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A k-uniform hypergraph H = (V , E) is called �-orientable if there is an assignment of each

edge e ∈ E to one of its vertices v ∈ e such that no vertex is assigned more than � edges.

Let Hn,m,k be a hypergraph, drawn uniformly at random from the set of all k-uniform

hypergraphs with n vertices and m edges. In this paper we establish the threshold for the

�-orientability of Hn,m,k for all k � 3 and � � 2, that is, we determine a critical quantity c∗
k,�

such that with probability 1 − o(1) the graph Hn,cn,k has an �-orientation if c < c∗
k,�, but

fails to do so if c > c∗
k,�.

Our result has various applications, including sharp load thresholds for cuckoo hashing,

load balancing with guaranteed maximum load, and massive parallel access to hard disk

arrays.

2010 Mathematics subject classification: Primary 68Q25

Secondary 05C80, 68Q87, 68W20, 05C65

1. Introduction

This paper studies the property of multiple orientability of random hypergraphs. For

any integers k � 2 and � � 1, a k-uniform hypergraph is called �-orientable if, for each

edge, we can select one of its vertices so that all vertices are selected at most � times.

This definition generalizes the classical notion of orientability of graphs, where we want

to orient the edges under the condition that no vertex has in-degree larger than �. In

† An extended abstract of this work appeared in the Proceedings of the 22nd ACM–SIAM Symposium on

Discrete Algorithms: SODA ’11.



The Multiple-Orientability Thresholds for Random Hypergraphs 871

this paper, we consider random k-uniform hypergraphs Hn,m,k , for k � 3, with n vertices

and m = �cn� edges. Our main result establishes the existence of a critical density c∗
k,�

(determined explicitly in Thorem 1.1) such that, when c crosses this value, the probability

that the random hypergraph is �-orientable drops abruptly from 1 − o(1) to o(1) as the

number of vertices n grows.

The case k = 2 and � � 1 is well understood. In fact, this case corresponds to the classical

random graph Gn,m drawn uniformly from the set of all graphs with n vertices and m

edges. A result of Fernholz and Ramachandran [7] and Cain, Sanders and Wormald [3]

implies that there is a constant c∗
2,� such that as n → ∞

P(Gn,�cn� is �-orientable) →
{

0 if c > c∗
2,�,

1 if c < c∗
2,�.

In other words, there is a critical value such that when the average degree is below this,

then with high probability an �-orientation exists, and otherwise not. We want to remark

at this point that the orientation can be found efficiently by solving a matching problem

on a suitably defined bipartite graph, but we will not consider computational issues any

further in this paper.

Similarly, the case � = 1 and k � 3 arbitrary is also well-understood. The threshold for

the 1-orientability is known from the work of the first and the third author [9, 10], and

Frieze and Melsted [11]. In particular, there is a constant c∗
k,1 such that as n → ∞

P(Hn,�cn�,k is 1-orientable) →
{

0 if c > c∗
k,1,

1 if c < c∗
k,1.

In this paper we consider the general case, i.e., k and � arbitrary. Our main result is

summarized in the following theorem, and settles the threshold for the �-orientability

property of random hypergraphs for all k and �.

Theorem 1.1. For integers k � 3 and � � 2 let ξ∗ be the unique solution of the equation

k� =
ξ∗Q(ξ∗, �)

Q(ξ∗, � + 1)
, where Q(x, y) = 1 − e−x

∑
j<y

xj

j!
. (1.1)

Let c∗
k,� = ξ∗/kQ(ξ∗, �)k−1. Then, as n → ∞

P(Hn,�cn�,k is �-orientable) →
{

0 if c > c∗
k,�,

1 if c < c∗
k,�.

(1.2)

The work of Frieze and Melsted [11] is based on the analysis of the Karp–Sipser

algorithm for matchings in bipartite graphs. More specifically, the bipartite graph that is

considered is the incidence graph where the vertices of one part are the edges of the random

hypergraph and the other part consists of its vertices. Each vertex that corresponds to a

hyper-edge is adjacent to its incident vertices. A 1-orientation corresponds to a matching

in this bipartite graph. It is not easy to see how and whether this approach can deal with

the �-orientability, for � > 1.
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A similar result which uses different techniques was also shown in a slightly different

context by Gao and Wormald [12], with the restriction that the product k� is large.

In particular, Gao and Wormald [12] consider what is called the (r, �)-orientability of

a hypergraph where each edge is ‘oriented’ to r vertices with the restriction that no

vertex has more than � edges oriented to it. Their analysis is based on the notion of

the (r, � + 1)-core of the random hypergraph which is an analogue of the notion of the

(� + 1)-core of a graph. This core is discovered through a special deletion process, which

is analysed with the differential equations method. This demands that � is large. So, our

result fills the remaining gap, and treats especially the cases of small k and arbitrary �,

which are most interesting in practical applications. Further generalizations of the concept

of orientability of hypergraphs were considered after our work in [15, 16], where tight

asymptotic results were also obtained.

The present paper is a non-trivial extension of the approach followed in [9, 10]. We

consider the (� + 1)-core of Hn,�cn�,k and its subsets that have density greater than �. We

use a tedious first moment argument that bounds the expected number of such subsets.

This yields that when c is below the critical value, these do not exist.

1.1. Applications

Cuckoo hashing. The paradigm of many choices has significantly influenced the design

of efficient data structures and, most notably, hash tables. Cuckoo hashing, introduced

by Pagh and Rodler [18], is a technique that extends this concept. We consider here a

slight variation of the original idea (see also Fotakis, Pagh, Sanders and Spirakis [8]),

where we are given a table with n locations, and we assume that each location can hold

� items. Each item to be inserted chooses randomly k � 2 locations and has to be placed

in any one of them. How much load can cuckoo hashing handle before collisions make

successful assignment of the available items to the chosen locations impossible? Practical

evaluations of this method have shown that one can allocate a number of elements that

is a large proportion of the size of the table, being very close to 1 even for small values of

k� such as 4 or 6. Our main theorem provides the theoretical foundation for this empirical

observation: if the number of items is less than c∗
k,�n, then it is highly likely that they

can be allocated; however, if their number is larger, then most likely every allocation will

have an overfull bin. Our result thus proves a conjecture about the threshold loads of

cuckoo hashing made in [5].

Load balancing. In a typical load balancing problem we are given a set of m = �cn�
identical jobs, and n machines on which they can be executed. Suppose that each job may

choose randomly among k different machines. Is there any upper bound for the maximum

load that can be guaranteed with high probability? Our main result implies that as long

as c < c∗
k,�, then there is an assignment of the jobs to their preferred machines such that

no machine is assigned more than � different tasks.

Parallel access to hard disks. In our final application we are given n hard disks (or any

other means of storing large amounts of information), which can be accessed in parallel

and independently of each other. We want to store a data set redundantly in order to

obtain some degree of fault tolerance, while at the same time we aim at minimizing
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the number of I/O steps needed to retrieve the whole data; see [19] for more details.

Theorem 1.1 guarantees the following property with high probability. If k randomly

allocated copies of each data block are stored on n hard disks, then m = �cn� different

data blocks can be read with at most � queries to each disk, provided that c < c∗
k,�.

2. Proof strategy and the upper bound

Our main result follows immediately from the two theorems below. The first statement

says that Hn,m,k has a subgraph of density > � (i.e., the ratio of the number of edges to

the number of vertices in this subgraph is greater than �) if c > c∗
k,�. The (� + 1)-core of

a hypergraph is its maximum subgraph that has minimum degree at least � + 1.

Theorem 2.1. Let c∗
k,� be defined as in Theorem 1.1. If c > c∗

k,�, then with probability 1 −
o(1) the (� + 1)-core of Hn,cn,k has density greater than �.

Note that this implies the statement in the first line of (1.2), as by the pigeonhole

principle it is impossible to orient the edges of a hypergraph with density larger than �

so that each vertex has in-degree at most �.

The above theorem is not very difficult to prove, as the core of random hypergraphs and

its structural characteristics have been studied quite extensively in recent years; see e.g.

the results by Cooper [4], Molloy [17] and Kim [14]. However, it requires some technical

work, which is accomplished in Section 2.1. The heart of this paper is devoted to the

‘subcritical’ case, where we show that the above result is essentially tight.

Theorem 2.2. Let c∗
k,� be defined as in Theorem 1.1. If c < c∗

k,�, then with probability 1 −
o(1) all subgraphs of Hn,cn,k have density smaller than �.

Proof of Theorem 1.1. Let us construct an auxiliary bipartite graph B = (E ,V; E), where

E represents the m edges and V = {1, . . . , n} × {1, . . . , �} represents the n vertices of Hn,m,k .

Also, {e, (i, j)} ∈ E if the eth edge contains vertex i, and 1 � j � �. Note that Hn,m,k is

�-orientable if and only if B has a left-perfect matching, and by Hall’s theorem such a

matching exists if and only if for all I ⊆ E we have that |I| � |Γ(I)|, where Γ(I) denotes

the set of neighbours of the vertices in I in V .

Observe that Γ(I) is precisely the set of � copies of the vertices that are contained in

the hyperedges corresponding to items in I . So, if c < c∗
k,�, Theorem 2.2 guarantees that

with high probability for all I we have |I| � |Γ(I)|, and therefore B has a left-perfect

matching. On the other hand, if c > c∗
k,�, then with high probability there is a set I such

that |I| > |Γ(I)|; choose for example I to be the set of items that correspond to the edges

in the (� + 1)-core of Hn,m,k . Hence a matching does not exist in this case, and the proof

is completed.

In the rest of the paper we prove Theorem 2.1 and Theorem 2.2. The main line of the

argument is similar to what was performed for the special case � = 1 in [10]. However,

resolving the problem for general values of � is technically much more involved, and also
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several generalizations of all intermediate steps are required; this is the main contribution

of the present work.

2.1. Proof of Theorem 2.1 and the value of c∗
k,�

The aim of this section is to determine the value c∗
k,� and prove Theorem 2.1. Moreover,

we will introduce some known facts and tools that will turn out to be very useful in the

study of random hypergraphs, and will be used later on in the proof of Theorem 2.2 as

well. In what follows we will be referring to a hyperedge of size k as a (k-)edge and we

will be calling a hypergraph with all its hyperedges of size k a k-graph.

Models of random hypergraphs. For the sake of convenience we will carry out our calcu-

lations in the Hn,p,k model of random k-graphs. This is the ‘higher-dimensional’ analogue

of the well-studied Gn,p model, where each possible (k-)edge is included independently

with probability p. More precisely, given n � k vertices we obtain Hn,p,k by including each

k-tuple of vertices with probability p, independently of every other k-tuple.

Standard arguments show that if we adjust p suitably, then the Hn,p,k model is essentially

equivalent to the Hn,cn,k model. Let us be more precise. Suppose that P is a convex

hypergraph property, that is, whenever we have three hypergraphs H1, H2, H3 such that

H1 ⊆ H2 ⊆ H3 and H1, H3 ∈ P , then also H2 ∈ P . We also assume that P is closed

under automorphisms. Note that any monotone property is also convex. The following

proposition is a generalization of Proposition 1.15 from [13, p. 16] and its proof is very

similar, so we omit it.

Proposition 2.3. Let P be a convex property of hypergraphs, and let p = ck/
(
n−1
k−1

)
, where

c > 0. If P(Hn,p,k ∈ P) → 1 as n → ∞, then P(Hn,�cn�,k ∈ P) → 1 as well.

Working on the (� + 1)-core of Hn,p,k: the cloning model. Recall that the (� + 1)-core of

a hypergraph is its maximum subgraph that has minimum degree (at least) � + 1. At this

point we introduce the main tool for our analysis. The cloning model with parameters

(N,D, k), where N and D are integer-valued random variables, is defined as follows. We

generate a graph in three stages.

(1) We expose the value of N.

(2) If N � 1 we expose the degrees d = (d1, . . . , dN), where the di are independent samples

from the distribution D.

(3) For each 1 � v � N we generate dv copies, which we call v-clones or simply clones.

Then we choose uniformly at random a matching from all perfect k-matchings on the

set of all clones, that is, all partitions of the set of clones into sets of size k. Note that

such a matching may not exist; in this case we choose a random matching that leaves

less than k clones unmatched. Finally, we construct the k-graph Hd,k by contracting

the clones to vertices, that is, by projecting the clones of v onto v itself for every

1 � v � N.

Note that the last stage in the above procedure is equivalent to the configuration model [2,

1] Hd,k for random hypergraphs with degree sequence d = (d1, . . . , dn). In other words, Hd,k

is a random multigraph where the ith vertex has degree di.
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One particular case of the cloning model is the so-called Poisson cloning model H̃n,p,k

for k-graphs with n vertices and parameter p ∈ [0, 1], which was introduced by Kim [14].

There, we choose N = n with probability 1, and the distribution D is the Poisson

distribution with parameter λ := p
(
n−1
k−1

)
. Note that D is essentially the vertex degree

distribution in the binomial random graph Hn,p,k , so we would expect the two models to

behave similarly. The following statement confirms this, and is implied by Theorem 1.1

in [14].

Theorem 2.4. Let P be any property of hypergraphs. If P(H̃n,p,k ∈ P) → 0 as n → ∞, then

P(Hn,p,k ∈ P) → 0 as well.

One big advantage of the Poisson cloning model is that it provides a rather precise

description of the (� + 1)-core of H̃n,p,k . In particular, Theorem 6.2 in [14] implies the

following statement, where we write ‘x ± y’ for the interval of numbers (x − y, x + y).

Theorem 2.5. Let

λk,�+1 := min
x>0

x

Q(x, �)k−1
.

Assume that ck = p
(
n−1
k−1

)
> λk,�+1. Moreover, let x̄ be the largest solution of the equation x =

Q(xck, �)k−1, and set ξ := x̄ck. Then, for any 0 < δ < 1 the following is true with probability

1 − n−ω(1). If Ñ�+1 denotes the number of vertices in the (� + 1)-core of H̃n,p,k , then

Ñ�+1 = Q(ξ, � + 1)n ± δn.

Furthermore, the (� + 1)-core itself is distributed like the cloning model with parameters

(Ñ�+1, Po��+1(Λc,k,�), k),

where Po��+1(Λc,k,�) denotes a Poisson random variable conditioned on being at least (� + 1)

and parameter Λc,k,�, where Λc,k,� = ξ + β, for some β satisfying |β| � δ.

In what follows, we say that a random variable is an �-truncated Poisson variable if

it is distributed like a Poisson variable, conditioned on being at least �. The following

theorem, which is a special case of Theorem II.4.I in [6] from large deviation theory,

bounds the sum of i.i.d. random variables. We apply the result to the case of i.i.d. (� + 1)-

truncated Poisson random variables, which are simply the degrees of the vertices of the

(� + 1)-core. As an immediate corollary we obtain tight bounds on the number of edges

in the (� + 1)-core of H̃n,p,k . Moreover, it also serves as our main tool in counting the

expected number of subsets (with some density constraints) of the (� + 1)-core, assuming

that the degree sequence has been exposed. Such estimates are required for the proof of

Theorem 2.2 and will be presented in the next section.

Theorem 2.6. Let X be a random variable taking real values and set c(t) = log E(etX), for

any t ∈ R. For any z > 0 we define I(z) = supt∈R{zt − c(t)}. If X1, . . . , Xs are i.i.d. random
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variables distributed as X, then for s → ∞

P

( s∑
i=1

Xi � sz

)
= exp(−s inf{I(x) : x � z}(1 + o(1))).

The function I(z) is non-negative and convex.

The function c(t) is called the free energy function of X and the following holds.

Proposition 2.7 (Proposition VII.1.1 of [6]). c(t) is a convex function on R.

The function I(z) (also known as the rate function of the random variable X) in the

above theorem measures the discrepancy between z and the expected value of the sum of

the i.i.d. random variables in the sense that I(z) � 0 with equality if and only if z equals

the expected value of X. The following lemma applies Theorem 2.6 to (� + 1)-truncated

Poisson random variables.

Lemma 2.8. Let X1, . . . , Xs be i.i.d. (� + 1)-truncated Poisson random variables with para-

meter Λ. For any z > � + 1, let Tz be the unique solution of

z = Tz · Q(Tz, �)

Q(Tz, � + 1)

and

IΛ(z) =

{
z(logTz − log Λ) − Tz + Λ − logQ(Tz, � + 1) + logQ(Λ, � + 1) if z > � + 1,

log(� + 1)! − (� + 1) log Λ + Λ + logQ(Λ, � + 1) if z = � + 1.

(2.1)

Then IΛ(z) is continuous for all z > � + 1 and right continuous at z = � + 1. Furthermore,

it is convex. It has a unique minimum at

z = μ = Λ · Q(Λ, �)

Q(Λ, � + 1)
,

where IΛ(μ) = 0. Moreover, uniformly for any z such that � + 1 � z � μ, we have as s → ∞

P

( s∑
i=1

Xi � sz

)
� exp(−sIΛ(z)(1 + o(1))).

Proof. We shall first determine c(t) = log E(etX), where X is an (� + 1)-truncated Poisson

random variable with parameter Λ. We note that

exp(c(t)) =

∑
j��+1e

tj · e−ΛΛj

j!

Q(Λ, � + 1)

= e−Λ · eΛet ·
∑

j��+1
e−Λet (etΛ)j

j!

Q(Λ, � + 1)

= eΛet−Λ · Q(Λet, � + 1)

Q(Λ, � + 1)
.
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Differentiating zt − c(t) with respect to t, we obtain

(zt − c(t))′ = z − log

(
eΛet−Λ · Q(Λet, � + 1)

Q(Λ, � + 1)

)′

= z − Λet − (logQ(Λet, � + 1))′

= z − Λet +
Λet · (Q(Λet, � + 1) − Q(Λet, �))

Q(Λet, � + 1)
.

Substituting T = Λet, we get

(zt − c(t))′ = z − T +
T · (Q(T , � + 1) − Q(T , �))

Q(T , � + 1)

= z − T · Q(T , �)

Q(T , � + 1)
.

Setting this expression to zero and solving for T gives the value of Tz as in the statement

of the lemma. The uniqueness of the solution for z > � + 1 follows from the fact that the

function

x · Q(x, �)

Q(x, � + 1)

is strictly increasing with respect to x (see Claim 3.14) and, as x approaches 0, it tends to

� + 1. Letting tz be such that Tz = Λetz , we obtain

−c(tz) = −Tz − logQ(Tz, � + 1) + Λ + logQ(Λ, � + 1)

and

tzz = z(logTz − log Λ).

The function −c(t) is concave with respect to t, by Proposition 2.7, and therefore the

addition of the linear term zt does preserve concavity. So tz is the point where the unique

maximum of zt − c(t) is attained over t ∈ R. Combining the above we obtain IΛ(z) as

stated in the lemma. For

z =
ΛQ(Λ, �)

Q(Λ, � + 1)

we have Tz = Λ, which yields IΛ(μ) = 0. As far as IΛ(� + 1) is concerned, note that strictly

speaking this is not defined, as there is no positive solution of the equation

� + 1 = T · Q(T , �)

Q(T , � + 1)
.

We will express IΛ(� + 1) as a limit as T → 0 from the right, and show that

P

( s∑
i=1

Xi � s(� + 1)

)
= exp(−sIΛ(� + 1)).

We define

IΛ(� + 1) := lim
T→0+

((� + 1) logT − T − logQ(T , � + 1))

− (� + 1) log Λ + Λ + logQ(Λ, � + 1).
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But

lim
T→0+

((� + 1) logT − T − logQ(T , � + 1)) = lim
T→0+

log
T�+1

eTQ(T , � + 1)

= lim
T→0+

log
T�+1

T�+1

(�+1)!
+ T�+2

(�+2)!
+ · · ·

= lim
T→0+

log
1

1
(�+1)!

+ T
(�+2)!

+ · · ·

= log(� + 1)!,

and therefore

IΛ(� + 1) = log(� + 1)! − (� + 1) log Λ + Λ + logQ(Λ, � + 1).

On the other hand, the independence of the Xi guarantees that

P

( s∑
i=1

Xi � s(� + 1)

)
= [P(X1 = � + 1)]s =

( e−ΛΛ�+1

(�+1)!

Q(Λ, � + 1)

)s

= exp(−sIΛ(� + 1)).

Also, according to Theorem 2.6 the function IΛ(z) is non-negative and convex on its

domain. So if z � μ then inf{IΛ(x) : x � z} = IΛ(z), and the second part of the lemma

follows.

Theorem II.3.3 in [6] along with the above lemma then implies the following corollary.

Corollary 2.9. Let X1, . . . , Xs be i.i.d. (� + 1)-truncated Poisson random variables with para-

meter Λ and set μ = E(X1). For any ε > 0 there exists a constant C = C(ε) > 0 such that,

for any s sufficiently large,

P

(∣∣∣∣ s∑
i=1

Xi − sμ

∣∣∣∣ � sε

)
� e−Cs.

With the above results in hand we are ready to prove the following corollary about the

density of the (� + 1)-core.

Corollary 2.10. Let Ñ�+1 and M̃�+1 denote the number of vertices and edges in the (� + 1)-

core of H̃n,p,k . Also let ck = p
(
n−1
k−1

)
. Then, for any 0 < δ < 1, with probability 1 − n−ω(1),

Ñ�+1 = Q(ξ, � + 1)n ± δn, (2.2)

M̃�+1 =
ξQ(ξ, �)

kQ(ξ, � + 1)
Ñ�+1 ± δn, (2.3)

where ξ := x̄ck and x̄ is the largest solution of the equation x = Q(xck, �)k−1.

Proof. The statement about Ñ�+1 follows immediately from the first part of Theorem 2.5.

To see the second statement, we condition on certain values of Ñ�+1 and Λc,k,� that lie in

the intervals stated in Theorem 2.5. In particular, we can assume that the total degree of
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the core of H̃n,p,k is the sum of independent (� + 1)-truncated Poisson random variables

d1, . . . , dÑ�+1
with parameter Λc,k,� = ξ + β for |β| < δ2. Let D be the sum of the di. For

any ε > 0 and a constant C(ε) > 0, Corollary 2.9 yields

P(|D − E(D)| � εÑ�+1) � e−C(ε)Ñ�+1 .

Note that

E(D) =
Λc,k,�Q(Λc,k,�, �)

Q(Λc,k,�, � + 1)
.

The claim then follows by choosing ε, δ sufficiently small and from the continuity of the

above expression as a function of Λc,k,�.

We proceed with the proof of Theorem 2.1, that is, we will show that the (� + 1)-core

of H̃n,p,k has density at least � if p = ck/
(
n−1
k−1

)
and c > c∗

k,�.

Proof of Theorem 2.1. Let 0 < δ < 1, and let Ñ�+1 and M̃�+1 denote the number of

vertices and edges in the (� + 1)-core of H̃n,p,k . Applying Corollary 2.10, we obtain that

with probability 1 − n−ω(1)

Ñ�+1 = Q(ξ, � + 1)n ± δn and M̃�+1 =
ξQ(ξ, �)

kQ(ξ, � + 1)
Ñ�+1 ± δn,

where ξ = x̄ck and x̄ is the largest solution of the equation x = Q(xck, �)k−1. The value

of c∗
k,� is obtained by taking M̃�+1 = �Ñ�+1, and ignoring the additive error terms. The

above values imply that the critical ξ∗ is given by the equation

ξ∗ Q(ξ∗, �)

kQ(ξ∗, � + 1)
= � =⇒ k� = ξ∗ Q(ξ∗, �)

Q(ξ∗, � + 1)
. (2.4)

This is identical to (1.1). So the product k� determines ξ∗ and x̄ satisfies

x̄ = Q(x̄ck, �)k−1 = Q(ξ∗, �)k−1.

Therefore, the critical density is

c∗
k,� =

ξ∗

x̄k
=

ξ∗

kQ(ξ∗, �)k−1
. (2.5)

The above calculations imply that uniformly for any 0 < δ < 1, with probability 1 − o(1),

M̃�+1

Ñ�+1

=
1

k

ξQ(ξ, �)

Q(ξ, � + 1)
± Θ(δ).

In particular, if c = c∗
k,�, then M̃�+1/Ñ�+1 = � ± Θ(δ). To complete the proof it is therefore

sufficient to show that the ratio

ξQ(ξ, �)

Q(ξ, � + 1)

is an increasing function of c. Note that this is the expected value of an (� + 1)-truncated

Poisson random variable with parameter ξ, which is increasing in ξ (see Corollary 3.15).

Recall that ξ = x̄ck. We conclude the proof by showing the following claim.
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Claim 2.11. The quantity ξ = x̄ck is increasing with respect to c. So, for some fixed c, with

probability 1 − o(1)

M̃�+1

Ñ�+1

< � if c < c∗
k,� and

M̃�+1

Ñ�+1

> � if c > c∗
k,�.

Indeed, recall that x̄ satisfies x̄ = Q(x̄ck, �)k−1. Equivalently, x̄ck = ck · Q(x̄ck, �)k−1. We

have

ck =
ξ

Q(ξ, �)k−1
. (2.6)

The derivative of the function F(ξ) := ξ/Q(ξ, �)k−1 with respect to ξ is given by

Q(ξ, �)−k
(
Q(ξ, �) − (k − 1)ξ · P(Po(ξ) = � − 1)

)
.

An easy calculation shows that F ′(ξ) is positive when ξ satisfies the inequality∑
i��

ξi−�

i!
>

k

(� − 1)!
,

and negative otherwise. We therefore conclude that F(ξ) is a convex function. Moreover,

by the assumption in Theorem 2.5 we have ck > minx>0(x/Q(x, �)k−1). This implies that

the function ξ · Q(ξ, �)−(k−1) is strictly increasing in the domain of interest. Note that

by (2.6) the first derivative of ξ with respect to c is given by k/F ′(ξ), which is positive by

the above discussion, thus proving our claim.

3. Proof of Theorem 2.2

Let us begin by introducing some notation. For a hypergraph H we will let VH denote

its vertex set and EH its set of edges. Further, we write vH = |VH | and eH = |VH |. For

U ⊂ VH we let vU, eU denote the number of vertices in U and the number of edges joining

vertices only in U. Finally, dU is the total degree in U, that is, the sum of the degrees in

H of all vertices in U. We say that a subset U of the vertex set of a hypergraph is �-dense

if eU/vU � �. By a maximal �-dense subset we mean that whenever we add a vertex to

such a set, then its density drops below �.

To prove Theorem 2.2 we will show that whenever c < c∗
k,�, the random graph Hn,�cn�,k

does not contain any �-dense subset with probability 1 − o(1). We will accomplish this

by proving that such a hypergraph does not contain any maximal �-dense subset with

probability 1 − o(1). Note that this is sufficient, as any �-dense subset will be contained

in some maximal �-dense subset. We shall use the following property.

Proposition 3.1. Let H be a k-uniform hypergraph with density less than �, and let U be

a maximal �-dense subset of VH . Then there is a 0 � θ < � such that eU = � · vU + θ. Also,

for each vertex v ∈ VH \ U the corresponding degree d in U, that is, the number of edges in

H that contain v and all other vertices only from U, is less than � − θ.
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Proof. If θ � �, then we have eU � � · (vU + 1). Let U ′ = U ∪ {v}, where v is any vertex

in VH \ U. Note that such a vertex always exists, as U �= VH . Let d be the degree of v in

U. Then

eU′

vU′
=

eU + d

vU + 1
� eU

vU + 1
� �,

which contradicts the maximality of U in H . Similarly, if there exists a vertex v ∈ VH \ U

with degree d � � − θ in U, then we could obtain a larger �-dense subset of VH by adding

v to U.

We begin by showing that whenever c < �, the random graph Hn,cn,k does not contain

small maximal �-dense subsets. In particular, the following lemma considers subsets of

size at most 0.6n.

Lemma 3.2. Let c < � and k � 3, � � 2. With probability 1 − o(1), Hn,�cn�,k contains no

maximal �-dense subset with less than 0.6n vertices.

Proof. We first prove the lemma for all k � 3 and � � 2 except for the case (k, �) = (3, 2)

by using a rough first moment argument. The probability that an edge of Hn,cn,k is

contained completely in a subset U of the vertex set is given by(
|U|
k

)/(
n

k

)
�

(
|U|
n

)k

.

Let k/n � u � 0.6, and for x ∈ (0, 1) let H(x) = −x log x − (1 − x) log(1 − x) denote the

entropy function. Then

P(∃�-dense subset with un vertices) �
(
n

un

)
·
(

cn

�un

)
(uk)�un �

(
n

un

)
·
(
�n

�un

)
(uk)�un

� en((�+1)H(u)+k�u log u). (3.1)

We first show that the exponent attains its maximum at u = k/n or u = 0.6. Let umax =

1 − (� + 1)/k�. We note that the second derivative of the exponent in (3.1) equals

(k�(1 − u) − (� + 1))/(u(1 − u)),

which is positive for k � 3, � � 2 and u ∈ (0, umax]. Hence the exponent is convex for

u � umax, implying that it attains a global maximum at u = k/n or at u = (k� − (� + 1))/k�.

Moreover, for any k � 4, � � 2 we have umax > 0.6. The case k = 3 and � � 3 is slightly

more involved. Note that umax � 5/9 in this case. The second derivative of the exponent

is negative for u ∈ (umax, 1), implying that the function is concave in the specified range.

But the first derivative of the exponent is (� + 1) log((1 − u)/u) + 3�(1 + log(u)), which is

at least 2.8� − 0.41 > 0 for u = 0.6. Hence, the exponent is increasing at u = 0.6.

We can now infer that for k = 3, � � 3 and k � 4, � � 2, the exponent is either

maximized at u = k/n or at u = 0.6. Note that for any fixed positive k and � we have

(� + 1)H

(
k

n

)
+

k2�

n
log

(
k

n

)
= − (k2� − (� + 1)k) log n

n
+ O

(
1

n

)
.
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Also, for k � 4 and � � 2 we obtain

(� + 1)H(0.6) + k� · 0.6 log(0.6) � (� + 1)H(0.6) + 4� · 0.6 log(0.6)

� H(0.6) − 0.56� � −0.44,

and for k = 3 and � � 3

(� + 1)H(0.6) + k� · 0.6 log(0.6) � (� + 1)H(0.6) + 3� · 0.6 log(0.6)

� H(0.6) − 0.24� � −0.04.

So the maximum is obtained at u = k/n for n sufficiently large, and we conclude the case

in which (k, �) �= (3, 2) with

P(∃ �-dense subset with � 0.6n vertices) �
0.6∑

u=k/n

n−k2�+(�+1)k = O(n−8).

For the case (k, �) = (3, 2), a counting argument as above involving the 2-dense sets does

not work, and we will use the property that the considered sets are maximal 2-dense.

By (2.5) we obtain c∗
3,2 < 1.97. Let p = c′/

(
n−1

2

)
, where c′ = 3 · c � 3 · c∗

3,2 � 5.91. A simple

application of Stirling’s formula reveals

P(Hn,p,3 has exactly cn edges) = (1 + o(1))(2πcn)−1/2.

Let U be a maximal 2-dense subset of Hn,cn,3. As the distribution of Hn,cn,3 is the same as

the distribution of Hn,p,3 conditioned on the number of edges being precisely cn, we infer

that

P(Hn,cn,3 contains a maximal 2-dense subset U with at most 0.6n vertices) =

O(
√
n) · P(Hn,p,3 contains a maximal 2-dense subset U with at most 0.6n vertices).

To complete the proof it is therefore sufficient to show that the latter probability is

o(n−1/2). By Proposition 3.1 the event that Hn,p,3 contains a maximal 2-dense subset U

implies that there exists a θ ∈ {0, 1} such that eU = 2 · vU + θ and all vertices in VH \ U

have degree less than 2 − θ in U. We will show that the expected number of such sets

with at most 0.6n vertices is o(1). We accomplish this in two steps. Note that if a subset

U is maximal 2-dense, then certainly |U| � 5. Let us begin with the case s := |U| � n1/3.

There are at most ns ways to choose the vertices in U, and at most s3(2s+θ) ways to choose

the edges that are contained in U. Hence, for large n the probability that Hn,p,3 contains

such a subset with at most �n1/3� vertices is bounded by

�n1/3�∑
s=5

1∑
θ=0

nss6s+3θp2s+θ <

�n1/3�∑
s=5

2nss6s+3p2s =

�n1/3�∑
s=5

2

(
ns6

(
c′(
n−1

2

))2)s

· s3

� n

�n1/3�∑
s=5

2(c′2n(1+6/3)−4)s � n

�n1/3�∑
s=5

(n−1+o(1))s = n−4+o(1).

Let us now consider the case n1/3 � |U| � 0.6n. We note that

log p = log

(
c′(
n−1

2

))
= log

2c′

n2
+ Θ

(
1

n

)
.
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Also, there are
(
n
un

)
� enH(u) ways to select U. Moreover, the number of ways to choose

the 2un + θ edges that are completely contained in U is( (
un
3

)
2un + θ

)
�

(
e(un)3

6(2un + θ)

)2un

= exp

{
2un log

(
e(un)2

12

)
+ O(1)

}
.

Finally, the probability that a vertex outside U has a degree less than 2 − θ in |U| is at

most

(1 − p)(
un
2 ) +

(
un

2

)
p(1 − p)(

un
2 )−1 = e−u2c′

(1 + u2c′)(1 + O(1/n)).

Combining the above facts we obtain that the probability Pu that Hn,p,3 contains a maximal

2-dense subset U with 2un vertices is

Pu �
1∑

θ=0

(
n

un

)( (
un
3

)
2un + θ

)
p2un+θ(1 − p)(

un
3 )−2un−θ(e−u2c′

(1 + u2c′)(1 + O(1/n)))(1−u)n

� 2 · exp

{
n

(
H(u) + 2u log

(
eu2n2

12

)
+ 2u log p

)
− p

((
un

3

)
− 2un − 1

)
+ (1 − u)n(−u2c′ + log(1 + u2c′)) + O(1/n)

}
� 2 · exp

{
n

(
H(u) + 2u log

(
ec′u2

6

)
− u3c′

3
+ (1 − u)(−u2c′ + log(1 + u2c′))

)
+ O(1/n)

}
.

If we fix u, the derivative of the exponent with respect to c′ is given by

2u

c′ − u3

3
+ (1 − u)

(
−u2 +

u2

1 + u2c′

)
c′�5.91

� 2u

6
− u3

3
+ (1 − u)

(
−u2 +

u2

1 + 6u2

)
= u

(
1

3
− u2/3 + 6u3 − 4u4

1 + 6u2

)
u�0.6

� u

(
1

3
− 0.29

)
u>0
> 0,

thus implying that for all u ∈ (0, 0.6] the exponent is increasing with respect to c′. Therefore,

it is sufficient to consider only the case when c′ = 5.91.

The derivative of the exponent with respect to u equals

log(c′2u3(1 − u)) + 6 − log 6 − log(1 + u2c′) − (1 − u)
2u3c′2

1 + u2c′

= log(c′u3) +
2u4c′3

1 + u2c′ + log(1 − u) − log(1 + u2c′) − 2u3c′2

1 + u2c′ + 6 − log 6.

As the function

log(c′u3) + 2c′2 · u4

(1 + u2c′)

is increasing and

log(1 − u) − log(1 + u2c′) − 2c′2 · u3

(1 + u2c′)
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is decreasing in u, there is at most one n−2/3 � u0 � 0.6 where the derivative of the exponent

vanishes. Moreover the derivative of the exponent at u = 0.6 is positive. Therefore, u0

is a global minimum, and the bound on Pu is maximized at either u = n−2/3 or u = 0.6.

Elementary algebra then yields that the left point is the right choice, giving the estimate

Pu = o(2−n1/3
), and the proof concludes by adding up this expression for all admissible

n−2/3 � u � 0.6.

In order to deal with larger subsets we switch to the Poisson cloning model. Let C

denote the (� + 1)-core of H̃n,p,k , where p = ck/
(
n−1
k−1

)
, and note that Theorem 2.4 and

Proposition 2.3 guarantee that H̃n,p,k and Hn,cn,k are sufficiently similar. Observe that any

minimal �-dense set in H̃n,p,k is always a subset of C , as otherwise, by removing vertices of

degree at most �, the density would not decrease. In other words, C contains all minimal

�-dense subsets, and so it is enough to show that the core does not contain any �-dense

subset. Therefore, from now on we will restrict our attention to the study of C .

Assume that the degree sequence of C is given by d = (d1, . . . , dÑ�+1
), where again we let

Ñ�+1 denote the number of vertices in C . The number of edges in C is

M̃�+1 = k−1

Ñ�+1∑
i=1

di.

For q, β ∈ [0, 1], let

Xq,β = Xq,β(C) = Xq,β(d)

denote the number of subsets of C with �βÑ�+1� vertices and total degree �qkM̃�+1�.

Let ξ∗ = x̄∗c∗
k,� k, where x̄∗ is the largest solution of the equation x = Q(xc∗

k,�k, �)k−1,

and note that ξ∗ satisfies (2.4). Moreover, let ξ be given by ξ = x̄ck, where x̄ is the

largest solution of the equation x = Q(xck, �)k−1. As ξ is increasing with respect to c (see

Claim 2.11), there exists a δ > 0 and a γ = γ(δ) > 0 such that c = c∗
k,� − γ and ξ = ξ∗ − δ.

Also, γ → 0 as δ → 0 by continuity of the largest solution of x = Q(xck, �)k−1.

We will assume that δ > 0 is fixed (and sufficiently small for all our estimates to hold),

and we will choose c < c∗
k,� such that c = c∗

k,� − γ and ξ = ξ∗ − δ. Set

n�+1 = Q(ξ, � + 1)n and m�+1 =
ξQ(ξ, �)

kQ(ξ, � + 1)
n�+1. (3.2)

By applying Corollary 2.10 (and using δ3 instead of δ) we obtain that with probability

1 − n−ω(1)

Ñ�+1 = n�+1 ± δ3n and M̃�+1 = m�+1 ± δ3n. (3.3)

Moreover, by applying Theorem 2.5 we infer that C is distributed like the cloning model

with parameters Ñ�+1 and vertex degree distribution Po��+1(Λc,k,�), where

Λc,k,� = ξ ± δ3 = ξ∗ − δ ± δ3. (3.4)
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Recall that the definition of ξ∗ implies that

k� =
ξ∗Q(ξ∗, �)

Q(ξ∗, � + 1)
.

Let ek,� denote the value of the first derivative of

xQ(x, �)

k�Q(x, � + 1)

with respect to x at x = ξ∗. By applying Taylor’s theorem to

xQ(x, �)

Q(x, � + 1)

around x = ξ∗, we obtain

m�+1 = (1 − ek,� · δ + Θ(δ2))� · n�+1, where
ξQ(ξ, �)

Q(ξ, � + 1)
= k�(1 − ek,� · δ + Θ(δ2)). (3.5)

Recall that Hd,k is a random hypergraph where the ith vertex has degree di. We start

by bounding the probability that a given subset of the vertices in Hd,k is maximal �-dense.

In particular, we will work on stage 3 of the exposure process, that is, when the number

of vertices and degree sequence of the core have already been exposed. We will show the

following.

Lemma 3.3. Let k � 3, � � 2 and d = (d1, . . . , dN) be a degree sequence and U ⊆ {1, . . . , N}
such that |U| = �βN�. Moreover, set M = k−1

∑N
i=1 di and q = (kM)−1

∑
i∈U di. Assume that

M < � · N. If Pd,k denotes the probability measure on the space of k-uniform hypergraphs

with degree sequence given by d, B(β, q) denotes the event that U is a maximal �-dense set

in Hd,k , and H(x) = −x log x − (1 − x) log(1 − x) denotes the entropy function, then

Pd,k(B(β, q)) � O(M�+0.5)

(
M

�|U|

)
e−kMH(q)(2k − 1)M−�|U|.

Proof. Recall that Hd,k is obtained by beginning with di clones for each 1 � i � N and

by choosing uniformly at random a perfect k-matching on this set of clones. This is

equivalent to throwing kM balls into M bins such that every bin contains k balls. In

order to estimate the probability for B(β, q), assume that we colour the kqM clones of

the vertices in U red, and the remaining k(1 − q)M clones blue. Let θ be an integer such

that 0 � θ < �. So, by applying Proposition 3.1 we are interested in the probability of the

event that there are exactly Bθ = �|U| + θ bins with k red balls. We estimate the above

probability as follows. We begin by putting into each bin k black balls, labelled with the

numbers 1, . . . , k. Let K = {1, . . . , k}, and let X1, . . . , XM be independent random sets such

that for 1 � i � M

∀K′ ⊆ K : P(Xi = K′) = q|K′ |(1 − q)k−|K′ |.

Note that |Xi| follows the binomial distribution Bin(k, q). We then recolour the balls in

the ith bin that are in Xi with red, and all others with blue. So, the total number of red
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balls is X =
∑M

i=1 |Xi|. Note that E(X) = kqM, and that X is distributed as Bin(kM, q). A

straightforward application of Stirling’s formula then gives

P(X = kqM) = P(X = E(X)) = (1 + o(1))(2πq(1 − q)kM)−1/2.

Let Rj be the number of Xi that contain j elements. Then

Pd,k(B(β, q)) �
�−1∑
θ=0

P(Rk = Bθ|X = kqM) =

�−1∑
θ=0

P(X = kqM ∧ Rk = Bθ)

P(X = kqM)

= O(
√
M)

�−1∑
θ=0

P(X = kqM ∧ Rk = Bθ). (3.6)

Let

pj = P(|Xi| = j) =

(
k

j

)
qj(1 − q)k−j .

Moreover, define the set of integer sequences

A =

{
(b0, . . . , bk−1) ∈ N

k :

k−1∑
j=0

bj = M − Bθ and

k−1∑
j=0

jbj = kqM − kBθ

}
.

Then

P(X = kqM ∧ Rk = Bθ) �
�−1∑
θ=0

∑
(b0 ,...,bk−1)∈A

(
M

b0, . . . , bk−1, Bθ

)
·
(k−1∏

j=0

p
bj
j

)
· pBθ

k .

Now observe that the summand can be rewritten as(
M

Bθ

)
qkqM(1 − q)k(1−q)M ·

(
M − Bθ

b0, . . . , bk−1

) k−1∏
j=0

(
k

j

)bj

.

Also, ∑
(b0 ,...,bk−1)∈A

(
M − Bθ

b0, . . . , bk−1

) k−1∏
j=0

(
k

j

)bj

�
( k−1∑

j=0

(
k

j

))M−Bθ

= (2k − 1)M−Bθ .

Thus, we have

P(X = kqM ∧ Rk = Bθ) �
�−1∑
θ=0

(
M

Bθ

)
qkqM(1 − q)k(1−q)M(2k − 1)M−Bθ

�
�−1∑
θ=0

Mθ

(
M

�|U|

)
e−kMH(q)(2k − 1)M−�|U| · (2k − 1)−θ

� �M�

(
M

�|U|

)
(2k − 1)M−�|U|e−kMH(q).

The claim then follows by substituting the above bound into (3.6).

As already mentioned, the above lemma gives us a bound on the probability that a

subset of the (� + 1)-core with a given number of vertices and total degree is maximal
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�-dense, assuming that the degree sequence is given. In particular, we work on the

probability space of stage 3 of the exposure process. In order to show that the (� + 1)-

core contains no �-dense subset, we will estimate the number of such subsets. Recall that

Xq,β(d) denotes the number of subsets of Hd,k with �βÑ�+1� vertices and total degree

�q · kM̃�+1�. Also, let X(�)
q,β denote the number of these sets that are maximal �-dense. As

an immediate consequence of Markov’s inequality we obtain the following corollary.

Corollary 3.4. Let B(q, β) be defined as in Lemma 3.3, and let d be the degree sequence of

the core of H̃n,p,k . Then

P
(
X

(�)
q,β > 0 | d

)
� Xq,β(d)Pd,k(B(q, β)).

By applying Lemma 3.2 we obtain that Hn,cn,k does not obtain any �-dense set with

less that 0.6n vertices. In particular, this is also true for C , and so it remains to prove

Theorem 2.2 for sets of size bigger than 0.6n � 0.6Ñ�+1. We also observe that it is sufficient

to argue about subsets of size up to, say, (1 − ek,�δ/2)Ñ�+1, as (3.5) implies that for small

δ all larger subsets have density smaller than �. Moreover, the total degree D of any

�-dense subset with βÑ�+1 vertices is at least k� · βÑ�+1, that is,

D = k · qM̃�+1 ⇒ k� · βÑ�+1 � k · qM̃�+1.

By (3.3) and (3.5) we infer M̃�+1 = �(1 − Θ(δ)). Combined with the above inequality this

implies that q � (1 + Θ(δ))β. Note that as each of the vertices in C has degree at least

� + 1, the total degree of the (� + 1)-core with a �-dense subset with βÑ�+1 vertices and

degree q · kM̃�+1 satisfies

kM̃�+1 � q · kM̃�+1 + (� + 1)(Ñ�+1 − βÑ�+1)

⇒ q � 1 − (� + 1)(1 − β)Ñ�+1

kM̃�+1

(3.3),(3.5)

� 1 − (� + 1)(1 − β)

k�
,

where the last inequality holds for any sufficiently small δ. Therefore, we fix β and q as

follows:

0.6 � β < 1 − ek,�δ/2 and �(1 + Θ(δ))β � q � 1 − (� + 1)(1 − β)

k�
. (3.7)

With Lemma 3.3 and Corollary 3.4 in hand, we are ready to show the following.

Lemma 3.5. Let m�+1 and n�+1 be as defined in (3.2) and let E be the event that (3.3)

holds. Then

P
(
X

(�)
q,β > 0

)
� E(Xq,β |E)(2k − 1)m�+1−�βn�+1 · e�n�+1H(β)−km�+1H(q)+O(δ3n) + O(n−3).

Proof. Let E1 be the event that Xq,β � n3
E(Xq,β | E). Markov’s inequality immediately

implies that P(E1 | E) � 1 − n−3. If �d is a vector, we write �d ∈ {E ∩ E1} to denote that �d is



888 N. Fountoulakis, M. Khosla and K. Panagiotou

a possible degree sequence of C where the events E and E1 are realized. We have

P
(
X

(�)
q,β > 0

)
� P

(
X

(�)
q,β > 0 | E1 ∩ E

)
+ P(E1) + P(E)

=
∑

�d∈{E∩E1}

P
(
X

(�)
q,β > 0 | E1 ∩ E and d =�d

)
· P(d =�d | E1 ∩ E) + O(n−3)

=
∑

�d∈{E∩E1}

P
(
X

(�)
q,β > 0 | d =�d

)
· P(d =�d | E1 ∩ E) + O(n−3).

By applying Corollary 3.4 we infer that

P
(
X

(�)
q,β > 0

)
�

∑
�d∈{E∩E1}

Xq,β(�d)P�d,k
(B(q, β)) · P(d =�d | E1 ∩ E) + O(n−3)

� n3
E(Xq,β | E) ·

∑
�d∈{E∩E1}

P�d,k
(B(q, β))P(d =�d | E1 ∩ E) + O(n−3).

Note that the assumption �d ∈ {E ∩ E1} implies that the number of vertices Ñ�+1 of �d is

n�+1 ± δ3n and the number of edges M̃�+1 is m�+1 ± δ3n, by E . Further note that for

sufficiently small δ,

M̃�+1 � m�+1 + δ3n � (1 − Θ(δ))�n�+1 + δ3n � �Ñ�+1 − Θ(δ)n.

Using Stirling’s formula, we obtain(
M̃�+1

�βÑ�+1

)
<

(
�Ñ�+1

�βÑ�+1

)
= exp(�n�+1H(β) + O(δ3n)).

Thus, applying Lemma 3.3 we obtain uniformly for all �d ∈ {E ∩ E1} that

Pd̄,k(B(q, β)) = (2k − 1)m�+1−βn�+1 · e�n�+1H(β)−km�+1H(q)+O(δ3n).

The claim follows.

The following lemma bounds the expected value of Xq,β conditional on E .

Lemma 3.6. There exists δ0 > 0 such that, whenever δ < δ0,

E(Xq,β | E)

< exp

(
n�+1H(β) − n�+1(1 − β)Iξ∗

(
k�(1 − q)

1 − β

)
+ 0.4 · k�

ξ∗ · n�+1δ + O(δ2n)

)
,

where Iξ∗ is the rate function as defined in (2.1).

Proof. Let t = �βÑ�+1�. Conditional on E there are(
Ñ�+1

t

)
= en�+1H(β)+O(δ3n)

ways to select a set with t vertices. We shall next calculate the probability that one of them

has the claimed property, and the statement will follow from the linearity of expectation.

Let U be a fixed subset of the vertex set of C that has size t. We label the vertices as
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1, . . . , Ñ�+1 so that the vertices which are not in U are indexed from t + 1 to Ñ�+1. Let the

random variable di denote the degree of vertex i. We recall that d1, d2, . . . , dÑ�+1
are i.i.d.

(� + 1)-truncated Poisson variables with parameter Λ = Λc,k,� = ξ ± δ3 and mean

μΛ = Λ
Q(Λ, �)

Q(Λ, � + 1)
.

By Taylor’s expansion of μλ around ξ we obtain

μΛ = ξ
Q(ξ, �)

Q(ξ, � + 1)
± Θ(δ3).

(Here and below, the Landau notation Θ indicates a positive term.) We will calculate

the probability of the event
∑t

i=1 di = qkM̃�+1 conditional on E . This is equivalent to

calculating the probability of the event
∑Ñ�+1

i=t di = k(1 − q)M̃�+1 conditional on E , which

by using (3.2) is the same as the event

Ñ�+1∑
i=t+1

di

Ñ�+1 − t
= ξ

Q(ξ, �)

Q(ξ, � + 1)
· 1 − q

1 − β
± Θ(δ3).

Let us abbreviate:

z = ξ
Q(ξ, �)

Q(ξ, � + 1)
· 1 − q

1 − β
± Θ(δ3).

Using the lower bound of q from (3.7), we obtain

z − μΛ = ξ
Q(ξ, �)

Q(ξ, � + 1)
· β

1 − β
Θ(δ) ± Θ(δ3) > 0.

As IΛ(x) is a non-negative convex function and IΛ(μΛ) = 0, then IΛ(x) is a decreasing

function for x < μΛ. Therefore, by Lemma 2.8,

P

( Ñ�+1∑
i=t+1

di = z(Ñ�+1 − t) | E
)

= exp (−n�+1(1 − β) · IΛ(z)(1 + o(1)))

and

IΛ(z) = z(logTz − log Λ) − Tz + Λ − logQ(Tz, � + 1) + logQ(Λ, � + 1),

where Tz is the unique solution of

z = Tz · Q(Tz, �)

Q(Tz, � + 1)
.

(By Lemma 2.8, the function IΛ(z) is strictly positive for z �= μΛ.) Note that

∂IΛ(z)

∂Λ
= − z

Λ
+ 1 +

e−ΛΛ�/�!

Q(Λ, � + 1)
= − z

Λ
+

Q(Λ, �)

Q(Λ, � + 1)
=

μΛ − z

Λ
.

But recall that Λ = ξ ± δ3 = ξ∗ − δ ± δ3. Using Taylor’s expansion around ξ∗ to write

IΛ(z) in terms of Iξ∗(z), we obtain

IΛ(z) = Iξ∗ (z) −
(
μξ∗ − z

ξ∗

)
(δ ± δ3) ± O(δ2) = Iξ∗(z) − μξ∗

ξ∗ · q − β

1 − β
δ ± O(δ2).
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The last equality holds as

z = μξ∗
1 − q

1 − β
(1 − ek,�δ + Θ(δ2)).

Since β � 0.6 we have q − β < 0.4. Also, μξ∗ = k�. Therefore,

IΛ(z) � Iξ∗(z) − k�

ξ∗ · 0.4

1 − β
δ ± O(δ2). (3.8)

We will now approximate Iξ∗(z) in terms of

Iξ∗

(
k�

1 − q

1 − β

)
.

Note that

∂Iξ∗ (z)

∂z
= logTz − log ξ∗.

By Taylor’s expansion of Iξ∗(z) around

z0 := k�
1 − q

1 − β

we obtain

Iξ∗ (z) = I∗
ξ

(
k�

1 − q

1 − β

)
+ δ · ek,�

(
k�

1 − q

1 − β

)(
log

ξ∗

Tz0

)
± O(δ2). (3.9)

By Claim 3.14 the function μt is increasing with respect to t. This implies that Tz0
< ξ∗

as z0 < k�, whereby log(ξ∗/Tz0
) > 0. Also recall that ek,� denotes the value of the partial

derivative of

1

k�
· tQ(t, �)

Q(t, � + 1)

with respect to t at t = ξ∗. Again, Claim 3.14 implies that this is positive. We therefore

obtain

Iξ∗(z) > Iξ∗

(
k�

1 − q

1 − β

)
− Θ(δ2). (3.10)

Combining (3.8), (3.9) and (3.10) we obtain

IΛ(z) > Iξ∗

(
k�

1 − q

1 − β

)
− k�

ξ∗ · 0.4

1 − β
δ − O(δ2).

The proof is then completed by using the fact that P(E) = 1 − n−ω(1).

Lemma 3.5 along with Lemmas 3.3 and 3.6 yield the following estimate.

Corollary 3.7. There exists δ0 > 0 such that, whenever δ < δ0,

P
(
X

(�)
q,β > 0

)
< O(n−3) + F(β, q; �),
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where

F(β, q; �) = (2k − 1)m�+1−�βn�+1

× exp

(
(� + 1)n�+1H(β) − km�+1H(q) − n�+1(1 − β)Iξ∗

(
k�(1 − q)

1 − β

)
+ 0.4 · k�

ξ∗ · n�+1 · δ + O(δ2n)

)
.

Let us abbreviate:

f(β, q) := (� + 1)H(β) + � · (1 − β) log(2k − 1) − k� · H(q) − (1 − β)Iξ∗

(
k�(1 − q)

1 − β

)
.

By using Corollary 3.7 we infer that

1

n�+1
logF(β, q; �) � f(β, q) + ek,� · δ · k�

(
H(q) − log(2k − 1)

k
+

0.4

ek,� · ξ∗

)
+ O(δ2).

We bound the product ek,� · ξ∗, and therefore the function log F(β, q; �), using the following

technical result, whose proof we postpone until later, where we bound f(β, q).

Claim 3.8. Let ek,� be the value of derivative of

xQ(x, �)

k� · Q(x, � + 1)

with respect to x at x = ξ∗. Then ek,� · ξ∗ > 0.77.

By the above claim, ek,� > 0.77/ξ∗. So

1

n�+1
logF(β, q; �) � f(β, q) + ek,� · δ · k�

(
H(q) − log(2k − 1)

k
+ 0.52

)
+ O(δ2). (3.11)

We will now prove the main tool for the proof of Theorem 2.2.

Lemma 3.9. There exists δ̂ = δ̂(k, �) > 0 such that if 0 < δ < δ̂ the following holds. With

probability 1 − n−ω(1), for any 0.6 � β < 1 − ek,�δ/2 and β < q � 1 − (� + 1)(1 − β)/k�, we

have X
(�)
q,β = 0.

Proof of Theorem 2.2. First, note that it is enough to argue that with probability

1 − o(1) the (� + 1)-core does not contain any maximal �-dense subset; this follows

from the discussion after Lemma 3.2. Moreover, by Theorem 2.4 and Proposition 2.3,

it is enough to consider the (� + 1)-core C of H̃n,p,k , where p = ck/
(
n−1
k−1

)
. The proof is

completed by applying Lemma 3.9, as we can choose δ > 0 as small as we please.

To deduce Lemma 3.9 our main tool is the following assertion.

Claim 3.10. For any k � 3 and � � 2, there exists C > 0 such that for any ε < 1/e the

following holds. For any 0.6 < β � 1 − ε, and q as in Lemma 3.9, we have

f(β, q) � −Cε.
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Proof of Lemma 3.9. We show that for δ small enough the rest of the right-hand

side of (3.11) is negative. First, let δ1 = δ1(k, �) be such that for any δ < δ1 we have

1 − ek,�δ/2 > 0.999. We will consider a case distinction according to the value of q.

If q < 0.99, then β < 0.99 as well, and Claim 3.10 implies that f(β, q) � −0.01 · C , where

C > 0 depends on k and �. Then let δ2 = δ2(k, �) > 0 be such that for δ < δ2, we have

ek,� · δ · k�
(
H(0.6) − log(2k − 1)

k
+ 0.52

)
+ O(δ2) < 0.005 · C.

Here recall that β � 0.6. So for any δ < min{δ0, δ1, δ2}, (3.11) implies that

1

n�+1
log F(β, q; �) � −0.005 · C.

Assume now that q � 0.99. The monotonicity of the entropy function implies that

H(q) − log(2k − 1)

k
+ 0.52 � H(0.99) − log(2k − 1)

k
+ 0.52

k�3
< −0.072.

Now with 0.6 � β � 1 − ek,� · δ/2 as in Lemma 3.9, the bound of Claim 3.10 substituted

in (3.11) yields

1

n�+1
log F(β, q; �) � −Cek,� · δ/2 + O(δ2).

In turn, this is at most −Cek,� · δ/4, if δ < δ3 = δ3(k, �). The above cases imply that if

δ < min{δ0, δ1, δ2, δ3} =: δ̂, then with probability 1 − e−Ω(n�+1) − O(n−3) we have X
(�)
q,β = 0,

for all β and q as in Lemma 3.9.

The rest of the paper is devoted to the (rather technical and analytical) proof of

Claim 3.10 and contains a detailed analysis of the function f. We proceed as follows. We

will fix arbitrarily a β and we will consider f(β, q) solely as a function of q. Then we

will show that if q0 = q0(β) is a point where the partial derivative of f with respect to β

vanishes, then f(β, q0) � −C1ε. Additionally, we will show that this holds for f(β, β) and

f(β, 1 − (� + 1)(1 − β)/k�).

Bounding f(β, q) at its critical points. Let β be fixed. We will evaluate f(β, q) at a point

where the partial derivative with respect to q vanishes. To calculate the partial derivative

with respect to q, we first need to determine the derivative of I(z) with respect to z.

According to Lemma 2.8,

Iξ∗ (z) = z(logTz − log ξ∗) − logQ(Tz, � + 1) − Tz + logQ(ξ∗, � + 1) + ξ∗,

where Tz is the unique solution of

z = Tz · Q(Tz, �)

Q(Tz, � + 1)
.
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Differentiating this with respect to z, we obtain

I ′
ξ∗(z) = logTz − log ξ∗ +

z

Tz

dTz

dz
− dTz

dz
− Q(Tz, �) − Q(Tz, � + 1)

Q(Tz, � + 1)

dTz

dz

= logTz − log ξ∗ +
z

Tz

dTz

dz
− Q(Tz, �)

Q(Tz, � + 1)

dTz

dz

= logTz − log ξ∗. (3.12)

Note that in the differentiation of f we need to differentiate Iξ∗(k�(1 − q)/(1 − β)) with

respect to q. Using (3.12), we obtain

∂Iξ∗
(
k�(1−q)

1−β

)
∂q

= − k�

1 − β
(logHq − log ξ∗),

where Hq is the unique solution of the equation

k�(1 − q)

1 − β
=

Hq · Q(Hq, �)

Q(Hq, � + 1)
.

Observe that the choice of the range of q is such that the left-hand side of the above

equation is at least � + 1. So, Hq is well-defined. Also, an elementary calculation shows

that the derivative of the entropy function, H ′(q), is given by log((1 − q)/q). All the above

facts together yield the derivative of f(β, q) with respect to q:

∂f(β, q)

∂q
= k�

(
− log

(
1 − q

q

)
+ log

Hq

ξ∗

)
.

Therefore, if q0 is a critical point, that is, if

∂f(β, q)

∂q

∣∣∣∣
q=q0

= 0,

then with T0 = Hq0
, q0 satisfies

T0 = ξ∗ 1 − q0

q0
and

k�(1 − q0)

1 − β
=

T0Q(T0, �)

Q(T0, � + 1)
. (3.13)

At this point, we have the main tool that will allow us to evaluate f(β, q0). We will use

(3.13) in order to eliminate T0 and express f(β, q0) solely as a function of q0.

Claim 3.11. For any given β ∈ (0.6, 1), if q0 = q0(β) satisfies (3.13), then

f(β, q0) = log

(
e(�+1)H(β)qk�0

(
(2k − 1)(1 − q0)

q0

)�(1−β)

·
(

(1 − β)(k� − ξ∗)

k�q0 − ξ∗(1 − β)

)1−β)
. (3.14)

Proof. Note that

Iξ∗

(
k�(1 − q0)

1 − β

)
=

k�(1 − q0)

1 − β
log

T0

ξ∗ + log

(
eξ

∗
Q(ξ∗, � + 1)

eT0Q(T0, � + 1)

)
(3.13)
=

k�(1 − q0)

1 − β
log

(
1 − q0

q0

)
+ log

(
eξ

∗
Q(ξ∗, � + 1)

eT0Q(T0, � + 1)

)
.
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Therefore,

−(1 − β)Iξ∗

(
k�(1 − q0)

1 − β

)
= −k�(1 − q0) log

(
1 − q0

q0

)
+ (1 − β) log

(
eT0Q(T0, � + 1)

eξ
∗
Q(ξ, � + 1)

)
= −k�(1 − q0) log(1 − q0) + k� log(q0) − k�q0 log(q0)

+ (1 − β) log

(
eT0Q(T0, � + 1)

eξ
∗
Q(ξ, � + 1)

)
.

Also, the definition of the entropy function implies that

−k�H(q0) = k�q0 log(q0) + k�(1 − q0) log(1 − q0).

Thus

−(1 − β)Iξ∗

(
k�(1 − q0)

1 − β

)
− k�H(q0) = log

(
qk�0

(
eT0Q(T0, � + 1)

eξQ(ξ∗, � + 1)

)1−β)
. (3.15)

Let

z0 :=
k�(1 − q0)

1 − β
.

Now we will express eT0Q(T0, � + 1) as a rational function of T0 and z0. Solving (3.13)

with respect to eT0Q(T0, � + 1) yields

eT0Q(T0, � + 1) = eT0
T0Q(T0, �)

z0
=

eT0T0

z0

(
Q(T0, � + 1) + e−T0

T0
�

�!

)
.

Therefore,

eT0Q(T0, � + 1) =
T0

�

�!

(
z0

T0
− 1

)−1

.

Note that

z0 − T0 =
k�(1 − q0)

1 − β
− ξ∗(1 − q0)

q0
=

(1 − q0)(k�q0 − ξ∗(1 − β))

(1 − β)q0
.

Thus we obtain

log(eT0Q(T0, � + 1)) = log

(
T0

�+1

(z − T0)�!

)
(3.13)
= log

((
ξ∗(1 − q0)

q0

)�+1

· (1 − β)q0

(1 − q0)(k�q0 − ξ∗(1 − β))�!

)
= log

(
(ξ∗)�+1

�!

(
1 − q0

q0

)�

· 1 − β

k�q0 − ξ∗(1 − β)

)
.

Also, by definition of ξ∗ we have

k =
ξ∗Q(ξ∗, �)

�Q(ξ∗, � + 1)
,

which is equivalent to

k� = ξ∗
(

1 + e−ξ∗
(ξ∗)�/�!

Q(ξ∗, � + 1)

)
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and implies

eξ
∗
Q(ξ∗, � + 1) =

(ξ∗)�+1/�!

k� − ξ∗ .

Substituting this into (3.15) and adding the remaining terms, we obtain (3.14).

We will now treat q0 as a free variable lying in the interval containing q, and we will

study f(β, q0) for a fixed β as a function of q0. In particular, we will show that for any

fixed β in the domain of interest, f(β, q0) is increasing. Thereafter, we will evaluate f(β, q0)

at the largest possible value that q0 can take, which is

1 − (� + 1)(1 − β)

k�
,

and show that this value is negative.

Claim 3.12. For any k � 3, � � 2 and for any β > 0.6, we have ∂f(β, q0)/∂q0 > 0.

Proof. The partial derivative of f(β, q0) with respect to q0 is

∂f(β, q0)

∂q0
=

k�

q0
− �

1 − β

1 − q0
− �

1 − β

q0
− k�(1 − β)

k�q0 − ξ∗(1 − β)
.

Since

q0 � 1 − (� + 1)(1 − β)

k�
,

we obtain

− 1 − β

1 − q0
� − k�

� + 1
.

Also, q0 � β and ξ < k�. Therefore,

k�q0 − ξ(1 − β) > k�β − k�(1 − β) = 2βk� − k� = k�(2β − 1).

Substituting these bounds into

∂f(β, q0)

∂q0

yields

∂f(β, q0)

∂q0
>

k�

q0
− k�2

� + 1
− �(1 − β)

q0
− 1 − β

2β − 1
=

k� − �(1 − β)

q0
− k�2

� + 1
− 1 − β

2β − 1

� k�
k� − �(1 − β)

k� − (� + 1)(1 − β)
− k�2

� + 1
− 1 − β

2β − 1
� k

(
� − �2

� + 1
− 1 − β

k(2β − 1)

)
= k

(
�

� + 1
− 1 − β

k(2β − 1)

)
.

But

�

� + 1
>

1 − β

k(2β − 1)
,
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as k�(2β − 1) > (� + 1)(1 − β), which is equivalent to β > (k� + � + 1)/(2k� + � + 1).

Elementary algebra then yields that (k� + � + 1)/(2k� + � + 1) is a decreasing function in

k and �. In particular, its maximum is 0.6 for k = 3 and � = 2. Since β > 0.6, the above

holds.

We begin by setting

q0 := 1 − (� + 1)(1 − β)

k�

into f(β, q0) and obtain a function which depends only on β, namely

h(β) := log

(
β−(�+1)β ·

((
(2k − 1)(� + 1)

k� − (� + 1)(1 − β)

)�
k� − ξ∗

k� − (1 + � + ξ∗)(1 − β)

)1−β

×
(

1 − (� + 1)(1 − β)

k�

)k�)
.

Bounding f(β, q) globally. To conclude the proof of Claim 3.10 it suffices to show that

there exist ε0 and C > 0 such that for any ε < ε0 the following bounds hold:

h(β), f(β, 1 − (� + 1)(1 − β)/k�), f(β, β) � −Cε, (3.16)

for all 0.6 � β � 1 − ε. These three inequalities will be shown in Claims 3.17, 3.18 and 3.19,

respectively. We will first compute bounds for ξ∗ which we will require to bound the above

functions. We start by proving two technical results, where we obtain bounds on k� − ξ∗

and ek,� · ξ∗, respectively. One of them (Claim 3.8) was also used in the proof of (3.11).

Claim 3.13. Let k � 3, � � 2 and let ξ∗ satisfy (2.4). Then ξ∗ > k� − 0.36. Moreover, k� −
ξ∗ < 0.19 for k = 3, � � 4 and k � 4, � � 2.

Proof. Recall that

k� =
ξ∗Q(ξ∗, �)

Q(ξ∗, � + 1)
.

By definition we have

k�

ξ∗ =
Q(ξ∗, �)

Q(ξ∗, � + 1)
= 1 +

P(Po(ξ∗) = �)

Q(ξ∗, � + 1)
= 1 +

1∑
i�1

(ξ∗)i

(�+1)...(�+i)

. (3.17)

Let

S :=
∑
i�1

(ξ∗)i

(� + 1) . . . (� + i)
and Si :=

(ξ∗)i

(� + 1) . . . (� + i)
.

Substituting

ξ∗ =
k�

1 + 1/S ,



The Multiple-Orientability Thresholds for Random Hypergraphs 897

we obtain

Si =

(
1

1+1/S
)i(

1
k

+ 1
k�

)
. . .

(
1
k

+ i
k�

) . (3.18)

By (3.18) we have

S > S1 =
k� · S

S+1

� + 1
=⇒ S >

k�

� + 1
− 1 � 1. (3.19)

So

ξ∗ =
k�

1 + 1/S >
k�

2

and thus ξ∗ � 3�/2. Therefore we obtain

S >
k�/2

� + 1
+

(k�/2)2

(� + 1)(� + 2)
+

(k�/2)3

(� + 1)(� + 2)(� + 3)
.

The right-hand side is increasing in k and �. Therefore, substituting k = 3 and � = 2 we

obtain S > 2.2, implying that

ξ∗ > (11/16)k� � (33/16)�. (3.20)

In order to improve the bound upon k� − ξ∗, we use the fact that k� − ξ∗ = ξ∗/S , and

show that S/ξ∗ > 1. We obtain

S
ξ∗ =

∑
i�1

(ξ∗)i−1

(� + 1) . . . (� + i)
=

1

� + 1

(∑
i��

(ξ∗)i−1

(� + 2) . . . (� + i)
+

∑
i��+1

(ξ∗)i−1

(� + 2) . . . (� + i)

)
(3.20)
>

1

� + 1

(
� +

∑
i��+1

(2�)i−1

(� + 2) . . . (� + i)

)
.

For � � 3 observe that the term for i = � + 1 is

(2�)i−1

(� + 2)(� + 3) . . . (2� + 1)
>

2� · 2�

(2� − 1)(2� + 1)
> 1.

For � = 2 we have∑
i��+1

(2�)i−1

(� + 2) . . . (� + i)
>

5∑
i=3

43

(2 + i)(2 + i − 1) . . . 5
> 1.

By (3.17), we have

k� − ξ∗ =
1∑

i�1
(ξ∗)i−1

(�+1)...(�+i)

,

and so

1

k� − ξ∗ >
∑
i��+1

(ξ∗)i−1

(� + 1) . . . (� + i)
>

∑
i��+1

(k� − 1)i−1

(� + 1) . . . (� + i)
.
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Let

Si(k, �) =
(k� − 1)i−1

(� + 1) . . . (� + i)
.

Clearly Si(k, �) is increasing with respect to k. Taking the derivative with respect to �, we

obtain that

∂

∂�
Si(k, �) = Si(k, �)

(
k(i − 1)

k� − 1
−

i∑
j=1

1

� + j

)

> Si(k, �)

(
i − 1

�
−

i∑
j=1

1

� + j

)
=

Si(k, �)

�

( i∑
j=1

j

� + j
− 1

)

>
Si(k, �)

�

(
i − 1

� + i − 1
+

i

� + i
− 1

)
i��+1
>

Si(k, �)

�

(
1

2
+

� + 1

2� + 1
− 1

)
> 0.

Therefore, for all i � � + 1, Si(k, �) increases with respect to �. We have

1∑
i��+1 Si(3, 3)

<
1∑12

i=4 Si(3, 3)
< 0.34,

1∑
i�4 Si(3, 4)

<
1∑14

i=4 Si(3, 4)
< 0.15,

and

1∑
i�3 Si(4, 2)

<
1∑13

i=3 Si(4, 2)
< 0.19.

For the case (k, �) = (3, 2) we compute ξ∗ using its definition which gives us k� − ξ∗ < 0.36

for this case.

We are now ready to bound ek,� · ξ∗.

Proof of Claim 3.8. We write

xQ(x, �)

Q(x, � + 1)
=

x(Q(x, � + 1) + P(Po(x) = �))

Q(x, � + 1)
= x +

1
�!

1
(�+1)!

+ x
(�+2)!

+ x2

(�+3)!
+ · · ·

.

By definition,

ek,� · k� = 1 − 1

�!

1
(�+2)!

+ 2ξ∗

(�+3)!
+ 3ξ∗2

(�+4)!
+ · · ·(

1
(�+1)!

+ ξ∗

(�+2)!
+ ξ∗2

(�+3)!
+ · · ·

)2

= 1 − (k� − ξ∗) ·
1

(�+2)!
+ 2ξ∗

(�+3)!
+ 3ξ∗2

(�+4)!
+ · · ·

1
(�+1)!

+ ξ∗

(�+2)!
+ ξ∗2

(�+3)!
+ · · ·

= 1 − (k� − ξ∗) ·
(

1 −
�+1

(�+2)!
+ (�+1)ξ∗

(�+3)!
+ (�+1)ξ∗2

(�+4)!
+ · · ·

1
(�+1)!

+ ξ∗

(�+2)!
+ ξ∗2

(�+3)!
+ · · ·

)
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= 1 − (k� − ξ∗) ·
(

1 − � + 1

ξ∗ ·
(

1 −
1

(�+1)!

1(� + 1)! + ξ∗

(�+2)!
+ ξ∗2

(�+3)!
+ · · ·

))

= 1 − (k� − ξ∗)

(
1 − � + 1

ξ∗ +
k� − ξ∗

ξ∗

)
= 1 − (k� − ξ∗)

(
−� + 1

ξ∗ +
k�

ξ∗

)
.

Thus,

ek,� =
1

k�
− k� − ξ∗

k�

(
−� + 1

ξ∗ +
k�

ξ∗

)
=

1

k�
+

� + 1

ξ∗ − � + 1

k�
− k� − ξ∗

ξ∗

=
1

ξ∗

(
1 − (k� − ξ∗) +

k� − ξ∗

k

)
.

By Claim 3.13 we have k� − ξ∗ > 0.36 for k = 3 and � � 2. Plugging this value into the

above equation, we obtain that for k = 3, ek,� > 0.77/ξ∗. For other values of k and � we

use

ek,� · ξ∗ > 1 − (k� − ξ∗).

which by the second part of Claim 3.13 is at least 0.81.

Claim 3.14. For every t � 1, the function x �→ xQ(x, t − 1)/Q(x, t) is increasing for x > 0.

Proof. Set

gt(x) :=
1

(t − 1)!
· 1

1
t!

+ x
(t+1)!

+ x2

(t+2)!
+ · · ·

.

Then

xQ(x, t − 1)

Q(x, t)
=

x(Q(x, t) + P(Po(x) = t − 1))

Q(x, t)
= x + gt(x).

To see the claim it thus suffices to show that

−g′
t(x) < 1.

But

−g′
t(x) =

1

(t − 1)!

1
(t+1)!

+ 2x
(t+2)!

+ 3x2

(t+3)!
+ · · ·(

1
t!

+ x
(t+1)!

+ x2

(t+2)!
+ · · ·

)2
.

We therefore need to prove that

1

(t − 1)!

(
1

(t + 1)!
+

2x

(t + 2)!
+

3x2

(t + 3)!
+ · · ·

)
<

(
1

t!
+

x

(t + 1)!
+

x2

(t + 2)!
+ · · ·

)2

.

(3.21)
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We compare the coefficients on both sides one by one. Note that

1

(t − 1)!(t + 1)!
<

1

t!2

holds as it is equivalent to
(

2t
t−1

)
<

(
2t
t

)
. Moreover,

2

(t − 1)!(t + 2)!
<

2

t!(t + 1)!
⇔ t < t + 2.

Next, the coefficient of xs for s � 2 on the right-hand side is⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2

�(s−1)/2�∑
i=0

1

(t + i)!(t + s − i)!
+

1(
t + �(s − 1)/2�

)
!2

if s is even,

2

�(s−1)/2�∑
i=0

1

(t + i)!(t + s − i)!
if s is odd.

Note that in any case we have less than s + 1 summands. So it suffices to show that

each one of them is larger than 1/((t − 1)!(t + s + 1)!). This is indeed sufficient as the

coefficient of xs on the left-hand side is equal to (s + 1)/((t − 1)!(t + s + 1)!). But this is

the case, as for any 0 � i � s we have

1

(t − 1)!(t + s + 1)!
<

1

(t + i)!(t + s − i)!
⇔

i∏
j=0

(t + j) <

i∏
j=0

(t + s − j + 1).

This now concludes the proof of the claim.

We immediately obtain the following.

Corollary 3.15. Let k � 3, � � 2 and ξ∗ satisfies (2.4). Then

ξ∗ Q(ξ∗, �)

Q(ξ∗, � + 1)

is increasing with respect to ξ∗.

Claim 3.16. For any k � 3 and � � 2 we have ξ∗ < k� and

ξ∗ > k� − e−k�(k�) · (k� − 0.36)�

�!

(
1 − exp

(
−(k� − � + 0.64)2

2k� − 0.72

))−1

.

Proof. We have

k · � = ξ∗ · Q(ξ∗, �)

Q(ξ∗, � + 1)
.

As

Q(ξ∗, �)

Q(ξ∗, � + 1)
> 1
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for all ξ∗ and �, we deduce that ξ∗ < k�. By Claim 3.13 we know that for all k � 3 and

� � 2, ξ∗ > k� − 0.36. In order to improve upon the above bound, note first that

ξ∗ = k� · Q(ξ∗, � + 1)

Q(ξ∗, �)
= k� − k�

P(Po(ξ∗) = �)

Q(ξ∗, �)
� k� − k�

P(Po(k� − 0.36) = �)

Q(k� − 0.36, �)
. (3.22)

Let X be a Poisson random variable with parameter μ = k� − 0.36. Thus, Q(k� − 0.36, �) =

1 − P(X � � − 1). We define δ = 1 − (� − 1)/μ. Now, for any t < 0 we have

P(X � � − 1) = P(X � (1 − δ)μ) = P(etX � et(1−δ)μ)

� E(etX)

et(1−δ)μ
=

exp(−μ + μ · et)
exp(t(1 − δ)μ)

.

Setting t = log(� − 1) − log(μ), we have

P(X � � − 1) <

(
e−δ

(1 − δ)(1−δ)

)μ

< exp

(
−(μ − � + 1)2

2μ

)
. (3.23)

The combination of (3.22) and (3.23) leads us to the stated lower bound.

In what follows we use the definition

t(k, �) :=

(
1 − 0.36

k�

)�(
1 − exp

(
−(k� − � + 0.64)2

2k� − 0.72

))−1

.

We are now ready to deduce the inequalities in (3.16), starting with a bound on h(β).

Claim 3.17. For any k � 3 and � � 2 there exists C1 > 0 such that, for any 0 < ε < 1 and

any 0.6 � β � 1 − ε, we have h(β) � −C1ε.

Proof. By Claim 3.16, we have

k� − t(k, �) · e
−k�(k�)�+1

�!
< ξ∗ < k�.

Using these bounds for ξ∗ we obtain

eh(β) < β−(�+1)β

(
(2k − 1)(� + 1)

k� − (� + 1)(1 − β)

)�(1−β)

×
(

t(k, �) · e−k�(k�)�+1

�!

k� − (� + k� + 1)(1 − β)

)1−β(
1 − (� + 1)(1 − β)

k�

)k�

=

(
2k − 1

ek · ββ/(1−β)

)�(1−β)(
1 − (� + 1)(1 − β)

k�

)−�(1−β)

×
(

1 − (� + k� + 1)(1 − β)

k�

)−(1−β)

×
(

(� + 1)� · t(k, �)

ββ/(1−β)�!

)1−β(
1 − (� + 1)(1 − β)

k�

)k�

. (3.24)
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Using the inequality

(1 − x)−1 � exp

(
x +

x2

1.4

)
for x � 0.4 we can deduce

β−β/(1−β) = (1 − (1 − β))−β/(1−β) � eβ+(1−β)β/1.4. (3.25)

Also, (
1 − (� + 1)(1 − β)

k�

)−1

� exp

{
(� + 1)(1 − β)

k�
+

(� + 1)2(1 − β)2

1.4(k�)2

}
,(

1 − (1 + � + k�)(1 − β)

k�

)−1/�

� exp

{
(1 − β)(1 + � + k�)

k�2
+

(1 − β)2(1 + � + k�)2

k2�3

}
,(

1 − (� + 1)(1 − β)

k�

)k�

< exp

(
−(� + 1)(1 − β) − (� + 1)2(1 − β)2

2k�

)
.

By Stirling’s formula and (3.25) we have

(� + 1)�

�! · ββ/(1−β)
<

(1 + 1/�)� exp(�)√
2π�

exp

(
β +

β(1 − β)

1.4

)
.

Now combining the last two terms in (3.24), we obtain(
(� + 1)� · t(k, �)

ββ/(1−β)�!

)1−β(
1 − (� + 1)(1 − β)

k�

)k�

<

(
(1 + 1/�)� · t(k, �)√

2π�

)1−β

× exp

(
β(1 − β) +

β(1 − β)2

1.4
− (1 − β) − (� + 1)2(1 − β)2

2k�

)
=

(
(1 + 1/�)� · t(k, �)√

2π�

)1−β

× exp

(
β(1 − β) +

β(1 − β)2

1.4
− (1 − β) −

(
1 +

1

�

)
(� + 1)(1 − β)2

2k

)
.

Also, recall that

t(k, �) =

(
1 − 0.36

k�

)�(
1 − exp

(
−(k� − � + 0.64)2

2k� − 0.72

))−1

.

Substituting these bounds in (3.24), we obtain

eh(β) <

((
2k − 1

exp (k − Δk,�,β)

)�

·
(1 + 1/�)� exp

(
β + β(1−β)

1.4
− 1

)
√

2π� ·
(
1 − exp

(−(k�−�+0.64)2

2k�−0.72

)))1−β

, (3.26)
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where

Δk,�,β := β +
(1 − β)β

1.4
+

(� + 1)(1 − β)

k�
+

(� + 1)2(1 − β)2

1.4(k�)2
+

(1 − β)(1 + k� + �)

k�2

+
(1 − β)2(1 + k� + �)2

k2�3
−

(
1 +

1

�

)
(� + 1)(1 − β)

2k�

= β +
(1 − β)β

1.4
+

(� + 1)(1 − β)

2k�
+

(� + 1)2(1 − β)2

1.4(k�)2
+

(1 − β)(1 + k� + �)

k�2

+
(1 − β)2(1 + k� + �)2

k2�3
− 1

�

(� + 1)(1 − β)

2k�

= β +
(1 − β)β

1.4
+

1 − β

2k

(
1 +

1

�

)
+

(1 − β)2

1.4 k2

(
1 +

1

�

)2

+
1 − β

�

(
1

2k�
+ 1 +

1

2k

)
+

(1 − β)2

�

(
1

k�
+ 1 +

1

k

)2

.

We note that each term in Δk,�,β is decreasing in k and �. The partial derivative of Δk,�,β

with respect to β is given by

Δ′
k,�,β :=

∂Δk,�,β

∂β
=

12

7
− 10

7
β − 1

2k

(
1 +

1

�

)
− 1 − β

0.7k2

(
1 +

1

�

)2

− 1

�

(
1

2k�
+ 1 +

1

2k

)
− 2(1 − β)

�

(
1

k�
+ 1 +

1

k

)2

.

Observe that each term (with the sign) in

∂Δk,�,β

∂β

is increasing with k and �. Let

p(k, �, β) :=

(
2k − 1

exp (k − Δk,�,β)

)
and g(k, �) :=

exp(1)
√

2π� ·
(
1 − exp

(−(k�−�+0.64)2

2k�−0.72

)) .
One can check that

eh(β) < ((p(k, �, β))�g(k, �))1−β.

We start with the case k � 4. First note that Δ′
4,2,β = −519/448 + (297/448)β, which is

negative for all β < 1. Also, as (2k − 1) · exp(−k) is decreasing in k and Δk,�,β is decreasing

in k and �, we infer that for k � 4, � � 2, thus the maximum value of p(k, �, β) is

p(4, 2, 0.6). Direct substitution yields p(4, 2, 0.6) = 15e−3237/1120 < 0.84. We note that the

partial derivative of

− (k� − � + 0.64)2

2k� − 0.72
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with respect to � is

− 2(k� − � + 0.64)

2k� − 0.72

(
k − 1 − (k� − � + 0.64)k

2k� − 0.72

)
< −2(k� − � + 0.64)

2k� − 0.72

(
k − 1 − (k� − � + 0.64)k

2k�

)
= −2(k� − � + 0.64)

2k� − 0.72

(
k − 1 − �(k − 1) + 0.64

2�

)
< −2(k� − � + 0.64)

2k� − 0.72

(
k − 1

2
− 0.64

2�

)
< 0 (3.27)

and with respect to k it is

− 2�(k� − � + 0.64)

2k� − 0.72

(
1 − k� − � + 0.64

2k� − 0.72

)
= −2�(k� − � + 0.64)

2k� − 0.72

(
1 − k� − � + 0.64

2k�

)
� −2�(k� − � + 0.64)

2k� − 0.72

(
1

2
+

1

2k
− 0.64

2k

)
< 0. (3.28)

We can now conclude that

√
2π�(1 − e−(k�−�+0.64)2/2k�−0.72)

is increasing in k and � and therefore g(k, �) is decreasing in k and �. Direct substitution

yields that g(3, 2) < 0.91, which completes the proof for k � 4, � � 2.

For the case k = 3, first note that

Δ′
3,5,β = 229/875 − (52/125)β,

which implies that Δ3,5,β is maximized at β = βmax = 229/364. Therefore, for � � 5,

p(3, �, β) is maximized at p(3, 5, βmax). Numerical computations show that

p(3, 5, βmax) = 7e−50231/25480 < 0.98.

For the cases � � 4, first note that

Δ′
3,4,β = −1/21 − 17β/96

β>0
< 0.

Now let

m(k, �, β) := p(k, �, β)�g(k, �).

Recall that Δ′
k,�,β is increasing in k and �. Also, Δ3,4,β is decreasing in β. We can

therefore conclude that for all β � 0.6 and � � 4, m(3, �, β) � m(3, �, 0.6). One can check

that m(3, 3, 0.6) < 0.93 and m(3, 4, 0.6) < 0.62. The case � = 2 is more tedious. We substitute
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k = 3, � = 2 in (3.26). Then

e(h(β))/(1−β) <

(
7

exp (3 − Δ3,2,β)

)2

·
(1 + 1/2)2 exp

(
β + β(1−β)

1.4
− 1

)
√

4π ·
(
1 − exp

(−(4.64)2

11.28

))
<

(
7

exp
(
3 − Δ3,2,β − β

2
− β(1−β)

2.8

))2

· 2.25 · exp(−1)
√

4π ·
(
1 − exp

(−(4.64)2

11.28

)) (3.29)

Now we check that the partial derivative of

Δ3,2,β +
β

2
+

β(1 − β)

2.8

with respect to β is

Δ′
3,2,β +

1

2
− β

2.8
= −99

56
+

33

28
β +

1

2
− β

2.8
= −51

56
+

13

28
β

β�1

� −25

28
,

which implies that the right-hand side is decreasing with respect to β for β � 1. We

complete the proof by calculating the above expression for β = 0.6, which gives eh(β) <

(0.91)1−β .

The following claim, which bounds f(β, β), also imposes an upper bound on ε.

Claim 3.18. For any k � 3 and � � 2 there exists C2 > 0 such that the following holds. For

any ε < 1/e, if 0.6 < β � 1 − ε we have

f(β, β) < −C2ε.

Proof. By Lemma 2.8, it follows that substituting q = β in

k�(1 − q)

1 − β

we have

Iξ∗

(
k�(1 − β)

1 − β

)
= 0.

So,

f(β, β) = −(k� − � − 1)H(β) + �(1 − β) log(2k − 1).

Note that for any k � 3 and � � 2 this function is convex with respect to β, as −H(β) is

convex and the linear term that is added preserves its convexity. Note that −H(1 − ε) <

−ε log(1/ε), whereby it follows that there exists a constant C2 = C2(k, �) > 0 such that for

any 0 < ε < 1/e we have

f(1 − ε, 1 − ε) < −C2ε log(1/ε) < −C2ε.
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Since H(0.6) > 0.6, we have

f(0.6, 0.6) < −0.6(k� − � − 1) + 0.4� log(2k − 1).

The derivative of this function with respect to k is

−0.6� + � · 0.4
2k log 2

2k − 1
.

A simple calculation shows that the second summand is less than 0.32� for all k � 3. The

derivative with respect to � is −0.6k + 0.6 + 0.4 log(2k − 1) which is again a decreasing

function in k and less than −0.42 at k = 3. So, we may set k = 3 and � = 2, thus obtaining

f(0.6, 0.6) < −1.8 + 0.8 log 7 < −0.24. The above analysis along with the convexity of

f(β, β) implies the claimed statement.

Claim 3.19. For all k � 3 and � � 2, there is a C3 > 0 such that, for all ε and for all

β � 1 − ε,

f(β, 1 − (� + 1)(1 − β)/k�) � −C3ε.

Proof. Substituting 1 − (� + 1)(1 − β)/k� for q into the formula of f, we obtain

f

(
β, 1 − (� + 1)(1 − β)

k�

)
= (� + 1)H(β) + �(1 − β) log(2k − 1)

− k�H

(
k� − (� + 1)(1 − β)

k�

)
− (1 − β)Iξ∗ (� + 1).

Note that for β = 1 the expression is equal to 0. To deduce the bound we are aiming for,

we will show that in fact f(β, 1 − (� + 1)(1 − β)/k�) is an increasing function with respect

to β. That is, we will show that its first derivative with respect to β is positive for any

β � 1. Finally, Taylor’s theorem based around β = 1 implies the claim.

We get

∂f
(
β, 1 − (�+1)(1−β)

k�

)
∂β

= (� + 1) log

(
1 − β

β

)
− � log(2k − 1)

− (� + 1) log

(
(� + 1)(1 − β)

k� − (� + 1)(1 − β)

)
+ Iξ∗(� + 1).

Substituting for Iξ∗(� + 1) the value given in Lemma 2.8 and since

eξ
∗
Q(ξ∗, � + 1) = ξ∗�+1

/�!(k� − ξ∗),

we obtain for β < 1

∂f
(
β, 1 − (�+1)(1−β)

k�

)
∂β

= log

((
k� − (� + 1)(1 − β)

(� + 1)β

)�+1

(2k − 1)−� · � + 1

k� − ξ∗

)
.

We will show that the fraction inside the logarithm is greater than 1. Note first that

k� − (� + 1)(1 − β)

(� + 1)β
=

1

β

(
k� − (� + 1)

� + 1

)
+ 1 =

1

β

(
(k − 1)� − 1

� + 1

)
+ 1
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is decreasing with respect to β, so we obtain a lower bound by setting β = 1. Substituting

β = 1 we obtain

∂f
(
β, 1 − (�+1)(1−β)

k�

)
∂β

> log

((
k�

� + 1

)�+1

(2k − 1)−� · � + 1

k� − ξ∗

)
.

By Claim 3.16, for all k � 3 and � � 2 we have

k� − ξ∗ � e−k�(k�)�+1

�!(1 − e−(k�−�+0.64)2/2k�−0.72)
,

which yields(
k�

� + 1

)�+1

(2k − 1)−� · (� + 1)

k� − ξ
� ek��!(1 − e−(k�−�+0.64)2/2k�−0.72)

(2k − 1)�(� + 1)�

=
ek��!(1 − e−(k�−�+0.64)2/2k�−0.72)

��(2k − 1)�(1 + 1/�)�
(3.30)

1+x�ex

>
�!

e · �� · e
k�(1 − e−(k�−�+0.64)2/2k�−0.72)

(2k − 1)�
.

Using the bounds �! �
√

2π�(�/e)� and 1 + x � ex, we can further bound the right-hand

side of (3.30) as follows:

�!

e · �� · e
k�(1 − e−(k�−�+0.64)2/2k�−0.72)

(2k − 1)�
�

√
2π�

e�+1
· e

k�(1 − e−(k�−�+0.64)2/2k�−0.72)

(2k − 1)�
. (3.31)

We note that the partial derivative of

− (k� − � + 0.64)2

2k� − 0.72

with respect to k and � is less than 0 (see (3.27) and (3.28)). We can therefore conclude

that
√

2π�(1 − e−(k�−�+0.64)2/2k�−0.72)

is increasing in k and �. Also the first derivative of the function ek/(2k − 1) with respect

to k is ek(2k(1 − log 2) − 1)/(2k − 1)2, which is positive for any k � 3. Moreover, the first

derivative of the function ek�−�−1/(2k − 1)� with respect to � is ek�−�−1(2k − 1)−�(k −
log(2k − 1) − 1), which is positive for any k � 3 and � � 2. So we infer that the right-hand

side of the above inequality is increasing in both k and �. Plugging the values (k, �) = (3, 2)

into (3.31), we obtain that the right-hand side is greater than 1.2. The above arguments

establish the fact that the derivative of f(β, 1 − (� + 1)(1 − β)/k�) with respect to β is

positive, for all k � 3 and � � 2.
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