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Rudolf Fritsch
Merkwiirdige Kugeln am Tetraeder, Teil 1

Dem Kreisgeometer Herbert Zeitler zum 60. Geburtstag gewidmet

Wir stellen hier Méglichkeiten dar, verschiedene Kugeln, die man im Zusammenhang mit einem
Tetraeder betrachten kann, im Unterricht zu behandeln. Dabei soll es sich keineswegs um einen
geschlossenen Lehrgang handeln, es liegt uns fern die Dreieckslehre durch eine systematische Tetra-
edrometrie erginzen zu wollen. Nur meinen wir, dal man rdumliche Analoga zu ebenen geometri-
schen Sachverhalten immer wieder einflieBen lassen sollte und zwar in allen Klassenstufen nach dem
6. Schuljahr; Tetraeder und Kugel kann man ja unmittelbar in AnschluB an Dreieck und Kreis
definieren.

Die raumlichen Betrachtungen fithren unseres Erachtens auch zu einem besseren Verstdndnis der
ebenen Geometrie. In diesem Sinn wollen wir uns jetzt mit

1. der Umkugel,

2. der Feuerbachkugel,

3. den In- und Ankugeln und
4. der Kantenkugel

eines Tetraeders beschéftigen.

Eigentlich reicht es! Propaganda fiir die Elementargeometrie des Tetraeders in der Schule
zur Pflege des rdumlichen Anschauungsvermdgens ist schon genug gemacht (s.
[2;6;7;15;16; 18; 19]). Wenn wir hier diesen Arbeiten noch eine hinzufiigen, so nur we-
gen des Anlasses, den es zu feiern gilt. Wer sich mit Kreisen beschéftigt, interessiert sich
auch fiir Kugeln und so ist dieser Beitrag ein hoffentlich trotzdem willkommenes Geburts-
tagsprasent.

Noch eine Vorbemerkung zu unseren Bezeichnungen. Da wir alle unsere Uberlegungen
von der Elementargeometrie her entwickeln, bezeichnen wir Punkte durchgingig mit gro-
Ben lateinischen Buchstaben. Insbesondere heilen die Ecken eines Tetraeders im allgemei-
nen A, B, C, S; wir stellen uns ein Tetraeder als dreiseitige Pyramide vor: Eine Seite, das
Dreieck ABC, ist als Basis ausgezeichnet, die vierte Ecke S ist die Spitze. ,,Par abus de
langage* verwenden wir trotz Einspruchs von seiten der Grundlagengeometrie fiir Punkte
und die zugehdrigen (Orts-)Vektoren bei vektoralgebraischen Berechnungen dieselben
Symbole.

1. Die Umkugel

In der Dreieckslehre erfihrt der Schiiler, daB3 sich die drei Mittelsenkrechten eines
Dreiecks in einem Punkt schneiden, daf3 dieser Punkt von den drei Ecken des Dreiecks
gleichen Abstand hat und daB er deshalb Mittelpunkt eines Kreises durch die drei Ecken,
des Umkreises, ist. Sobald Tetraeder und Kugel als 3-dimensionale Analoga von Dreieck
und Kreis eingefiihrt sind, kann man diesen Sachverhalt in die rdumliche Geometrie
ibertragen. Das geschieht am besten durch eine Umkehrung der ebenen SchluBweise. Als
Einstieg bietet sich die Frage nach einer Kugel an, deren Oberfliache alle vier Ecken eines
Tetraeders enthilt:
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Hat jedes Tetraeder eine Umkugel?

Um eine Kugel im Raum zu bestimmen, brauchen wir Mittelpunkt und Radius. Der
Mittelpunkt einer Umkugel wire ein Punkt, der von allen Ecken des Tetraeders gleichen
Abstand hat und dieser Abstand wire der Radius. Préziser lautet also unsere Frage: Gibt
es einen solchen Punkt?

Nun, alle Punkte im Raum, die von zwei verschiedenen Punkten A, B gleichen Abstand
haben, liegen auf der zur Verbindungsstrecke [AB] mittelsenkrechten Ebene E,g. Be-
trachten wir drei Punkte A, B, C, die nicht auf einer Geraden liegen, so haben wir drei
solche mittelsenkrechte Ebenen E, g, E,cund Egc, die die entsprechenden Mittelsenkrech-
ten des Dreiecks ABC enthalten und deshalb mindestens den Umkreismittelpunkt dieses
Dreiecks gemeinsam haben. Die drei Ebenen sind aber paarweise verschieden, also schnei-
den sich je zwei von ihnen in einer Geraden.

Den Axiomatiker mag es reizen, noch eine Begriindung dafiir anzugeben, daB die in Frage stehenden
Ebenen verschieden sind: Wiirde etwa die Ebene E,g mit der Ebene E,¢ zusammenfallen, so wiirde
sie, d. h. die Ebene E, g, die Mittelsenkrechten zu AB und zu AC im Dreieck ABC enthalten. Da diese
Geraden verschieden sind, gibt es nur eine Ebene, die beide enthilt, das ist die von Dreieck ABC
aufgespannte Ebene. Dann ldge aber auch die Strecke [AB] ganz in der Ebene E,g im Widerspruch
zur Konstruktion im Rahmen einer Axiomatik der euklidischen Geometrie. Aber bitte nicht in der
Schule!

Alle Punkte der Schnittgeraden von E,g und E,c haben nun die Eigenschaft, daB sie
sowohl von A und B als auch von A und C gleichen Abstand haben. Damit sind auch ihre
Abstinde von B und C gleich, also liegt diese Gerade auch in der Ebene Eg.. Folglich
schneiden sich die drei Ebenen in einer Geraden g durch den Umkreismittelpunkt des
Dreiecks ABC; g ist der geometrische Ort aller Punkte, die von den drei Punkten A, B, C
gleichen Abstand haben. Wir stellen noch fest, daB3 diese Gerade nach Konstruktion
senkrecht zu den Strecken [AB] und [AC] und deshalb senkrecht zu der vom Dreieck
ABC aufgespannten Ebene E ist.

Nehmen wir nun einen vierten, nicht in der Ebene E gelegenen Punkt S hinzu, so haben wir
dariiberhinaus die zu den Strecken [AS], [BS], [CS] mittelsenkrechten Ebenen E,g, Eg;s,
E. Die Ebene E,g kann nicht parallel zur Geraden g sein, denn sonst wire auch g
senkrecht zur Strecke [AS], also wire wegen A € Eund E | gauch S ein Punkt der Ebene
E, im Widerspruch zur Voraussetzung. Damit schneidet g die Ebene E,g in genau einem
Punkt M, der von allen vier Punkten A, B, C, S gleichen Abstand hat (und auch in den
Ebenen Eyg und Eg liegt).

Auf diese Weise ist die gestellte Frage elementargeometrisch beantwortet und die Existenz
einer Umkugel fiir jedes Tetraeder nachgewiesen. AuBlerdem geben uns die durchgefiihr-
ten Uberlegungen eine Anregung, wie wir Mittelpunkt und Radius der Umkugel eines
Tetraeders mit den Methoden der Darstellenden Geometrie konstruieren kénnen. Wir
wihlen ein Zweitafelverfahren mit der von den Punkten A, B, C aufgespannten Ebene £
als GrundriBebene und einer zum Grundri3 AS’ der Kante AS parallelen AufriBebene
(Figur 1); wir konnen dabei ohne Einschrankung der Allgemeinheit A + S’ annehmen.
Zunichst konstruieren wir den Umkreismittelpunkt M’ des Dreiecks ABC.

Es handelt sich dabei sowohl um den GrundriB3 des gesuchten Punktes M, als auch um die
Spur g’ der Geraden g in der GrundriBebene; die zur Tafelkante senkrechte Gerade durch
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M’ ist der AufriB g” von g. Die Mittelsenkrechte h” zum AufriB A”S"” der Kante AS in der
AufriBebene ist nun die orthogonale Projektion der Ebene E,g in die AufriBebene. Da
A"S" nicht parallel zur Tafelkante ist, ist h” nicht parallel zu g”. Also haben die Geraden
h” und g” genau einen Schnittpunkt; das ist der noch gesuchte AufriB M” des Umkugel-
mittelpunktes M. Durch Umklappen des Dreiecks AM’M"” in die Grundriebene um die
Seite AM' erhdlt man schlieBlich einen Punkt M* als Bild von M"” (M* = M’ ist méglich!)
und damit den Radius der Umkugel als Abstand von A und M*.

Wir wollen nun noch zeigen, wie man die Existenz der Umkugel auch sehr leicht mit der
Oberstufe zur Verfiigung stehenden Methoden erhalten kann. In der Sprache der linearen
Algebra lautet unser

Problem: In R 3 seien vier Punkte (= ,,Orts*-Vektoren) A, B, C, S so gegeben, daf} die drei
Vektoren A-S, B-S, C-S linear unabhiingig sind. Gibt es dann einen Punkt M € R 3 und eine
positive reelle Zahl re R ™, derart daf gilt

d,M)=r fir Je{A,B,C,S}?

Das ist ein Gleichungssystem aus 4 Gleichungen mit 4 Unbekannten (3 Koordinaten von
M und r). Das Uberraschende an der Sache ist, daB dieser ganz naive Ansatz sehr leicht
zum Ziel fithrt. Wir eliminieren zunéchst r, indem wir zu dem Gleichungssystem

dd,M)=d(S,M) fir Je{A,B,C}
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iibergehen; es handelt sich nun um drei Gleichungen mit drei Unbekannten. Driicken wir
nun den Abstand durch das Skalarprodukt aus, so erhalten wir Wurzelgleichungen, aber
wir konnen uns durch Quadrieren sofort von den Wurzeln befreien

J—-M)2=(S—M)? fir Je{A,B,C}.

Werten wir jetzt beide Seiten mit der binomischen Formel aus, so fillt der quadratische
Term M? gliicklicherweise weg und eine leichte Umformung ergibt

1
(J—S)M=§(J2—SZ) fir Je{A,B,C}.

Das ist aber ein inhomogenes lineares Gleichungssystem aus 3 Gleichungen mit 3 Unbe-
kannten. Die Zeilenvektoren sind nach Voraussetzung linear unabhéngig, also hat die
Koeffizientenmatrix den Rang 3 und damit besitzt das Gleichungssystem genau eine L6-
sung M; r ergibt sich dann durch Einsetzen

r=d(S, M).

Wieder ist die Aufgabe gelost. Diese Methode liefert aber auch unmittelbar ein konkretes
Berechnungsverfahren fiir Mittelpunkt und Radius der Umkugel; wir kénnen also im
Unterricht echte Aufgaben dazu stellen und wir haben nicht aus der Luft gegriffene Glei-
chungssysteme zu 16sen, sondern solche, die durch ein (geometrisches) Anwendungspro-
blem gegeben sind.

Bei aller Begeisterung fiir den Kalkiil sollten wir uns aber auch um die geometrische
Interpretation des gefundenen linearen Gleichungssystems bemiihen. Was konnen wir
liber die Losungsmenge einer Gleichung

(J—S)X=%(J2—Sz), Je{A,B,C}

aussagen. Zundichst liefert der K oeffizientenvektor, daB es sich um eine zum Vektor J — S,
also zur Kante [JS] des Tetraeders senkrechte Ebene handelt. Der Mittelpunkt dieser

1
Kante ist durch den Vektor 3 (J + S) gegeben; wir berechnen
J-95)- 1(J+S)— 1(J2 S?)
2 T2 ’

1
d.h. E(J + S) ist Losung der Gleichung. Damit ist die Losungsmenge der Gleichung

nichts anderes als die schon eingangs betrachtete zur Kante [JS] mittelsenkrechte Ebene
Es Je{A,B, C}). Die Losungsmenge des Gleichungssystems ist also der Schnitt der
Ebenen E,g, Egs und E, die Voraussetzung iiber die lineare Unabhéngigkeit von A — S,
B — S, C — S besagt, daB dieser Schnitt aus genau einem Punkt, dem Mittelpunkt M der
Umkugel besteht. Die eben angestellte Uberlegung erdfinet noch einen schnelleren Zu-
gang zu dem Gleichungssystem. Wir konnen elementargeometrisch die mittelsenkrechten
Ebenen diskutieren und dann unmittelbar ihre Gleichungen aufstellen. Da die Ebene Eg
senkrecht zur Kante [JS] ist, kdnnen wir J — S als Koeffizientenvektor fiir ,,ihre* Glei-
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o . 1
chung wihlen; das konstante Glied ergibt sich dann daraus, daB der Mittelpunkt 3 J+5S)
der Kante [JS] in der Ebene liegt, also Losung der Gleichung sein muB.

Wie auch immer wir den Unterricht aufbauen, jeder Schiiler sollte ,,fiirs Leben** begriffen
haben:

Durch drei Punkte, die nicht auf einer Geraden liegen, gibt es genau einen Kreis; zu vier
Punkten, die nicht in einer Ebene liegen, gibt es genau eine Kugel, deren Oberfliche sie
enthdlt.

2. Die Feuerbachkugel

Wenn in einer Klasse die ,,Neunpunkte-Eigenschaft* des Feuerbachschen Kreises:

In jedem Dreieck liegen die Mittelpunkte der Seiten, die Hohenfufipunkte und die Mittel-
punkte der Verbindungsstrecken vom Héhenschnittpunkt zu den Ecken auf einem Kreis, dem
Feuerbachschen Kreis des Dreiecks.

bekannt ist, konnen wir versuchen, auch diesen Sachverhalt in den Raum zu iibertragen.

Eine Moglichkeit dazu ist mit Hilfe des Bosschen Kalkiils in [4] dargestellt. Wir fiigen hier einige
Gedanken dariiber ein, weil ein gewisser innerer Zusammenhang mit dem Begriff der Umkugel
besteht. (Ebenso besteht ein Zusammenhang zwischen den beiden anderen Abschnitten dieser Arbeit,
zwischen In-/Ankugeln und Kantenkugeln).

Im Gegensatz zur Frage nach der Umkugel liegt es hierbei nicht auf der Hand, wie man ein
raumliches Analogon zu dieser Aussage finden kann. Das erlaubt eine interessante Dis-
kussion verschiedener Ansétze im Unterricht mit vielen geometrischen Einsichten, wobei
schlieBlich nur einer wirklich zum Ziel fithrt. Ausgehen kann man von der Frage, konnen
wir zu einem Tetraeder eine Kugel bestimmen, die dhnliche Eigenschaften hat wie der
Feuerbachkreis eines Dreiecks? Wie wir von der Behandlung der Umkugel her wissen, ist
eine Kugel durch vier in ihrer Oberfliche, aber nicht in einer Ebene liegende Punkte
eindeutig bestimmt. Es geht also zundchst darum, vier geeignete ,,merkwiirdige* Punkte
eines Tetraeders herauszupicken. Diese Punkte sollten fiir jedes Tetraeder paarweise ver-
schieden sein und dariiberhinaus nicht in einer Ebene liegen.

Dabei orientieren wir uns zunéchst an den merkwiirdigen Punkten eines Dreiecks, die in
der Neunpunkte-Eigenschaft vorkommen. Fiir Feuerbach selbst [3] bildeten die Hohen-
fuBpunkte, die ,,FuBpunkte der Perpendikel* die Grundlage der Uberlegungen. Aber
dann gibt es schon im ebenen Fall gewisse Schwierigkeiten. Beim rechtwinkligen Dreieck
fallen ja zwei Hohenschnittpunkte zusammen und damit gibt es viele Kreise, die die H6-
henfuBpunkte enthalten, der Feuerbachsche Kreis wird erst durch eine zusétzliche Eigen-
schaft festgelegt. Aber immerhin kann man leicht zeigen, daB es immer einen Kreis durch
die HohenfuBpunkte eines Dreiecks gibt: Sind die drei HohenfuBpunkte verschieden, so
liegen sie nie auf einer Geraden. Im Hinblick auf die rdumliche Situation lohnt es sich
dafiir ein Argument anzugeben, es beruht auf den Anordnungseigenschaften der ebenen
Geometrie: In jedem Dreieck ist immer mindestens ein HohenfuBpunkt innerer Punkt der
zugehorigen Seite. Bei einem nicht-rechtwinkligen Dreieck sind dann die beiden anderen
gleichzeitig entweder innere oder duBere Punkte der entsprechenden Seiten. Ihre Verbin-
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dungsgerade kann deshalb keinen inneren Punkt mit der dritten Seite gemeinsam haben
(es wird hier das ,,Axiom von Pasch‘ benutzt).

Wenn wir nun an das Tetraeder denken, so verstehen wir unter ,,HohenfuBpunkten* die
FuBpunkte der ,,Raumhohen*, d.h. der Lote von einer Ecke auf die von den tibrigen
Ecken aufgespannte Ebene. Auch hier ist mit der Moglichkeit des Zusammenfallens von
FuBpunkten verschiedener Hohen zu rechnen. Das allein wire nicht so schlimm, zu weni-
ger als vier Punkten konnen wir meistens Kugelflichen finden, die sie enthalten. Aber
wenn tatsdchlich vier verschiedene HohenfuBpunkte existieren, kann man nicht zeigen,
daB sie nicht in einer Ebene liegen. Das fiir den ebenen Fall angegebene Argument hat kein
rdumliches Analogon!

Weiter kann man wohl diese Diskussion in der Schule nicht treiben. Eine notwendige und hinreichen-

de Bedingung dafiir, daB die HohenfuBpunkte eines Tetraeders in einer Ebene liegen, hat L. Gerber in
New York angegeben. Sie lautet

0 COS(Pap COSQPac COSPps
cos 0 cos cos

det PaB (%] Pps -0
coOS@ac COS@ge O COSQPcs

COS(Pps COSQPps COSQPcs O

G. Aurnhammer in Konstanz hat mit Hilfe eines ,,Holzhammers* (Computers) nachgewiesen, da3
solche Tetraeder mit der zusétzlichen Eigenschaft existieren, daB die vier HohenfuBpunkte nicht auf
einem Kreis liegen; da sie aber in einer Ebene liegen, hat man keine Chance sie auf einer Kugeloberfla-
che unterzubringen. Ein konkretes Beispiel bildet das Tetraeder mit den Ecken:

A =(65/00), B=(0650), C=(18/48]12), S=0=(0]0]0).

Jedenfalls zeigen diese Uberlegungen, daB die Festlegung einer Kugel mit Hilfe der H6-
henfuBpunkte eines Tetraeders auf Schwierigkeiten st68t. Da sich i.a. die Raumhoéhen
nicht in einem Punkt schneiden, haben wir auch keine Chance auf Verbindungsstrecken
zwischen Hohenschnittpunkt und Ecken giinstige Punkte auszuwihlen. Also scheiden
von den neun Punkten des Feuerbachkreises fiir einen Versuch zur rdumlichen Verallge-
meinerung zundchst sechs aus.

Es bleiben die Seitenmitten, die beim Dreieck nie auf einer Geraden liegen und deshalb
immer eindeutig einen Kreis definieren.

Nun stellt sich die Frage, was entspricht dem Mittelpunkt einer (eindimensionalen) Strek-
ke beim (zweidimensionalem) Dreieck. Zunéchst bieten sich dafiir die vier klassischen
merkwiirdigen Punkte des Dreiecks an: Hohenschnittpunkt, Umkreismittelpunkt, In-
kreismittelpunkt und Schwerpunkt. Um die Existenz einer Kugel zu sichern, sollten wir
von 4 Punkten ausgehen, die sicher nicht in einer Ebene liegen. Dieses Kriterium scheidet
die Hohenschnittpunkte und die Umkreismittelpunkte sofort aus: Bei dem von einem
orthonormierten Dreibein gebildeten (,,gleichschenklig-rechtwinkligen‘‘) Tetraeder fallen
drei Hohenschnittpunkte der vier Seiten zusammen (in den ,,Ursprung‘); die vier Um-
kreismittelpunkte sind zwar paarweise verschieden, liegen aber in einer Ebene (der ,,Hy-
potenuse*). Also bleiben die vier Inkreismittelpunkte und die vier Schwerpunkte der
Seiten eines Tetraeders. In beiden Fillen handelt es sich um vier innere Punkte der Seiten,
und sie liegen auch nie in einer Ebene. Der Nachweis dieser Eigenschaft ist aber, zumin-
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dest fiir die Inkreismittelpunkte, nicht ganz einfach und braucht an dieser Stelle noch
nicht gefiihrt zu werden.

Es gibt noch eine weitere Entscheidungshilfe. Fiir den Nachweis der Neunpunkte-Eigen-
schaft und die Berechnung des Radius des Feuerbachkreises ist es sehr niitzlich festzustel-
len, daB wir die Seitenmitten des Dreiecks aus den Ecken und damit den Feuerbachkreis

. . . 1
aus dem Umkreis durch zentrische Stauchung am Schwerpunkt mit dem Faktor —5
erhalten konnen. Entsprechend ergeben sich die Schwerpunkte der Seiten(dreiecke) eines

. . 1
Tetraeders durch zentrische Stauchung am Raumschwerpunkt mit dem Faktor —5!

Das zeigt, daB die vier Schwerpunkte nicht in einer Ebene liegen und motiviert die

Definition: Die Feuerbachkugel eines Tetraeders ist die Umkugel des von den Schwer-
punkten der Seiten gebildeten Tetraeders.

Damit fiihrt die zentrische Stauchung am Schwerpunkt mit dem Faktor —% auch die

Umkugel in die Feuerbachkugel iiber und wir erhalten fiir den Radius ry der Feuerbach-
kugel sofort

Ie =31,

wenn 1 den Radius der Umkugel bezeichnet.

Wenn man nur wenig Zeit fiir die Behandlung der Feuerbachkugel verwenden will, kann man sich
natiirlich die bisherige Diskussion weitgehend sparen und ausgehend vom Zusammenhang zwischen
Umkreis und Feuerbachkreis die Feuerbachkugel direkt als das Bild der Umkugel unter der genann-
ten Stauchung definieren.

Der Aufwand fiir die Festlegung einer Feuerbachkugel ist natiirlich nur dann gerechtfer-
tigt, wenn wir weitere besondere Eigenschaften dieser Kugel feststellen konnen. Was da
mit einfachen Mitteln zu leisten ist, ist in [5] ausfiihrlich dargestellt. Wir geben hier zur
Appetitanregung die Ergebnisse an. Motiviert wird ihre Herleitung durch folgende etwas
verfremdete Formulierung der Neunpunkte-Eigenschaft des Feuerbachkreises:

Auf dem durch Seitenmitten eines Dreiecks gehenden Kreis liegen die Hohenfufipunkte des
Dreiecks,; dieser Kreis geht durch zentrische Streckung am Hdéhenschnitipunkt mit dem
Faktor 2 in den Umkreis tiber.

Fiir die Feuerbachkugel eines Tetraeders gilt entsprechend:

1. Der Mittelpunkt My der Feuerbachkugel, der ( Raum-)Schwerpunkt P und der Mittel-
punkt M der Umkugel liegen auf einer Geraden, P teilt die Strecke [MgM] (fallsP + M) im
Verhdltnis 1:3 (Fiir P + M ist die Gerade PM die ,,Eulersche Gerade* des Tetraeders).

2. Der Durchschnitt mit einer Seite(nebene) hingt nur von dieser Seite ( Schwerpunkt, Um-
kreismittelpunkt ) und dem zugehorigen Hohenfufpunkt ab; er andert sich also nicht, wenn
wir die vierte Ecke ldngs der zugehorigen Raumhoéhe verschieben.



Fritsch: Merkwiirdige Kugeln am Tetraeder, Teil 1 269

Besitzt das Tetraeder einen Hohenschnittpunkt, so gilt dariiberhinaus

3. Die Hohenfufipunkte liegen auf der Oberfliche der Feuerbachkugel. Genauer konnten
wir formulieren: Die Verbindungsstrecke eines HohenfuBpunktes mit dem Schwerpunkt
der zugehorigen Seite bildet einen Durchmesser des Schnittkreises der Feuerbachkugel
und dieser Seite(nebene).

4. Die zentrische Streckung am Hohenschnitipunkt mit dem Faktor 3 fithrt die Feuerbach-
kugel in die Umkugel des Tetraeders iiber.

Natiirlich gibt es auch beim Fehlen eines Héhenschnittpunktes eine zentrische Streckung mit dem
Faktor 3, die die Feuerbachkugel in die Umkugel iiberfiihrt. Das Zentrum dieser Streckung wird als
,,Punkt von Monge* [13, S.266] bezeichnet und liegt natiirlich (falls P + M) auf der ,,Eulerschen
Geraden* des Tetraeders. Eine noch weitergehende Verallgemeinerung der Neunpunkteeigenschaft
hat J.C.H. Gerretsen [10] angegeben.

Noch eine andere Kugel, die aber nicht immer existiert, wird gelegentlich als Feuerbachkugel ange-
sprochen. Dazu gelangt man durch folgende Uberlegung: Die Verbindungsstrecken der Mittelpunkte
je zweier Gegenkanten eines Tetraeders halbieren sich gegenseitig. Falls ein Héhenschnittpunkt exi-
stiert, sind diese Verbindungsstrecken sogar gleich lang; also liegen ihre Endpunkte auf einer Kugel.
Diese schneidet aus den Seitenebenen gerade die Feuerbachkreise der Seitendreiecke aus!

Hinweis der Redaktion: Die Fortsetzung dieses Beitrages mit Literaturangaben erscheint in DdM 12
(1984), Heft 1. .
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