linksmultiplikation mit einem Element von E darstellen.
b) Die eingeschrankte‘Multiplikation E x Lab E » Lab E

besitzt kein linksneutrales Element auBer 1.

Beweis. (1) e (2): Trivial
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(2) e (3): Offenbar ist (3) a) gleichwertig mit der Surjekti-
vitdt von lE. Es geniigt also zu iliberlegen, daB (3) b) mit der
Injektivitdt gleichwertig ist. Wie eine einfache UYberlegung
zeigt, ist (3) b) nichts anderes als eine Umformulierung der
Bedingung, daB die Faser 1;1 (1), der "Kern von lE”, nur aus
der 1 besteht. Dies impliziert aber filir eine affine Abbildung

die Injektivitédt.
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