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C W - C O M P L E X E S A N D E U C L I D E A N SPACES 

RUDOLPH FRITSCH, RENZO PICCININI 

Non e difficile dare esempi di complessi CW che hanno anche la struttura di varieta 

differenziale; in questi casi, tali complessi cellulari possono essere immersi in spazi 

euclidiani, tramite il teorema di immersione dovuto a H. Whitney. Purtroppo, £ 

anche facile dare esempi di complessi cellulari che non sono varieta; alcuni di questi 

possono ancora essere immersi in spazi euclidiani. In questo lavoro studiamo una 

classe di complessi CW di dimensione m che possono essere immersi in R 2 m + 1 

e caratterizziamo i complessi CW metrizzabili. I nostri teoremi principali sono 

presentati in un modo unificato. 

1. In t roduct ion 

The playground of CW-complexes is filled with euclidean balls 
which we are supposed to judiciously glue together. The glueing machine 
is the categorical process of "push-out". In what follows we indicate by 
Bn the set of all vectors χ G R n with lenght | x | < 1; this set is the 
η-dimensional (unit) ball. The boundary of Bn is the (n -1)-dimensional 
(unit) sphere S"1"-1; this is the set of all vectors χ G R n such that |x | = 1. 

A CW-complex X is defined inductively as follows: take a discrete 
space X°; let us suppose that we have defined spaces X1 C X2 C ... C 
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X " " 1 and construct the space Xn by a pushout diagram 

(*) 

U β " χη 

λ € Λ ( η ) 

λ € Λ ( η ) 

where S^1 (respectively, B") is a copy of the sphere S , n~ 1 (respectively, 
of the ball Bn) for each element λ o f the set Λ ( η ) , i is the inclusion 
of the coproduct (the topological sum) ϋ λ € Λ ( η ) S^1 into the coproduct 
LLeA(n) a n ( * c * s a n arbitrary map. The definition of pushout implies 
that Xn has the final topology with respect to the maps c and i\ moreover, 
the map i is the inclusion of a closed space, more precisely, is a closed 
cofribation. In these circumstances, i t is customary to say that Xn is 
obtained from I " ^ 1 by adjunction o f η-cells; the map c is called an 
attaching map, while c is a characteristic map for the adjunction. 

Now consider the expanding sequence of topological spaces 

x° a 1 c . . . c r 1 CXn... 
and let X be its union space that is to say, X = UneN Xn wi th the topology 
determined by the family1 {Xn : η G Ν } : C C X is closed if, and only 
if , C Π X n is closed in X n , for every η G Ν . For a given natural number 
n, the space Xn is called the η-skeleton of the CW-complex X . 

The map c induces an embedding of the open η-ball Β" \ S ^ 1 , for 
every λ G Λ ( η ) ; its image e\ is called open η-cell of X . Thus the open 
η-cells of X are the connected components oi Xn \Xrtr~l. Any map We adopt the terminology topology determined by a family in contrast to the more or 

less widespread weak topology on advice of Ernest Michael, whom we thank; for a variety 

of reasons, we find this terminology more appropriate. 
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c\ : Β χ — • X inducing a homeomorphism Β" \ S%~1 —> e\ is called 
a characteristic map for e\. The points of X° are the open 0-cells. 

From the set theoretical point of view, a CW-complex is just the 
disjoint union of its open cells; for every x G X, the unique open cell 
e C X which contains x is the carrier of x. The closure e\ of any open 
cell e\ of X is called a closed cell of X; i t is equal to c\(B%) for any 
characteristic map c\ of e*. While closed cells are closed, and indeed 
compact subsets of X , in general open cells of X are not open subsets of 
X. In fact, an open cell of X is not an open subset of X i f i t meets the 
boundary of a cell of higher dimension. 

I f in the expanding sequence defining X , the inclusion X m _ 1 C X m 

is strict, but for every η > m , X n = X m , the union space coincides with 
Xm and the CW-complex is said to be of finite dimension m. 

A CW-complex X is said to be countable (respectively, finite) i f 
X ° U { t / n G N \ { 0 } A ( n ) } is countable (respectively, finite). 

In this paper we discuss the following embedding theorem: 

THEOREM A. Every countable and locally compact CW-complex of 
dimension m can be embedded in R 2 m + 1 . 

The question of the embeddability of CW-complex into Euclidean 
spaces is not a trivial one; indeed, we now give an example of a countable 
CW-complex that cannot be embedded in any Euclidean space. Let X be 
the CW-complex of dimension 2 having 0 and 1 as 0 -cells, the open 
interval ] 0 , 1 [ as the only 1 -cell and, for every natural number η ^ 0 , 
X has an open 2-cell e n such that en\en = { 1 / n } . We now prove that X 
is not a Frechet space by showing that no sequence of Χ \ X 1 converges 
to the point 0 , altought 0 G X \Xl- In fact, suppose that (xn) is a 
sequence of Χ \ X 1 which converges to a point of X 1 ; then, there exists 
m G Ν \ { 0 } such that the 2 -cell e m contains a subsequence ( y n ) of ( x n ) 
(otherwise ( x n ) would be closed in X and could not converge to a point 
outside X \ X ! ) . This implies that 1 /m = l i m y n = l i m ^ ^ xn ^ 0 . 
Now, i f X could be embedded in an Euclidean space R p i t would satisfy 
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the First Ax iom of Countability and therefore, i t would be Frechet (see 
[4, Chapter 4, Theorem 1.1]). 

Theorem A implies that countable and locally compact CW-
complexes of finite dimension are metrizable; this, o f course, brings up 
the question of characterizing the CW-complexes which are metrizable. 
The temptation of treading the classical path of the Metrization Theorems 
by Urysohn or Nagata-Smirnov is clearly great, particularly once one 
discovers that CW-complexes are paracompact and normal spaces. 
Would countability alone guarantee the existence of a countable basis 
(and hence of a compatible metric, via Urysohn's Metrization Theorem)? 
The countable CW-complex just described shows that the answer to this 
question is: no! In fact, the following characterization theorem shows 
that we are indeed closer to the Nagata-Smirnov Theorem. 

THEOREM B . Let X be a CW-complex; the following conditions on 
X are equivalent: 

(i) X is locally compact; 

(ii) X is metrizable; 

(Hi) X satisfies the First Axiom of Countability. 

I f we let drop the dimension hypothesis in Theorem A we still obtain 
an interesting result: 

THEOREM C. A locally compact and countable CW-complex embeds 
in the Hilbert cube. 

Theorems A and C have a converse: 

THEOREM D . The following two results hold true for a CW-complex 
X: 

(i) IfX can be embedded in the Hilbert cube, then X is countable and 
locally compact; 

(ii) IfX can be embedded in the Euclidean space R m , then X is 
countable, locally compact and has dimension < m. 
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The theorems stated above are, in one form or another, well-known 
to the experts. In this paper we construct a way conducing directly to their 
proof and present a unified treatment of the subject. 

2. Local compactness 

CW-complexes have a rich topological structure; for example, as 
stated before, they are paracompact and normal. They are also locally 
connected and furthermore, are Locally Equiconnected Spaces (LEC). 
The reader can find the proofs of these properties in [3] . Not all CW-
complexes are compact or even locally compact; the aim of this section 
is to recall a characterization of local compactness for CW-complexes in 
terms of its cells. 

LEMMA 2 .1. The topology of a CW-complex is determined by the 
family of its closed cells. 

Proof Let X be a CW-complex with skeleta Xn and let U C X be 
a set whose intersection with all closed cells of X is closed; then we have 
to prove that U Π Xn is closed, for every η G Ν . 

Since X° is discrete, UDX° is closed in X°. Assume, by induction, 
that U Π X7^1 is closed in I ^ 1 . Take a pushout diagram (*) ; we have 
to prove that c~l(U Π Xn) is closed in UxeA(n) &\· r ^ i e m a P ^ Educes 
a family {c\ : λ £ Λ ( η ) } of characteristic maps for the η-cells of X; the 
hypothesis implies that c^l(Uf) Xn) = c^ 1 ( U Π e\) is closed in B" for 
every λ G Λ ( n ) . Consequently, c^ 1 ( U Π Xn) = U\eA(n) δ λ

_ 1 ( U Π Xn) 
is closed in υ λ € Λ ( η ) 5 ν D 

The next result is standard in virtually any work describing CW-
complexes; its proof is given here for the sake of completeness. 

LEMMA 2.2. Let Κ be a compact subset of a CW-complex X. Then, 
Κ is contained in a finite union of open cells ofX. 
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Proof. Let SC Κ be a set formed by taking a point xe G e Π i f , 
for each open cell e of X which intersects K. We are going to prove, 
by induction, that the set S intersects any skeleton of X in only finitely 
many points; thus S is a discrete closed subset of X and also, of i f . Since 
any discrete closed subset of a compact space is finite, i t follows that S is 
finite. 

Clearly, SC\X° = ΚΠΧ0 is a discrete, closed subset of the compact 
space Κ and thus, i t is finite. Assume that S Π Χ " - 1 is finite. For every 
closed η-cell e, the intersection SC\e consists at most of xe and the finitely 
many elements of S Π Χ""" 1 , altogether, a finite number of points. Since 
X n is itself a CW-complex and therefore, determined by the family of its 
closed cells (see Lemma 2.1), S Π X n is a closed subset of X n which is 
discrete and contained in the compact space i f , thus, finite. • 

COROLLARY 2.3. A CW-complex is finite if and only if it is compact. 
Π 

The next result gives a characterization of local compactness of CW-
complexes in terms of open and closed cells. 

PROPOSITION 2.4. A CW-complex X is locally compact if and only 
if every open cell ofX meets only finitely many closed cells ofX. 

Proof : Let e be an open cell o f the locally compact CW-
complex X . The hypothesis implies that every point of e has a compact 
neighborhood; since e is itself compact, the open cell e is covered by 
finitely many of these compact neighborhoods and hence, there is a 
compact neighborhood V of e in X . Using Lemma 2.2 we conclude that 
V intersects only a finite number of open cells of X ; on the other hand, e 
does not intersect the closure of any open cell of X contained in Χ \ V. 
Together, these two facts imply the desired conclusion. 

«4= : Take χ £ X arbitrarily and let the τη-cell ex be its carrier. Let 
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Ω be the finite set of all closed cells of X which meet ex\ the union 

W= (J e 

is a compact set such that χ & ex CW. We are going to prove that W is 
a neighborhood of ζ . 

To this end, let Ω ' be the set of all closed cells of X which meet W. 
Lemma 2.2 and the hypothesis imply that the set Ω ' is also finite; thus, 
the union 

c - U ? 

is again compact and in particular, is a closed subset of X. I t follows that 
the set U = X \ C is an open subset of X containing the point χ and its 
carrier ex. Now, for each η > m fix a map 

λ £ Λ ( η + 1 ) 

which describes the adjunction of the ( n + 1)-balls to X n generating 
X n + 1 ; next, starting with Vm = eX9 define inductively the sets Vn by 
taking 

K + i = Vn U c n ( { i s : s G ( c^- 'CVn) , 1/2 < t < 1} ) \ C; 

it follows by induction that each set Vn is open 2 and that Vn+\ ΠΧη = Vn-
Taking 7 = [Jn>m we obtain 

f 0, 0 < n < m , 

showing that V is an open set of X. On the other hand, induction also 
yields that each Vn is contained in W implying that V CW and thus, the 

2 Cf. the section on collaring in [3]. 
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desired result. For the induction step, consider a point y = c n ( t s ) G Vn+\ 
with carrier ey. By the induction hypothesis, ZT^s) G (W\C)De^. Thus, 
the closed cell ey belongs to the set Ω ' but not to the set Ω ' \ Ω . This 
shows that G Ω , that is to say, y G C W, thus completing the 
argument. • 

In view of Lemma 2.2. we have the following immediate 
consequence of this proposition: 

COROLLARY 2.5. A CW-complex X is locally compact if, and only if the 
closed cells ofX form a locally finite (closed) covering ofX. • 

A CW-complex satisfying the property that each one of its open cells 
intersects only finitely many closed cells is said to be locally finite. In 
view of Prposition 2.4, we could use "locally finite" and "locally compact" 
interchangeably, whenever dealing with CW-complexes. 

3. Subcomplexes 

Let Ω be a set of open cells of a CW-complex X. The set A = Ueea e 
is called a subcomplex of X if, for every e G Ω , e C A . This definition 
shows clearly that arbitrary unions and intersections of subcomplexes of 
a CW-complex X are subcomplexes of X. A subcomplex of X is a CW-
complex on its own right. 

The following is an important class of subcomplexes o f a CW-
complex X: for every open cell e of X , X(e) is the intersection o f al l 
subcomplexes of X containing e. The interest of these subcomplexes lies 
on the fact that they are compact spaces, i.e., finite CW-complexes (this 
is an easy consequence of Lemma 2.2). 

Another interesting class of subcomplexes o f X is given by taking, 
for every open cell e of X, the space 

St(e) =Ue/ne#*(e/) . 
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The subcomplexes St(e) in general, are not finite; however, they are 
finite (i.e. compact) whenever X is locally finite (i.e. locally compact): 
this is an immediate consequence of the definition. 

To complete this list bf examples of subcomplexes we observe that 
the path-components o f a CW-complex X are subcomplexes of X (see[3, 
Proposition 1.4.11]). 

The fol lowing two results are needed for the proof of Theorem B . 

LEMMA 3.1 Λ locally finite and countable CW-complex is the union 
space of an expanding sequence of finite subcomplexes Xn such that, for 
every n, Xn is contained in the interior ofXn+\ (the interior taken with 
respect to the topology ofX). 

Proof Let X be a CW-complex satisfying the hypothesis of the 
lemma. We wish to prove that X is the union space of a family {Xn : 
η G Ν } of finite subcomplexes of X. Let {en : η G Ν } be the countable 
set of open cells of X. Define Xq as the empty space and assume that Xn 

has been defined. Take the integer i = m i n { ; : e;- Xn} and define 

Xn+i = 5 t ( e i ) U U e € ü S t ( e ) , 

where Ω is the finite set of all open cells contained in X n . Notice that, as a 
finite union of finite subcomplexes of X, Xn+\ is also a finite subcomplex 
of X. Clearly, as sets, X and U„eN Xn coincide. 

In order to prove that X is indeed the union space of {Xn : η G Ν } , 
we proceed as follows. We first observe that the proof of Proposition 2.4 
can be used "ipsis litteris" to show that, for every open cell e of X , the 
space St(e) is a neighborhood of e; hence, each Xn is contained in the 

ο 

interior of X n + i . This shows that the set X is equal to the set UneN Xn-
Now take a set W C X such that, for every η G Ν , W Π X n is open in 

ο ο 
X n . Then, WH Xn is open in X n and hence, in X . I t follows that 

w = w n x = wnU^N x n = U ^ N w n x n 
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is open in X. • 

LEMMA 3.2. Let X be a locally finite and path-connected CW-
complex; then X is countable. 

Proof. Let Ω be the set of all open cells of X and let e* be a fixed 
open cell of X; for each η G Ν , define the set 

An = { ( e o , e i , . . . , e n ) : e* = eo,et- G Ω andet- C St(e^i) 

for i = 1 , . . . , n} 

Since the subcomplexes StC e i _ i ) are finite, i t follows that the sets An are 
oo 

all finite and so, the set A = [J An is countable. 

Now take the function a : A — > Ω defined by 

α I j 4 n ( ( e o , . . . , e n ) ) = en 

for every η 6 N . The desired countability of Ω follows from the fact 
that the function a is onto; this, in turn, is a consequence of the path-
connectivity of X. To prove that a is onto, consider an arbitrary open 
cell e of X and take a path w : [ 0 , 1 ] — • X connecting a point of e* 
with a point of e. Let Ωο denote the set of all open cells that meet this 
path. The set Ωο is finite, in view of Lemma 2.2. Starting with to = 0 
andeo = e*, define inductively = m a x { i G]i», 1] : w(t) £ St(e{)} 
and take e 1 + i as the carrier of tt/(i,-+i) which is contained in St( e;). The 
process stops wi th i = η i f i n = 1; in this case, we have e = en = 
&(eo, . . · , e n ) . It remains to show that there is such an n. To this end, 
define Ω,· = { e G Ω;_ι : e Π w(]ti} 1]) ^ 0} and C, = U een te for * > 0 , 
as long as t» < 1. Since C is a closed set containing w(]t{, 1]) we have 
iv(ti) £ d and thus, we conclude that e € Ω* and w(U) G e; hence, 
e C St(e{). This forces > t,- andΩ t · + l C Ω,· \ { e } . Therefore the 
sequence 

Ω 0 D U ! D . O Ü , 0 . . . 
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is strictly decreasing and must stop because Ωο is finite. • 

4. Proofs of the M a i n Theorems 

We begin by proving the following crucial result. 

THEOREM 4 .1 . Let X be a locally finite and countable CW-complex 
of dimension m; then, there exists an embedding 

f : X _ R « « ) > 

withk(m) = (m+!)

2

(m+2). 

Proof We are going to construct the map / inductively over the 
skeleta of X. To begin with, we enumerate the 0-cells of X and define 
fo : X° —» R 1 as the function which sends the only point of the j t h 0-
cell of X into 2 / G R . Suppose that fn : Xn - > R * ( n ) has been defined. 
Let eo, e i , . . . , e ;-,... be an enumeration of the open ( η + 1) -cells of X; 
for each j £ Ν , let 

cj : £ ;
N + 1 —-> X N + 1 

be a characteristic map for the open cell e;- and let 

Cj : S? — + Xn 

be its restriction to the boundary. Then define the injection fn+\ (x) = 

i ( / n ( s ) , 0 ) 5 xexn 

1 2 / ( 1 - t ) e i b ( n ) + i + [ t / n ( c ; ( s ) ) , ( l — t ) t s , 1 - i ] , x = cj(ts) £ e;-, 

where e / ^ + i £ R ^ N + 1 ) is the unit vector wi th the (k(n) + \ ) t h 

coordinate equal to 1. Finally, set / = fm. 

We now prove by induction that each / n , n = 0 , ...,?n, is an 
embedding. Clearly this is so for η = 0 . Assume that fn is an embedding; 
we wish to prove that / n + i : X T H * 1 —> R * ( N + 1 ) is also an embedding. 
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Since fn+\ is continuous and one-to-one, we have only to show that i t 
takes open sets of X t h " 1 into open sets of / ( X N + 1 ) . Let e;- be an open cell 
of dimension n+ 1 (in the fixed enumeration of the ( n + 1) -cells); notice 
that /n+i ( e ; ) = f(Xn+l) Π V/, where Vj is the set of all the elements 
ζ = ( ζ ι , . . . , 2 * < η Μ ) ) 6 R * + 1 ) suchthat 

( 2 ; - l)zk(n+l) < Zk(n) + l < ( 2 ; + l)Zk(r*\) 

for each j £ N , Because Vj is an open set of R * ( N + 1 > , i t follows that 
fn+\ (e ; 0 is open in / ( X n + 1 ) . Now let V be an arbitrary open set of 
Xn+l; we are going to prove that for every χ £ / n + i ( z ) is an interior 
point of fn+i ( V ) wi th respect to / n + i ( I ^ 1 ) . 

Case 1 - Suppose that χ £ X n + 1 \ X n ; let e;- be the open cell o f dimension 
n + 1 which is the carrier of x. Because fn+\ |e) is an embedding, 
/n+i ( V Πe ;-) is open in / n + 1 ( e ; ) ; thus, / n + i ( V Πe ;-) is open in / n + ! ( e ; ) 
and therefore, in / n + ! ( X n + 1 ) . 

Case 2 Now suppose that χ £ Χ Λ . I n view of corollary 2.5 we 
can assume that V meets only finitely many closed ( n + 1)-cells, say 
e ; o , e ; - r . I t suffices to prove that no sequence in / n + i ( X n + 1 ) \ / n + i ( V ) 
converges to fn+\ (x) = fn(x). Assume the contrary, i.e., suppose that 
there is a sequence {x{ : i £ Ν } in 1 \ y such that 

l i m fnn(xi) = A f i ( x ) = fn(x)> 
i—>oo 

By the induction hypothesis / η + ι ( V Π X n ) is open in fn+\ (Xn) and 
therefore the sequence {a;,} cannot have a subsequence contained in Xn. 
Hence, one may assume that {x t - : % £ Ν } C - X n + 1 \ Xn\ this means that 
each Xi is of the form 

for some p ( i ) £ N , t i £ [ 0 , 1 ) and st- £ *9Λ. Considering that the last 
coordinate of fn+\ (z f-) is 1 — i i and the last coordinate of fn(x) is 0 , i t 
follows that 

l im ( 1 - U) = 0 
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that is to say, 
l im U= 1. 

This implies that 

fn(x) = l im / n + i ( c ; p ( 0 ( s t ) ) = / n ( U m ( c ; , t ) ( s t 0 ) ) . 

From the induction hypothesis we now obtain that 

χ = l i m ( c ; ^ 0 ( S i ) ) 

so that we may assume 

K ( 0 ( s < ) : i G N } c X n n ^ ; 

hence, {jPa) : i G N } C {jo, . . · , > } · This implies that the sequence 
{p( i ) } must contain a constant sequence, i.e., that we have a subsequence 
{l/ib : k G Ν } of the sequence {x{} which is contained in one open 
( n + l ) - c e l l e;-, with 0 < 5 < r . Finally this shows that 

χ = l im yk 

k—>oo 

contradicting the fact that {t/jk} C e;- \ y . • 

In the previous section we defined the dimension of a CW-complex 
in terms of its skeleta; we now show that for finite dimensional CW-
complexes, such a definition coincides with the classical notion of 
covering dimension (for the definition of covering dimension and its 
properties see [2, Chapter 1,§6]). In the sequel, we shall need the 
following characterization of covering dimension for normal spaces (see 
[2, Theorem 3.2.10]): 

LEMMA 4.2. A normal space X has covering dimension < η if, and 
only if, for each closed subset C C X, an arbitrary map C —> Sn can 
be extended to a map X —> Sn. • 
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LEMMA 4.3. Let X = UneN Xnbea CW-complex. Then, for η 6 Ν , 
covering dimension ofXn is at most n; the covering dimension ofXn 

is just η if and only if there are n-cells. 

Proof Since X° is discrete, its covering dimension is 0; assume 
that the covering dimension of X ^ 1 is < η — 1. 

I f there are no η-cells then, Xn = I t h 1 and thus, the covering 
dimension of Xn is less than n. Assume that X has η-cells and make 
the following two observations: 1) the covering dimension of the n-ball 
is just η (see [2, Chapter 1, §8]) and 2), any closed subspace of a space 
of covering dimension < η has itself covering dimension < η . Hence, 
the assumption that Xn has η-cells implies that the covering dimension of 
Xn is at least n: in fact, η-cells contain closed n-balls in their interior and 
therefore their covering dimension is at least η . I t remains to prove that 
the covering dimension of Xn is < η . To this end, take a pushout diagram 
like ( * ) , a closed subset C of Xn and a map k : C —> Sn. The induction 
hypothesis and Lemma 4.2 imply that the map k\C Π Xn~l —> Sn can be 
extended to a map g : I ^ 1 - > Sn. Let c : Ι Ι λ € Α ( η )

 B \ ^ n b e t h e 

map which describes the adjunction o f n-balls to X7^1 generating Xn 

and let c : LL G A (n) ~~* -Κ*"1 be the induced map; furthermore let 
c : c - 1 ( C ) —> C be the map induced by the restriction of c to c - 1 ( C ) . 
Now take the space D = c" 1 ( C ) Uj][\eA(n) ^ Γ " 1 > n o t e ^ a t ^ * s a c ^ o s e ( i 
subset of UxeA(n) Β", as the union of two closed subsets. The maps koc 
and <? ο c fit together to produce a map d : D —> Sn which we extend 
to a map h : ΙΙλ€Λ(η) Β" —> £ n again using Lemma 4.2. The universal 
property of pushouts now gives rise to a map h! : Xn —* *Sn, whose 
restriction to C is Then, the covering dimension of Xn is n, in view of 
Lemma 4.2. • 

THEOREM 4.4. A finite positive integer η is the covering dimension 
of a CW-complex X if and only if, η = min{m G Ν : X = Xm}. 

Proof : Notice that -as explained in the previous proof- the 
presence of m-cells in a CW-complex X forces it to have covering 
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dimension at least ra. Thus, i f X has covering dimension n, there cannot 
be m-cells in X with m > n, i.e., X = X n . I f there is an integer 
m < η such that X = X m , then Lemma 4.3 would imply that the covering 
dimension of X should be less or equal than m i.e., strictly less than n. 
Thus, η = m i n { m G Ν : X = X m } . 

^= : I f X = X m , the covering dimension of X is equal to the 
covering, dimension of X m , the latter one being less or equal to m by 
Lemma 4.3. Our hypothesis implies that the covering dimension of 
X < ru Since Χ ^ Χ " - 1 , X must contain m-cells with m > η and 
thus, the covering dimension of X > ru This implies that actually the 
covering dimension of X is just ru • 

Proof of Theorem A. From Theorem 4.1 we conclude that a 
countable and locally finite m-dimensional CW-complex is metrizable 
and satisfies the Second Axiom of Countability; now use Theorem 4.4 
and the Theorem of Menger-Nöbeling: "A metrizable space of covering 
dimension m satisfying the Second Axiom of Countability embeds in 
R 2 M + 1 " (see [2, Theorem 1.11.4]). • 

Proof ofTheorem Β. ( i ) (ii) : The path-components of X are 
subcomplexes and in view of ( i ) , are locally finite; then, because of 
Lemma 3.2, every path-component of X is a locally finite and countable 
CW-complex. Let Y be a path-component of X ; because of Lemma 3.1, 
we can write Y as the union space of an expanding sequence {Yn : η G 
Ν } of finite CW-complexes. Now, each of these CW-complexes Yn can 
be embedded in a convenient Euclidean Space (see Theorem 4.1). Using 
Cantor's diagonal process we construct a countable basis for Y; this and 
the normality of Y show that Y is metrizable by Urysohn's Metrization 
Theorem. Then, X is metrizable because i t is the topological sum of its 
path-components. 

(a) (Hi): Trivial 

( m ) (i): We prove this implication by contradiction. 
Suppose that X is not locally finite; then there is an open cell e C X 
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meeting infinitely many closed cells. Choose a sequence {e ;- : j G Ν } 
of pairwise distinct open cells such that e Π e;- ^ 0 and, for every 
j G Ν , choose a point rry G e Π e;-. Because e is compact, the sequence 
{xj : ; G N } has a cluster point χ G X (see [ 1 , Chapter I , Section 9.1, 
Definition 1]). 

Let [To D U\ D ... 3 CT» D ... be an open basis for the neighborhood 
system of rr -recall that X satisfies the First Ax iom of Countability! 
Because each Un meets infinitely many points Xj and therefore, infinitely 
many open cells e;- we can define a sequence {jn : η G Ν } of natural 
numbers by taking 

jo = m i n { ; : U0 He,- j 0}, 
; n + i = m i n { ; : ; > ; n > C/ n + 1 Π ej i 0}. 

For every η G Ν , choose a point 2 n G ί7 η Π e;-n and observe that the 
sequence {zn : η G Ν } is closed: in fact, every closed cell of X contains 
at most finitely many elements zn (use Lemma 2.2 to prove this). Every 
neighborhood U of χ contains one Un and thus, 17 contains all the points 
Zi such that i > n. This fact implies that χ = lim n_*oo z n , contradicting 
the fact that {zn : η G Ν } is a discrete subset of X . • 

Proof of Theorem C. Suppose that X is a locally finite and countable 
CW-complex. By Theorem Β, X is metrizable; on the other hand, Lemma 
3.1 permits us to construct a countable basis for the open sets of X i.e., 
X satisfies the Second Axiom of Countability. Now use [ 1 , Chapter I X , 
Section 2.8, Theorem 12]. • 

Proof of Theorem D. (i) As a subspace of the Hilbert cube, X 
satisfies both axioms of countability; in particular, the First Ax iom of 
Countability and Theorem Β show that X is locally compact. Lemma 3.2 
now implies that the path-components of X are countable. Then, i f X is 
not countable i t cannot have a countable number of path-components and 
therefore, X cannot satisfy the Second Axiom of Countability. 

(ii) By the Theorem of Invariance of Domain R M cannot contain 
open cells of dimension > ra. • 
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