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Deletion of fabN in Enterococcus
faecalis results in unsaturated fatty
acid auxotrophy and decreased
release of inflammatory cytokines

Ann-Kristin Diederich1,2,3, Katarzyna A Duda4,
Felipe Romero-Saavedra1,5, Regina Engel4,
Otto Holst4 and Johannes Huebner1,2

Abstract

The Gram-positive bacterium Enterococcus faecalis can cause life-threatening infections and is resistant to several com-

monly used antibiotics. The type II fatty acid pathway in bacteria is discussed as a potential target for antimicrobial

therapy. However, it was shown that inhibition or deletion of its enzymes can be rescued in Gram-positive bacteria by

supplementation with fatty acids. Here we show that by deletion of the fabN gene, which is essential for unsaturated fatty

acid (UFA) synthesis in E. faecalis, growth is impaired but can be rescued by supplementation with oleic acid or human

serum. Nonetheless, we demonstrate alterations of the UFA profile after supplementation with oleic acid in the �fabN

mutant using a specific glycolipid. In addition, we demonstrate that cytokine release in vitro is almost abolished after

stimulation of mouse macrophages by the mutant in comparison to the wild type. The results indicate that fabN is not a

suitable target for antimicrobials as UFA auxotrophy can be overcome. However, deletion of fabN resulted in a decreased

inflammatory response indicating that fabN and resulting UFA synthesis are relevant for virulence.
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Introduction

The type II fatty acid synthesis (FASII) pathway is dis-
cussed as potential target for antimicrobial develop-
ment,1,2 as there are significant structural differences
to the type I fatty acid synthesis pathway in mammals.2

The antimicrobials platencin and platensimycin inhibit
the fatty acid acyl carrier protein synthase II and the
fatty acid acyl carrier protein synthase III of the FASII
pathway, and have been tested in preclinical trials
against methicillin-resistant Staphylococcus aureus
strains.3 Platensimycin is also discussed as a potential
anti-tuberculosis drug.3 The selective antistaphylococ-
cal enoyl-acyl carrier protein (ACP) reductase (FabI)
inhibitor AFN-1252 is even already under investigation
in human trials.4 The fabN gene from Enterococcus fae-
calis encodes for a 3-hydroxyacyl-[acyl-carrier-protein]-
dehydratase (3-hydroxyacyl-ACP-dehydratase) (EC:
4.2.1.59) that is also an enzyme in the FASII pathway.
The FabN enzyme was first described by Wang and
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Cronan,5 and defined as a bifunctional dehydratase/
isomerase. It catalyzes the first step in the synthesis
of unsaturated fatty acids by dehydration of
b-hydroxydecanoyl–ACP and subsequent isomeriza-
tion to cis-3-decenoyl–ACP,6 which is a substrate for
further unsaturated fatty acid (UFA) elongation.7 In
Streptococcus pneumoniae and Streptococcus mutans,
the functional closely related FabM is an isomerase,
essential for UFA synthesis in these pathogens.8

Growth was impaired when fabM was deleted but
was restored by the addition of UFAs to the media
or by functional replacement of the deleted fabM by
fabN from E. faecalis.8 This strategy was also applied
for the fabA deletion mutant in the Gram-negative bac-
terium Escherichia coli.5 FabA is the essential enzyme
for UFA synthesis in E. coli and catalyzes the isom-
erase/dehydratase reaction to cis-3-decenoyl–ACP.5,9

Upon replacement of fabA with fabN from
E. faecalis, only small amounts of UFAs were pro-
duced, owing to substrate competition with the enoyl
reductase FabI. Altogether, these findings demonstrate
the versatility of FabN for the catalysis of unsaturated
fatty acid synthesis in different bacterial species.
We hypothesized that by deleting fabN, growth of
E. faecalis would be impaired, owing to the described
potential essentiality of the enzyme for UFA synthesis.
Additionally, we wanted to find out whether the host
inflammatory response was altered in the mutant. We
have shown before that E. faecalis 12030 is a strong
biofilm producer,10,11 and that glycolipids are involved
in this process.11,12 In addition, we have detected a
strong inflammatory reaction in vitro and in vivo,
when the glycosyltransferase BgsA, transferring the
second Glc moiety yielding diglycosyl-diacylglycerol
(DGlcDAG) was deleted and the glycolipid monogly-
cosyl-diacylglycerol (MGlcDAG), containing unsat-
urated fatty acids, accumulated.11,13 Therefore, we
wanted to investigate whether there is a connection
between microbial UFAs and the immune response.

Materials and methods

Bacterial strains, plasmids and culture conditions

The pMAD Gram-positive, temperature-sensitive
mutagenesis shuttle vector has been described pre-
viously.14 Enterococcus faecalis 12030 strain was
grown in tryptic soy broth (TSB; Carl Roth,
Karlsruhe, Germany) medium or on TSA plates
(Carl Roth) at 37�C for 18 h.15 For growth of
E. faecalis 12030�fabN TSB media or TSA plates
were supplemented with 0.1 mM oleic acid (Sigma
Aldrich, St. Louis, MO, USA). When required,
medium was supplemented with 50 mg/ml erythromycin
(Carl Roth). Escherichia coli XL-1-blue (Invitrogen,
Carlsbad, CA, USA), containing pMAD, was grown
in lysogeny broth supplemented with 100 mg/ml

ampicillin (Carl Roth) at 30�C with agitation
(200 rpm) for 48 h. For blue/white selection, agar
plates were supplemented with 80 mg/ml X-gal
(Applichem, Chicago, IL, USA).

Construction of �fabN

A non-polar deletion of a portion of fabN (ef 0284 in
E. faecalis 12030), encoding for the enzyme (R)-3-
hydroxymyristoyl–ACP dehydratase, was created
using the method described previously.16 Genomic
DNA was isolated from E. faecalis 12030 via the
MasterPure Gram Positive DNA Purification Kit
(Illumina, Madison, WI, USA). Primer pair 0284_
P1_fw_BamHI (CTCACCAGGATCCGGATATGGC
AGCAACTGTGATGCTA) and 0284_P2 rv (ACT
AGCGCGGCCGCTTGCTCCCGGATAGCGATTA-
GGAATCATTTCCATA) amplified a 528-bp fragment
upstream of fabN and a part of the terminal sequence
of ef 0283. The primer pair 0284_P3 fw (GGAG
CAAGCGGCCGCGCTAGTGACGTTTATTGTGG-
GACGATAAGAATCA) and 0284_P4_rv_SalI
(GAGTGGTGTCGACGCAAGCCCATTGAGTTA-
ATACTTCCTA) were used to amplify a 389-bp frag-
ment downstream of ef 0284, and the beginning of
ef 0285 (restriction enzyme sites are indicated in bold).
Primers 2 and 3 contain a 21-bp complementary
sequence (underlined). Overlap extension PCR was
used to create a PCR product lacking 411 bp of the
ef 0284 gene. The overlap construct was cloned into
the multiple cloning site of the shuttle vector
pMAD.14 Restriction and modifying enzymes were
obtained from ThermoScientific (Waltham, MA,
USA) and used following the manufacturer’s instruc-
tions. The resulting plasmid pMAD::�fabN was trans-
formed into E. coli XL-1-Blue chemocompetent cells.
For selection of positive clones, 100 mg/ml ampicillin
and 80 mg/ml X-gal were used. Successful transform-
ation was confirmed by PCR with primer pair
pMAD-1F (TCTAGCTAATGTTACGTTACAC) and
pMAD-1R (TCATAATGGGGAAGGCCATC), and
by digestion with the appropriate restriction enzymes.
The generated recombinant plasmid was transformed
into electro-competent E. faecalis 12030 cells prepared
as described by Cruz-Rodz and Gilmore.17 Gene
replacement was performed as described previously,18

with additional supplementation to the media by 0.1
mM oleic acid. Deletion of the gene was verified by
sequencing (GATC Biotech AG, Konstanz, Germany).

Growth kinetics

Overnight cultures of E. faecalis 12030 and the
E. faecalis 12030�fabN mutant were adjusted to an
OD600 of 0.1 in TSB medium without or with supple-
mentation with 0.1 mM oleic acid (TSBO). For deter-
mination of growth by the mutant in human serum,
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medium was prepared out of 50% TSB and 50%
human serum (filtered sterile). As before, 0.1mM
oleic acid was added to half of the samples. Again,
the starting OD600 was adjusted with overnight cul-
tures, grown for 18 h at 37�C, to 0.1. The cultures sup-
plemented with human serum or only oleic acid were
grown at same conditions at 37�C at 200 rpm. OD600

was measured hourly over a time span of 6 h until sta-
tionary phase was reached.

Membrane lipid extraction

Crude lipid extraction was done following the method
of Bligh and Dyer,19 with a few modifications.
Enterococcus faecalis 12030 or E. faecalis 12030�fabN
were incubated for 18 h at 37�C without agitation in
TSB or TSBO, respectively. The cultures were spun
down (1800 g, 20min, 4�C) and the cell pellet was re-
suspended in 20ml NaAc-buffer [0.1% sodium acetate
(w/v); pH 4.7] and pelleted again. The cell pellet was re-
diluted in 10ml NaAc buffer and glass beads with a
diameter of 0.1mm (Carl Roth) were added 1:1 to the
suspension. With a BeadBeater (Glenn Mills, Clifton,
NJ, USA) or, alternatively, by vortexing, cells were dis-
rupted. After the glass beads had settled or had been
spun down (42,000 g, 20min, 4�C) the cell suspension
was transferred to a new tube and centrifuged (7000 g,
20min, 4�C). The supernatant was discarded and NaAc
buffer, methanol and chloroform were added in ratios
of 0.8:2:1 to the cell pellet and incubated for lipid
extraction for 2 h at room temperature (RT; 22�C)
while stirring. The suspension was centrifuged in poly-
tetrafluoroethylene tubes (ThermoFisher Scientific,
Waltham, MA, USA) (1800–7000 g, 15min, 4�C). The
supernatants, containing the extracted lipids, were com-
bined and the cell pellet was re-diluted using the same
ratio as before, stirred for an additional hour and sepa-
rated again by centrifugation. The supernatants were
combined and chloroform and NaAc buffer were
added in volumes of 1:1:1 to the supernatant, mixed
briefly and the organic and aqueous phase were sepa-
rated again by centrifugation for 15min. The lower
organic phase containing the lipids was combined and
separated again by centrifugation until only the organic
solvent, containing the lipids, remained. By evapor-
ation, using a rotary vacuum evaporator, the chloro-
form was separated from the extract. It was important
that the temperature did not exceed 40–50�C, to
decrease oxidation of double bonds. Subsequently, the
lipid extract was dried under a fluent stream of nitro-
gen. Until use, lipids were stored in chloroform or
under nitrogen atmosphere at �20�C.

RAW 264.7 mouse macrophage stimulation

For determination of cytokine formation, RAW264.7
mouse macrophages (a generous gift from the

laboratory of Philip Bufler, Children’s Hospital,
Munich, Germany) were seeded at a density of
1� 105 cells/ml in 24-well dishes in DMEM (high
Glc, GlutaMAXTM, supplemented with 10% FCS
and 100 U/ml Pen/Strep). The adherent cells were
washed once with PBS and stimulated with sterile fil-
tered (0.22 mm) supernatants of overnight cultures from
mutant and wild type, adjusted to a protein concen-
tration of 300 mg/ml by photometric determination.
Cultures were incubated for 16 h at 37�C in a 5%
humidified CO2 environment. Stimulation assays were
performed at cell passages 12–15. The TLR2 agonist
Pam2CSK4 (R&D Systems, Minneapolis, MN, USA)
was used as positive control. Cytokines were measured
by ELISA using commercially available kits
(eBioscience, San Diego, CA, USA). Statistical signifi-
cance for two-way comparisons was determined by an
unpaired t-test as indicated.

Visualization of lipids

Lipid extracts, diluted in chloroform, were applied onto
a thin-layer chromatography (TLC) plate (0.1 mM
Silica gel 60 F254nm; Merck, Darmstadt, Germany),
which was developed in a TLC development chamber
in CHCl3/MeOH/H2O [65:25:4; (v/v/v)] running buffer.
To visualize total lipid extract, the plate was stained
with molybdenum [5% H2SO4 (97%) (v/v); 0.1%
Ce(SO4)� 4 H2O (w/v); 5% (NH4)6Mo7O24�H2O
(w/v)],20 air-dried and developed at 150�C for 5min.
For visualization of glycolipids, the plate was stained
with Molisch’s reagent [82% MeOH (v/v), 10% H2SO4

(97%) (v/v); 3.2% a-naphthol C10H8O (w/v)] and
developed at 150�C for 5min.

Purification of MGlcDAG via silica gel
column chromatography

A glass column (NS 14/23 porosity: 0; Carl Roth) was
filled with 7–10ml silica gel (0.04–0.063mm silica gel
60; Merck). The lipid extract, solved in chloroform, was
added slowly onto the dry, even surface of the silica gel.
By increasing the polarity of the eluent via decreasing
the CHCl3/MeOH (v/v) ratio (100:0; 97:3; 95:5; 92:8;
90:10; 50:50) fractionation of the lipids occurred. The
fractions were each eluted with a total volume of
100ml. The eluents were removed again by rotary evap-
oration. Via TLC the combined fractions were analyzed
for purity.

Determining the fatty acid composition of MGlcDAG

The fatty acid composition of MGlcDAG of the wild
type and the �FabN mutant was determined after
methanolysis (2 M HCl/MeOH, 85�C, 2 h), acetylation
(85�C, 10min) and detection by GC/MS. GC/MS ana-
lyses of all samples were performed on an Agilent

286 Innate Immunity 22(4)



Technologies 7890A gas chromatograph equipped
with a dimethylpolysiloxane column [HP Ultra 1,
12m� 0.2mm � 0.33mm film thickness and 5975C
series MSD detector with electron impact ionization
(EI) mode under autotune condition at 70 eV
(Agilent, Santa Clara, CA, USA)]. The temperature
program was 70�C for 1.5min, then 60�Cmin�1 to
110�C and 5�C min�1 to 320�C for 10min. A reference
probe (Bacterial Acid Methyl Ester Mix; Sigma
Aldrich) with known lipid composition and elution pro-
file was measured under the same conditions.

Preparation of picolinyl esters

For the exact determination of the position of the
double bond in 18:1 fatty acid, fatty acids of
MGlcDAG from the wild type and �FabN mutant
were derivatized to 3-pyridylcarbinol (‘picolinyl’)
esters.21 The fatty acids were released (1 M NaOH–
MeOH, 1 h, 85�C), recovered in CHCl3, treated with
trifluoroacetic anhydride (1 h, 50�C) and subsequently
with 20% (w/v) 3-pyridinemethanol solution in tetra-
hydrofuran (1 h, 50�C) and injected in GC/MS as
described above.

Biofilm formation assay

Biofilm formation was measured as described previ-
ously.22 Briefly, TSB media supplemented with 1%
Glc (w/v) and 0.1 mM oleic acid (TSBGO) was inocu-
lated and incubated at 37�C for 18 h. Polystyrene tissue
culture plates were filled with 198 ml TSBGO media and
2 ml of the overnight culture. The plate was incubated
18 h at 37�C. After the incubation period OD630 was
measured. Supernatants were discarded and wells were
washed twice with 200 ml PBS. The plate was dried for
1.5 h at 50–60�C and subsequently 100 ml crystal violet
solution (Sigma Aldrich) was added and incubated for
2min at RT. The solution was discarded, the plate
rinsed thoroughly with tap water and dried again
at 50–60�C for 15min. OD630 was measured and
normalized to growth with the biofilm index [biofilm
index¼OD biofilm� (0.5)/(OD growth)].

Results

Deletion of EF0284

The described fabN (ef 0284) gene from E. faecalis V583
shares 99.08% nucleotide identity to its homologue
gene in E. faecalis 12030.5 We hypothesized that by
deleting fabN, E. faecalis 12030 would not be able to
synthesize UFAs including vaccenic acid (18:1 �11). To
characterize the role of fabN, we created a non-polar
deletion mutant using targeted mutagenesis.16 Deletion
mutants could only be successfully isolated by supple-
mentation of TSB media with 0.1mM oleic acid during

the second cross-over event to overcome UFA
auxotrophy. Without supplementation the fabN
mutant had a pronounced growth defect and formed
small colonies on tryptic soy agar plates approximately
two-thirds smaller than the corresponding wild type.

Deletion of fabN results in UFA auxotrophy

Growth of the mutant in un-supplemented TSB
resulted in a maximal (�SEM) growth to an OD600 of
0.52� 0.01, whereas maximum growth for the wild type
was three times higher with an OD600 of 1.73� 0.03
(Figure 1). With addition of 0.1 mM oleic acid the
growth defect was partly overcome. Maximal growth
for �fabN doubled to an OD600 of 1.13� 0.04.
However, growth of the wild type was not altered by
supplementation of oleic acid (OD600 1.73� 0.01 vs.
1.73� 0.03 in the un-supplemented culture) (Figure 1).
This shows that fabN is essential for growth, when
no exogenous UFAs are available. As was also
shown previously,23 E. faecalis is capable of using
exogenous UFAs.

UFA auxotrophy can be overcome
by growth in human serum

UFA auxotrophy in deletion mutants of Streptococcus
agalactiae or by inhibition of the FASII pathway of
Gram-positive pathogens was overcome under in vivo
conditions by adding human serum to the growth
media. Human serum contains usually about 1.88mM
oleic acid, which is the third most abundant fatty
acid.24 Therefore, we tested if growth of the fabN dele-
tion mutant could also be restored by adding human
serum (Figure 2). Growth of the �fabN mutant
increased to similar levels (1.24� 0.02 with and
1.33� 0.11 without oleic acid) as the wild type
(1.30� 0.11 with and 1.20� 0.01 without oleic acid).
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Figure 1. Growth of wild type (wt) and E. faecalis 12030�fabN

strain in TSB or TSBO, respectively. Values are represented

as averages� SEM (n¼ 3). Growth curve measurements were

performed independently in triplicate.
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Altogether, these results show that the effect of fabN
deletion and subsequent UFA auxotrophy can be over-
come under in vivo conditions.

Deletion of fabN almost completely
abolishes induction of TNF-� in RAW
264.7 mouse macrophages

To evaluate the biological effects of the deletion and the
potentially changed lipid membrane composition, we
stimulated mouse macrophages with supernatant from
the wild type and mutant adjusted to same protein con-
centrations of 300 mg/ml (Figure 3). As in our previous
work we observed that E. faecalis 12030 sheds cell
membrane lipids into the media (personal observa-
tion),25 we argued that changed lipid content in the
supernatant would resemble changed membrane lipid
composition. After 16 h, we measured the release of
the cytokine TNF-a in the cell culture supernatant.
TNF-a production in RAW264.7 cells was almost com-
pletely abrogated after stimulation with the mutant
and, overall, sevenfold lower than the wild type
strain. Therefore, our data suggest that impairment of
UFA synthesis reduces the capability of culture super-
natants to induce TNF-a production by macrophages.
This indicates that microbial unsaturated acids poten-
tially play a role in the induction of an inflammatory
response.

Fatty acid composition of MGlcDAG

In order to prove to what extent the mutation in the
fabN gene changed the chemical composition of the
fatty acids using the example of a single glycolipid,
total lipids of the wild type and the �fabN mutant
were extracted and fractionated as described. The
a-naphthol stain (Figure 4B, D) shows that a glycolipid
with an Rf � 0.75 was eluted with 95:5 (Figure 4A, B,
lane 3) or 92:8 CHCl3/MeOH (Figure 4C, D, lane 4) for

the wild type or �fabN mutant, respectively, and was
identified as MGlcDAG compared with the lipid
profile of E. faecalis 12030�bsgA strain overproducing
MGlcDAG (Figure 4A, B, lane 1).11 The composition
of the fatty acids of MGlcDAG from the wild type, as
determined by GC/MS with the use of authentic stand-
ard of bacterial acid methyl ester (Sigma Aldrich),
revealed the presence of glycerol, hexose, 16:1, 16:0,
18:1 and 18:0 (Figure 5A). This analysis, however, did
not allow us to differentiate completely between 18:1 �9

and 18:1�11, as methyl esters of these fatty acids par-
tially elute with the same retention time (21.753min).
Thus, picolinyl ester derivatives were prepared (data
not shown) and it was shown that in the glycolipid
from wild type, mainly �11 of 18:1 was present, with
only traces of 18:1 �9. The exact position (sn-1 or sn-2)
of the different fatty acids on the glycerol backbone
remains to be elucidated. The methanolysis of
MGlcDAG from �fabN showed the presence of gly-
cerol, hexose, 16:0, 18:1 �9, 18:1 �11 and 18:0
(Figure 5B). The picolinyl derivates (data not shown)
revealed the presence of both forms of 18:1, with the
ratio 2:1 18:1 �9 and 18:1 �11, respectively. Taken
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together the analyses showed that by deletion of fabN
the composition of unsaturated fatty acid structures
in E. faecalis changed (detection of supplemented
18:1 �9); however, the mutant still possessed a
decreased amount of 18:1�11.

Biofilm formation of �fabN

Enterococcus faecalis mutant 12030�fabN did not
show significant differences compared with the wild

type in regard to biofilm formation on plastic surfaces
(Figure 6).

Discussion

Here we analyzed how deletion of the enzyme FabN,
catalyzing the first step in unsaturated fatty acid
synthesis in E. faecalis, affects growth kinetics, the
inflammatory response of mouse macrophages and
composition of fatty acids, using the glycolipid

Figure 4. TLC of fractionated lipid extracts of E. faecalis 12030 wild type (A, B). From silica gel column eluted fractions with CHCl3
(100) (lane 2), CHCl3/MeOH (95:5) (lane 3), CHCl3/MeOH (90:10) (lane 4), CHCl3/MeOH (85:15) (lane 5), CHCl3/MeOH (80:20)

(lane 6) and CHCl3/MeOH (50:50) (lane 7). Twentymg crude lipid extract of E. faecalis 12030�bgsA accumulating MGlcDAG (lane 1)

was loaded as ladder. Twenty mg DGlcDAG (lane 8) as positive control. Fractions are concentrated, applied to a TLC plate, developed

in CHCl3/MeOH/H2O [65:25:4 (v/v/v)] and visualized with (A) molybdenum or (B) a-naphthol. Arrows are indicating the glycolipid

bands and the cardiolipin contamination. MGlcDAG; Rf � 0.74 (a), DGlcDAG; Rf � 0.49 (b) and cardiolipin (verified by MS) (c). TLC of

fractionated lipid extracts of E. faecalis 12030�fabN (C, D). Fractions eluted with CHCl3 (100) (lane 1), CHCl3/MeOH (97:3) (lane 2),

CHCl3/MeOH (95:5) (lane 3), CHCl3/MeOH (92:8) (lane 4), CHCl3/MeOH (90:10) (lane 5) and CHCl3/MeOH (50:50) (lane 6).

Fractions were concentrated, applied to a TLC plate, developed in CHCl3/MeOH/H2O [65:25:4 (v/v/v)] and visualized with molyb-

denum (C) or a-naphthol (D). Arrows are indicating the MGlcDAG spots.
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MGlcDAG as example. The deletion of fabN resulted
in UFA auxotrophy, which was partly overcome by
supplementation of the culture medium with the
exogenous unsaturated fatty acid oleic acid or human
serum. This phenotype was also previously reported for
S.mutans, S. pneumoniae and S. agalactiae fabM-null
mutants.8,26 It has been previously reported that UFA
auxotrophy caused by deletion or inhibition through
antimicrobials of different enzymes in the FASII path-
way of Gram-positive pathogens could be overcome by
supplementation with unsaturated fatty acids.26 Our
findings corroborate previous studies by Zhu et al.,27

who suggested that enzymes of the FASII pathway in
E. faecalis are not a suitable target for antimicrobials.
They reported that UFA auxotrophy in the enoyl-ACP
reductase (FabI) deletion mutant was rescued by sup-
plementation with oleic acid.27 Similar observations
were made in S. pneumoniae, in which exogenous
fatty acids could replace de novo synthesized fatty
acids.28 Nevertheless, we could demonstrate that dele-
tion of fabN resulted in a reduced inflammatory
response by macrophages. Although growth cannot
be inhibited by antimicrobials targeting the enzyme,
they might possibly reduce the inflammatory potency
of the pathogen. Targeting bacterial virulence (e.g. with
Abs neutralizing toxins) reduces the pressure for drug-
resistant mutations and protects the host microbiota
against detrimental changes.29 However, there are

only a few antimicrobials that inhibit fabN homologs,
which, to our knowledge, have not yet been tested in
enterococci.1,30,31 Integration of UFAs into immuno-
genic compounds have an influence on their inflamma-
tory potency. It has been shown recently that
incorporation of exogenous unsaturated fatty acids
into lipoproteins of S. aureus was connected to an
enhanced inflammatory response by human monocytes
and HEK–TLR2 cells.32 Lipoproteins are the most pro-
inflammatory compounds in the Gram-positive cell
wall.33,34 Additionally, in some glycolipids the import-
ance of the double bond of the fatty acids for recogni-
tion by iNKT cells and subsequent initiation of an
inflammatory response was reported.35,36 Therefore,
an altered unsaturated fatty acid profile in the �fabN
mutant likely affects its inflammatory characteristics.
We hypothesized that by deletion of fabN the structure
of the glycolipid MGlcDAG would change from vacce-
nic acid to the supplemented oleic acid. We found
recently that an E. faecalis 12030 deletion mutant, accu-
mulating the glycolipid MGlcDAG, showed a strongly
increased inflammatory phenotype due to an up-regu-
lated lipoprotein content,13 making the glycolipid an
interesting target for analysis of a potential altered
lipid composition. We found, in fact, a changed lipid
profile for the glycolipid synthesized by the �fabN
mutant, with oleic acid and palmitic acid being the
most prominent fatty acids, but there was still vaccenic
acid present. Analysis of the fatty acid composition of
fabM mutants in S. pneumoniae and S. mutans showed
that vaccenic acid is not detected when oleic acid is
supplemented.8 Taken together, these results suggest
that in E. faecalis, FabN is not the only enzyme that
is capable of synthesizing 18:1 �11. Another enzyme,
designated as FabZ (ef2878) with 58.7% identical resi-
dues to FabN,5 was identified in E. faecalis V583. Wang
and Cronan showed that replacement with fabN by the
functional homolog dehydratase/isomerase in the
E. coli �fabA mutant restored unsaturated fatty acid
synthesis. However, FabZ from E. faecalis could not
restore synthesis of unsaturated fatty acids in the
fabA deletion mutant, but traces of unsaturated fatty
acids could be detected. Therefore, FabZ seems to be
capable of synthesizing unsaturated fatty acids but with
a rather low activity. The active site residues of FabA8

are mostly conserved in FabN and FabZ. Domain
swapping of FabN and FabZ6 showed that b-sheets
direct the form of the a-helix forming the substrate-
binding tunnel. b-Sheets in FabN are differently pos-
itioned than in FabZ and are placing the substrate in
the suitable position for isomerization.6 Based on these
findings it is conceivable that FabZ is able, with a
rather low activity and affinity, to synthesize traces of
unsaturated fatty acids.

In conclusion, we could demonstrate that the dele-
tion of fabN in E. faecalis results in UFA auxotrophy,
which can be complemented by supplementation either
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Figure 6. Biofilm formation on plastic surfaces by E. faecalis
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with oleic acid or human serum. Deletion of fabN
results in a changed lipid profile in the glycolipid
MGlcDAG, although the UFA vaccenic acid was still
detected, suggesting another enzyme is capable of
synthesizing vaccenic acid with lower activity than
FabN. Cytokine release by stimulation of mouse
macrophages with the mutant was almost completely
abrogated. Hence, although UFA auxotrophy can be
overcome and FabN is not a target for antimicrobials
killing E. faecalis, inhibition of FabN could result in a
less pathogenic phenotype and be an objective for anti-
virulence strategies, which are a promising alternative
to treat bacterial infections.29 Further in vivo studies are
required to explore the suitability of FabN and ortho-
logue enzymes as targets for anti-virulence strategies.
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