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A k-uniform hypergraph H = (V, E) is called /-orientable if there is an assignment of each
edge e € E to one of its vertices v € e such that no vertex is assigned more than / edges.
Let H,,,x be a hypergraph, drawn uniformly at random from the set of all k-uniform
hypergraphs with n vertices and m edges. In this paper we establish the threshold for the
/-orientability of H,x for all k > 3 and / > 2, that is, we determine a critical quantity c,’; ,
such that with probability 1 —o(1) the graph H,.,x has an /-orientation if ¢ < c,’;/, but
fails to do so if ¢ > ¢; ;.

Our result has various applications, including sharp load thresholds for cuckoo hashing,
load balancing with guaranteed maximum load, and massive parallel access to hard disk
arrays.

2010 Mathematics subject classification: Primary 68Q25
Secondary 05C80, 68Q87, 68§W20, 05C65

1. Introduction

This paper studies the property of multiple orientability of random hypergraphs. For
any integers k > 2 and / > 1, a k-uniform hypergraph is called /-orientable if, for each
edge, we can select one of its vertices so that all vertices are selected at most / times.
This definition generalizes the classical notion of orientability of graphs, where we want
to orient the edges under the condition that no vertex has in-degree larger than /. In

T An extended abstract of this work appeared in the Proceedings of the 22nd ACM—SIAM Symposium on
Discrete Algorithms: SODA '11.
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this paper, we consider random k-uniform hypergraphs H,, .k, for k > 3, with n vertices
and m = |cn| edges. Our main result establishes the existence of a critical density ¢,
(determined explicitly in Thorem 1.1) such that, when c crosses this value, the probability
that the random hypergraph is /-orientable drops abruptly from 1 —o(1) to o(1) as the
number of vertices n grows.

The case k =2 and 7 > 1 is well understood. In fact, this case corresponds to the classical
random graph G,, drawn uniformly from the set of all graphs with n vertices and m
edges. A result of Fernholz and Ramachandran [7] and Cain, Sanders and Wormald [3]
implies that there is a constant ¢;, such that as n — oo

P(Gy,|cn) s /-orientable) — {0 %f €= Cf’/’
L ife<c,.

In other words, there is a critical value such that when the average degree is below this,
then with high probability an /-orientation exists, and otherwise not. We want to remark
at this point that the orientation can be found efficiently by solving a matching problem
on a suitably defined bipartite graph, but we will not consider computational issues any
further in this paper.

Similarly, the case / = 1 and k > 3 arbitrary is also well-understood. The threshold for
the 1-orientability is known from the work of the first and the third author [9, 10], and
Frieze and Melsted [11]. In particular, there is a constant ¢; ; such that as n — oo

0 ife>cpy,
P(H,,|cn) i is 1-orientable) — ) €7

L ife<cy.
In this paper we consider the general case, i.e., k and / arbitrary. Our main result is
summarized in the following theorem, and settles the threshold for the /-orientability
property of random hypergraphs for all k and /.

Theorem 1.1. For integers k > 3 and ¢ > 2 let £* be the unique solution of the equation

oY) _ x/
k¢t = =" where x,y)=1—e"" —. 1.1
0 F 1) Q(x.y) ;J! (L1)
Let ¢, = EJkQ(E, LY. Then, as n — «©
0 if .
P(H,, | cn|  is {-orientable) — if e> cips (1.2)
L ife<cy.

The work of Frieze and Melsted [11] is based on the analysis of the Karp—Sipser
algorithm for matchings in bipartite graphs. More specifically, the bipartite graph that is
considered is the incidence graph where the vertices of one part are the edges of the random
hypergraph and the other part consists of its vertices. Each vertex that corresponds to a
hyper-edge is adjacent to its incident vertices. A 1-orientation corresponds to a matching
in this bipartite graph. It is not easy to see how and whether this approach can deal with
the /-orientability, for 7 > 1.
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A similar result which uses different techniques was also shown in a slightly different
context by Gao and Wormald [12], with the restriction that the product k/ is large.
In particular, Gao and Wormald [12] consider what is called the (r,/)-orientability of
a hypergraph where each edge is ‘oriented’ to r vertices with the restriction that no
vertex has more than / edges oriented to it. Their analysis is based on the notion of
the (r,/ 4 1)-core of the random hypergraph which is an analogue of the notion of the
(7 4+ 1)-core of a graph. This core is discovered through a special deletion process, which
is analysed with the differential equations method. This demands that / is large. So, our
result fills the remaining gap, and treats especially the cases of small k and arbitrary /,
which are most interesting in practical applications. Further generalizations of the concept
of orientability of hypergraphs were considered after our work in [15, 16], where tight
asymptotic results were also obtained.

The present paper is a non-trivial extension of the approach followed in [9, 10]. We
consider the (£ + 1)-core of H, |, and its subsets that have density greater than /. We
use a tedious first moment argument that bounds the expected number of such subsets.
This yields that when c is below the critical value, these do not exist.

1.1. Applications

Cuckoo hashing. The paradigm of many choices has significantly influenced the design
of efficient data structures and, most notably, hash tables. Cuckoo hashing, introduced
by Pagh and Rodler [18], is a technique that extends this concept. We consider here a
slight variation of the original idea (see also Fotakis, Pagh, Sanders and Spirakis [8]),
where we are given a table with n locations, and we assume that each location can hold
¢ items. Each item to be inserted chooses randomly k > 2 locations and has to be placed
in any one of them. How much load can cuckoo hashing handle before collisions make
successful assignment of the available items to the chosen locations impossible? Practical
evaluations of this method have shown that one can allocate a number of elements that
is a large proportion of the size of the table, being very close to 1 even for small values of
k¢ such as 4 or 6. Our main theorem provides the theoretical foundation for this empirical
observation: if the number of items is less than ¢; ,n, then it is highly likely that they
can be allocated; however, if their number is larger, then most likely every allocation will
have an overfull bin. Our result thus proves a conjecture about the threshold loads of
cuckoo hashing made in [5].

Load balancing. In a typical load balancing problem we are given a set of m = |cn]|
identical jobs, and n machines on which they can be executed. Suppose that each job may
choose randomly among k different machines. Is there any upper bound for the maximum
load that can be guaranteed with high probability? Our main result implies that as long
as ¢ < ¢, then there is an assignment of the jobs to their preferred machines such that
no machine is assigned more than / different tasks.

Parallel access to hard disks. In our final application we are given n hard disks (or any
other means of storing large amounts of information), which can be accessed in parallel
and independently of each other. We want to store a data set redundantly in order to
obtain some degree of fault tolerance, while at the same time we aim at minimizing
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the number of I/O steps needed to retrieve the whole data; see [19] for more details.
Theorem 1.1 guarantees the following property with high probability. If k randomly
allocated copies of each data block are stored on n hard disks, then m = |cn| different
data blocks can be read with at most / queries to each disk, provided that ¢ < ¢ ,.

2. Proof strategy and the upper bound

Our main result follows immediately from the two theorems below. The first statement
says that H,, has a subgraph of density > / (i.e., the ratio of the number of edges to
the number of vertices in this subgraph is greater than /) if ¢ > ¢ ,. The (£ + 1)-core of
a hypergraph is its maximum subgraph that has minimum degree at least / + 1.

Theorem 2.1. Let ¢;, be defined as in Theorem 1.1. If ¢ > ¢ ,, then with probability 1 —
o(1) the (¢ + 1)-core of Hycny has density greater than /.

Note that this implies the statement in the first line of (1.2), as by the pigeonhole
principle it is impossible to orient the edges of a hypergraph with density larger than /
so that each vertex has in-degree at most 7.

The above theorem is not very difficult to prove, as the core of random hypergraphs and
its structural characteristics have been studied quite extensively in recent years; see e.g.
the results by Cooper [4], Molloy [17] and Kim [14]. However, it requires some technical
work, which is accomplished in Section 2.1. The heart of this paper is devoted to the
‘subcritical’ case, where we show that the above result is essentially tight.

Theorem 2.2. Let ¢, be defined as in Theorem 1.1. If ¢ < ¢ ,, then with probability 1 —
o(1) all subgraphs of Hy cnx have density smaller than /.

Proof of Theorem 1.1.  Let us construct an auxiliary bipartite graph B = (£,V; E), where
& represents the m edges and V = {1,...,n} x {1,...,/} represents the n vertices of Hy, .
Also, {e,(i,j)} € E if the eth edge contains vertex i, and 1 < j < /. Note that H, . is
/-orientable if and only if B has a left-perfect matching, and by Hall’s theorem such a
matching exists if and only if for all Z = £ we have that |Z] < |T'(Z)|, where I'(Z) denotes
the set of neighbours of the vertices in Z in V.

Observe that I'(Z) is precisely the set of / copies of the vertices that are contained in
the hyperedges corresponding to items in Z. So, if ¢ < ¢; ,, Theorem 2.2 guarantees that
with high probability for all Z we have |Z| < |[T'(Z)|, and therefore B has a left-perfect
matching. On the other hand, if ¢ > ¢ ,, then with high probability there is a set Z such
that |Z| > |T'(Z)|; choose for example Z to be the set of items that correspond to the edges
in the (£ + 1)-core of H,,x. Hence a matching does not exist in this case, and the proof
is completed. U]

In the rest of the paper we prove Theorem 2.1 and Theorem 2.2. The main line of the
argument is similar to what was performed for the special case /=1 in [10]. However,
resolving the problem for general values of / is technically much more involved, and also
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several generalizations of all intermediate steps are required; this is the main contribution
of the present work.

2.1. Proof of Theorem 2.1 and the value of ¢} ,

The aim of this section is to determine the value ¢; , and prove Theorem 2.1. Moreover,
we will introduce some known facts and tools that will turn out to be very useful in the
study of random hypergraphs, and will be used later on in the proof of Theorem 2.2 as
well. In what follows we will be referring to a hyperedge of size k as a (k-)edge and we
will be calling a hypergraph with all its hyperedges of size k a k-graph.

Models of random hypergraphs. For the sake of convenience we will carry out our calcu-
lations in the H,,x model of random k-graphs. This is the ‘higher-dimensional’ analogue
of the well-studied G,, model, where each possible (k-)edge is included independently
with probability p. More precisely, given n > k vertices we obtain H, ) by including each
k-tuple of vertices with probability p, independently of every other k-tuple.

Standard arguments show that if we adjust p suitably, then the H, ,x model is essentially
equivalent to the H, ., model. Let us be more precise. Suppose that P is a convex
hypergraph property, that is, whenever we have three hypergraphs H;, H,, H3 such that
H{ < H, < Hy and Hy,H; € P, then also H, € P. We also assume that P is closed
under automorphisms. Note that any monotone property is also convex. The following
proposition is a generalization of Proposition 1.15 from [13, p.16] and its proof is very
similar, so we omit it.

Proposition 2.3. Let P be a convex property of hypergraphs, and let p = ck/ (Z:}) where
¢>0. If P(Hypx € P) — 1 as n — oo, then P(Hy|cpjx € P) — 1 as well.

Working on the (£ + 1)-core of H, ,: the cloning model. Recall that the (¢ 4 1)-core of
a hypergraph is its maximum subgraph that has minimum degree (at least) Z + 1. At this
point we introduce the main tool for our analysis. The cloning model with parameters
(N,D,k), where N and D are integer-valued random variables, is defined as follows. We
generate a graph in three stages.

(1) We expose the value of N.

(2) If N > 1 we expose the degrees d = (dy,...,dy), where the d; are independent samples
from the distribution D.

(3) For each 1 < v < N we generate d, copies, which we call v-clones or simply clones.
Then we choose uniformly at random a matching from all perfect k-matchings on the
set of all clones, that is, all partitions of the set of clones into sets of size k. Note that
such a matching may not exist; in this case we choose a random matching that leaves
less than k clones unmatched. Finally, we construct the k-graph Hgy by contracting
the clones to vertices, that is, by projecting the clones of v onto v itself for every
1<v<N.

Note that the last stage in the above procedure is equivalent to the configuration model [2,

1] Hqy for random hypergraphs with degree sequence d = (dy,...,d,). In other words, Hqx

is a random multigraph where the ith vertex has degree d;.
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One particular case of the cloning model is the so-called Poisson cloning model ﬁnﬂpﬂk
for k-graphs with n vertices and parameter p € [0, 1], which was introduced by Kim [14].
There, we choose N =n with probability 1, and the distribution D is the Poisson
distribution with parameter A := p(zj) Note that D is essentially the vertex degree
distribution in the binomial random graph H, ,, so we would expect the two models to
behave similarly. The following statement confirms this, and is implied by Theorem 1.1
in [14].

Theorem 2.4. Let P be any property of hypergraphs. If P(fl,l,p,k €P)— 0 asn— oo, then
P(H,px € P) — 0 as well.

One big advantage of the Poisson cloning model is that it provides a rather precise
description of the (£ 4 1)-core of H,,x. In particular, Theorem 6.2 in [14] implies the
following statement, where we write ‘x + y’ for the interval of numbers (x — y,x + y).

Theorem 2.5. Let

A ‘= min o

WAL TS0 O, T
Assume that ck = p(Z:i) > Ak s+1. Moreover, let X be the largest solution of the equation x =
Q(xck, /Y, and set & := Xck. Then, for any 0 < 6 < 1 the following is true with probability
1 —n=W. If N,y denotes the number of vertices in the (/ + 1)-core of H,px, then

Ny = 0,7+ n+ on.
Furthermore, the (£ + 1)-core itself is distributed like the cloning model with parameters
(N/i1, Posryi(Acks), k),

where Pox/11(Ack,) denotes a Poisson random variable conditioned on being at least (£ + 1)
and parameter A.ks, where Aoy, = &+ B, for some f satisfying |p| < 9.

In what follows, we say that a random variable is an /-truncated Poisson variable if
it is distributed like a Poisson variable, conditioned on being at least /. The following
theorem, which is a special case of Theorem II.4.I in [6] from large deviation theory,
bounds the sum of i.i.d. random variables. We apply the result to the case of i.i.d. (/ + 1)-
truncated Poisson random variables, which are simply the degrees of the vertices of the
(£ + 1)-core. As an immediate corollary we obtain tight bounds on the number of edges
in the (/£ + 1)-core of fl,,,p,k. Moreover, it also serves as our main tool in counting the
expected number of subsets (with some density constraints) of the (£ + 1)-core, assuming
that the degree sequence has been exposed. Such estimates are required for the proof of
Theorem 2.2 and will be presented in the next section.

Theorem 2.6. Let X be a random variable taking real values and set c(t) = logE(e'X), for
any t € R. For any z > 0 we define I(z) = sup,eg{zt — c(t)}. If Xi,..., X, are iid. random
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variables distributed as X, then for s — oo
S
P(Z X; < sz) = exp(—sinf{I(x) : x < z}(1 4 o(1))).
i=1
The function I(z) is non-negative and convex.

The function c¢(¢) is called the free energy function of X and the following holds.
Proposition 2.7 (Proposition VIL1.1 of [6]). c(¢) is a convex function on R.

The function I(z) (also known as the rate function of the random variable X) in the
above theorem measures the discrepancy between z and the expected value of the sum of
the ii.d. random variables in the sense that I(z) > 0 with equality if and only if z equals
the expected value of X. The following lemma applies Theorem 2.6 to (£ + 1)-truncated

Poisson random variables.

Lemma 2.8. Let Xi,..., X, be iid. (£ + 1)-truncated Poisson random variables with para-
meter A. For any z > ¢ + 1, let T, be the unique solution of

g QT
T O(T../+1)
and
IA(Z):{z(logTZ—logA)—TZ+A—logQ(TZ,/+1)—|—10gQ(A,/+1) ifz>04+1,
log(/+1)! —(/+1)logA + A+1ogQ(A,/ + 1) ifz=¢+1.

(2.1)

Then I(z) is continuous for all z > ¢ 4+ 1 and right continuous at z = ¢ + 1. Furthermore,
it is convex. It has a unique minimum at
. O(A7)
oA+ 1)
where Ix(u) = 0. Moreover, uniformly for any z such that £ +1 < z < u, we have as s — o0

z=u=A

]P’(Z X; < sz) < exp(—sla(z)(1 4+ o(1))).
i=1

Proof. We shall first determine c(t) = log E(e'*), where X is an (£ + 1)-truncated Poisson
random variable with parameter A. We note that

. —AAj
tj . e AN
Yizer€! il

OA/+1)

exp(c(t)) =
e_A"t(e'A)j
_ e_A . eAet . Zj}/-ﬂ-l Jj!
0N+ 1)
_peen, QAL+ 1)
OAC+1)"
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Differentiating zt — c(t) with respect to ¢, we obtain

I Ae'—A | Q(Aer>{ + 1) '
(zt —c(t)) =z log<e 7Q(A,/+ 0 >
=z —Ae' — (log Q(Ae',/ + 1))
e - (Q(Ae, 7 + 1) — Q(Ae', 1))

—z—Ae
ZoAet ohe.7 +1)

Substituting T = Ae', we get
T-(Q(T,/+1)—0Q(T,7))
QT /+1)

QT

o(T,/+1)
Setting this expression to zero and solving for T gives the value of T, as in the statement
of the lemma. The uniqueness of the solution for z > / 4 1 follows from the fact that the
function

(zt—c(t)y =z—T +

=7 —

EY)
o(x,7 +1)
is strictly increasing with respect to x (see Claim 3.14) and, as x approaches 0, it tends to
¢ + 1. Letting t, be such that T, = Ae'z, we obtain

—c(t:) = —T: —log Q(T-,/ + 1) + A +10g Q(A,/ + 1)
and
t.z = z(log T, — log A).

The function —c(t) is concave with respect to t, by Proposition 2.7, and therefore the
addition of the linear term zt does preserve concavity. So ¢ is the point where the unique
maximum of zt — ¢(t) is attained over t € R. Combining the above we obtain I5(z) as
stated in the lemma. For

_ AQ(AY)

oML+
we have T, = A, which yields I5(u) = 0. As far as I5(£ + 1) is concerned, note that strictly
speaking this is not defined, as there is no positive solution of the equation
T,

oT,.+1)

We will express Ip(£ 4+ 1) as a limit as T'— 0 from the right, and show that

(+1=T

(Z X, <s(/+1 ) = exp(—sIA(£ + 1)).

We define
IA(/+1) ;== lim (/4 1)log T — T —logQ(T,/ + 1))

T—-0t

—(/+1)logA+A+1ogQ(A, 7+ 1).
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But
T/+1
li NlogT —T —1 T 1)) = lim log —7——
Jim (¢ + Dlog 02T/ +1)) = Jim 108 77y
. T/+1
= 711_1)1(;1+ log T+l T/+2
= lim log !
= 1 T
T—0+ (s + 7+2)! +-
= log(/ + 1),

and therefore
InZ+1)=log(/ + 1)! —(/+1)logA+ A+1ogQ(A, 7+ 1).

On the other hand, the independence of the X; guarantees that
e—/\AH»I

P(;Xi <s(4 + 1)> =[PX;=/+1]= (Q(A@ﬁl)) = exp(—sIa(Z + 1)).

Also, according to Theorem 2.6 the function Ix(z) is non-negative and convex on its
domain. So if z < p then inf{Ix(x) : x < z} = Ix(z), and the second part of the lemma
follows. L]

Theorem 11.3.3 in [6] along with the above lemma then implies the following corollary.

Corollary 2.9. Let Xy,...,X; be iid. ({ + 1)-truncated Poisson random variables with para-
meter A and set u=E(X;). For any ¢ > 0 there exists a constant C = C(g) > 0 such that,

for any s sufficiently large,
“(

s
Z Xi — Su
i=1

> se) <e s,
With the above results in hand we are ready to prove the following corollary about the
density of the (£ 4 1)-core.

Corollarz 2.10. Let Nyyi and M, denote the number of vertices and edges in the (£ + 1)-
core of Hypy. Also let ck = p(}~}). Then, for any 0 < < 1, with probability 1 —n=*",

Ny = Q¢ + n+ éon, (2.2)
- !/ ~
My = %N}H +dn, (2.3)

where ¢ = Xck and X is the largest solution of the equation x = Q(xck, /)<=,

Proof. The statement about N, follows immediately from the first part of Theorem 2.5.
To see the second statement, we condition on certain values of N, and Ak that lie in
the intervals stated in Theorem 2.5. In particular, we can assume that the total degree of
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the core of I?I,,,pvk is the sum of independent (£ + 1)-truncated Poisson random variables
dl,...,d];,/+1 with parameter A, = ¢ + f for || < 5% Let D be the sum of the d;. For
any ¢ > 0 and a constant C(g) > 0, Corollary 2.9 yields

P(ID — E(D)| > eNyyy) < e CONm,

Note that

AckrO(Acys,?)
E(D) = DekrEWeks 7]
D)= oAkt + 1)

The claim then follows by choosing ¢, 6 sufficiently small and from the continuity of the
above expression as a function of A . ]

We proceed with the proof of Theorem 2.1, that is, we will show that the (¢ + 1)-core
of Hypy has density at least 7 if p = ck/(}"}) and ¢ > ¢} .

Proof of Theorem 2.1. Let 0<d <1, aNnd let N,.y and M,,; denote the number of
vertices and edges in the (£ + 1)-core of H,,x. Applying Corollary 2.10, we obtain that
with probability 1 —n~()

<0, 7)
kO(¢,2 +1)
where ¢ = Xck and X is the largest solution of the equation x = Q(xck,/)~!. The value

of ¢, is obtained by taking My = /N, and ignoring the additive error terms. The
above values imply that the critical &* is given by the equation

Nypi=Q(E ¢+ 1)n+on and My = Ny £ 6n,

. 0L . 07

—=— L = = k== 2.4
T S oE i+ 24

This is identical to (1.1). So the product k/ determines £* and X satisfies

X = Q(xek, /) = Q& /)
Therefore, the critical density is
. < ¢
= =————— 2.

* T 5k T RQE T 2

The above calculations imply that uniformly for any 0 < ¢ < 1, with probability 1 — o(1),

My 1 EQ(E7)
= =— + ().
N koGEr+n o0
In particular, if ¢ = ¢ ,, then My, 1/N,y 1 = ¢ + ©(5). To complete the proof it is therefore

sufficient to show that the ratio

€. 7)

(&, +1)
is an increasing function of ¢. Note that this is the expected value of an (£ + 1)-truncated
Poisson random variable with parameter &, which is increasing in ¢ (see Corollary 3.15).
Recall that & = xck. We conclude the proof by showing the following claim.
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Claim 2.11. The quantity & = Xck is increasing with respect to c. So, for some fixed c, with
probability 1 — o(1)
My My

——— </( ifc<c, and —=——>/ ifc>cy.
Nyt Nyt

Indeed, recall that X satisfies X = Q(Xck,/)*~'. Equivalently, Xxck = ck - Q(Xck,/)~!. We
have

s
Q&

The derivative of the function F(&) = &/Q(&,/)! with respect to ¢ is given by
Q&) (Q(E,0) — (k — 1)¢ - P(Po(¢) = 7 — 1)).
An easy calculation shows that F'(&) is positive when ¢ satisfies the inequality

6i7/ k
> > 7k

i>¢

ck = (2.6)

and negative otherwise. We therefore conclude that F(&) is a convex function. Moreover,
by the assumption in Theorem 2.5 we have ck > min,-o(x/Q(x,/)*""). This implies that
the function & - Q(&,/)~*=1 is strictly increasing in the domain of interest. Note that
by (2.6) the first derivative of ¢ with respect to ¢ is given by k/F’(¢), which is positive by
the above discussion, thus proving our claim. Ul

3. Proof of Theorem 2.2

Let us begin by introducing some notation. For a hypergraph H we will let Vg denote
its vertex set and Ep its set of edges. Further, we write vy = |Vg| and ey = |Vy|. For
U < Vi we let vy, ey denote the number of vertices in U and the number of edges joining
vertices only in U. Finally, dy is the total degree in U, that is, the sum of the degrees in
H of all vertices in U. We say that a subset U of the vertex set of a hypergraph is /-dense
if ey /vy > ¢. By a maximal /-dense subset we mean that whenever we add a vertex to
such a set, then its density drops below /.

To prove Theorem 2.2 we will show that whenever ¢ < ¢ ,, the random graph H, |«
does not contain any /-dense subset with probability 1 — o(1). We will accomplish this
by proving that such a hypergraph does not contain any maximal /-dense subset with
probability 1 — o(1). Note that this is sufficient, as any /-dense subset will be contained
in some maximal /-dense subset. We shall use the following property.

Proposition 3.1. Let H be a k-uniform hypergraph with density less than £, and let U be
a maximal {-dense subset of V. Then there is a 0 < 0 < ¢ such that ey = ¢ - vy + 0. Also,
for each vertex v € Vg \ U the corresponding degree d in U, that is, the number of edges in
H that contain v and all other vertices only from U, is less than £ — 0.
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Proof. If 0 >/, then we have ey >/ (vy + 1). Let U' = U U {v}, where v is any vertex
in Vg \ U. Note that such a vertex always exists, as U # Vy. Let d be the degree of v in
U. Then

ey ey +d ey

= = /J
vy vy +1 vy +1
which contradicts the maximality of U in H. Similarly, if there exists a vertex v € Vg \ U

with degree d > / — 0 in U, then we could obtain a larger /-dense subset of V by adding
vtoU. U]

We begin by showing that whenever ¢ < /, the random graph H, .., does not contain
small maximal /-dense subsets. In particular, the following lemma considers subsets of
size at most 0.6n.

Lemma 3.2. Let ¢ </ and k > 3, / > 2. With probability 1 —o(1), H, |« contains no
maximal /-dense subset with less than 0.6n vertices.

Proof. We first prove the lemma for all k > 3 and / > 2 except for the case (k,/) = (3,2)
by using a rough first moment argument. The probability that an edge of H,nx is
contained completely in a subset U of the vertex set is given by

U /(n) _ (1U1)
< [(— .
(/@)= C)
Let k/n < u < 0.6, and for x € (0,1) let H(x) = —x logx — (1 — x)log(1 — x) denote the
entropy function. Then

. . , l
P(3/-dense subset with un vertices) < (unn> : ( “n )(uk)/’”’ < ( " ) . < " )(uk)/””

Jun un lun
< en((/Jrl)H(u)Jrk/ulogu)- (31)

We first show that the exponent attains its maximum at u = k/n or u = 0.6. Let Uy =
1 — (¢4 1)/k{. We note that the second derivative of the exponent in (3.1) equals

(k((1—u) — (£ + 1))/ (u(1 — u)),

which is positive for k > 3,/ > 2 and u € (0,unmax]. Hence the exponent is convex for
u < Umax, implying that it attains a global maximum atu = k/noratu = (k/ — (£ + 1))/kZ.
Moreover, for any k > 4,/ > 2 we have up,x > 0.6. The case k =3 and 7 > 3 is slightly
more involved. Note that uy,, > 5/9 in this case. The second derivative of the exponent
is negative for u € (umax, 1), implying that the function is concave in the specified range.
But the first derivative of the exponent is (£ + 1) log((1 — u)/u) + 3/(1 + log(u)), which is
at least 2.8/ — 0.41 > 0 for u = 0.6. Hence, the exponent is increasing at u = 0.6.

We can now infer that for k=3, />3 and k >4, / > 2, the exponent is either
maximized at u = k/n or at u = 0.6. Note that for any fixed positive k and / we have

K\ K4 (k\ (K¢ —(/+1Dk)logn i

n
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Also, for k > 4 and 7 > 2 we obtain

(¢ + 1)H(0.6) + k/ - 0.610g(0.6) < (£ + 1)H(0.6) + 4/ - 0.6 10g(0.6)

<
< H(0.6) — 0.56/ < —0.44,
and fork=3and />3

(¢ + 1)H(0.6) + k- 0.610g(0.6) < (£ + 1)H(0.6) + 3/ - 0.6 10g(0.6)

<
< H(0.6) — 0.24/ < —0.04.

So the maximum is obtained at u = k/n for n sufficiently large, and we conclude the case
in which (k, /) # (3,2) with

P(3 /-dense subset with < 0.6n vertices) Z n DR — 078,
u=k/n

For the case (k,/) = (3,2), a counting argument as above involving the 2-dense sets does
not work, and we will use the property that the considered sets are maximal 2-dense.
By (2.5) we obtain ¢, < 1.97. Let p = ¢/(";'), where ¢’ =3¢ < 3- ¢}, < 5.91. A simple
application of Stirling’s formula reveals

P(H,,3 has exactly cn edges) = (1 + o(1))(2men) /2.

Let U be a maximal 2-dense subset of H, 3. As the distribution of H, 3 is the same as
the distribution of H, 3 conditioned on the number of edges being precisely cn, we infer
that

P(H,, 3 contains a maximal 2-dense subset U with at most 0.6n vertices) =

0(\/ﬁ) -IP(H,p3 contains a maximal 2-dense subset U with at most 0.6n vertices).

To complete the proof it is therefore sufficient to show that the latter probability is
o(n~1/?). By Proposition 3.1 the event that H,,3 contains a maximal 2-dense subset U
implies that there exists a 0 € {0,1} such that ey =2 vy + 0 and all vertices in Vg \ U
have degree less than 2 — 6 in U. We will show that the expected number of such sets
with at most 0.6n vertices is o(1). We accomplish this in two steps. Note that if a subset
U is maximal 2-dense, then certainly |U| > 5. Let us begin with the case s := |U| < n'/3.
There are at most n° ways to choose the vertices in U, and at most s*>+%) ways to choose
the edges that are contained in U. Hence, for large n the probability that H, 3 contains
such a subset with at most |n!/3| vertices is bounded by

Lnl/BJ 1 L 1/3J Ln1/3J

Z Zns 65430 25+0 < Z s 6s+3 2s _ Z 2<ns ( )>2>S‘S3
2

s=5 0=0

o )
<n Z 2(C/2n(1+6/3) < n Z (an»o s 74+0(1

s=5

Let us now consider the case n'/3 < |U| < 0.6n. We note that

logp = log< 7 >=10g22+®<1).
(") n n
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Also, there are (u';) < "M ways to select U. Moreover, the number of ways to choose
the 2un + 6 edges that are completely contained in U is

un 3 2un 2
(0) < ()= ofomin(422) )

Finally, the probability that a vertex outside U has a degree less than 2 — 0 in |U] is at
most

(1—p® 4+ (”2”) p(1—p)(D=1 = ¢ (1 +12)(1 + O(1/n)).

Combining the above facts we obtain that the probability P, that H, 3 contains a maximal
2-dense subset U with 2un vertices is

1 un
Pu S Z ( n ) (2u(n3—i)_ 0) p2un+0(1 _ p)(ugl)72unf(9(e—u2c’(1 + uZC/)(l + 0(1/n)))(1714)n

un
0=0

2.2
< 2~exp{n(H(u)+2ulog<eulzn ) +2u10gp> —p<(“3n> —2un — 1>

+ (1 —wn(—u*cd +log(1 + u*c')) + 0(1 /n)}

/2.2 3.
<2-exp {n(H(u) +2u log<ec6u ) - “; + (1 — u)(—uc + log(1 + u%’)))

+0(1/ n)}.
If we fix u, the derivative of the exponent with respect to ¢’ is given by

2u W u? <59 2y P u?
= i (1= e > S 4(- P T
o3t ”)( u +1+u2c’> 6 3¢ ”)( u +1+6u2)

1 u?/346u’ —4ut ug06 (1 u>0

=ulz——m—5—| 2 -—029) >0,
! ( 3 1+ 612 ) ! ( 3 )

thus implying that for all u € (0, 0.6] the exponent is increasing with respect to ¢. Therefore,

it is sufficient to consider only the case when ¢ = 5.91.

The derivative of the exponent with respect to u equals

2uic?
log(¢u*(1 — u)) + 6 — log 6 — log(1 + u*¢’) — (1 — u)———
14+ ucd
2t 2u3c?
3 2
= log(c'v’) + TTwe +log(1 — u) —log(1 + u°c’) — 1120 + 6 —logé.
As the function
/.3 72 u4

lOg(C u ) + 2C . m

is increasing and

w

1— _ 1 20N 02,
log(1 — u) —log(1 + u“c’) — 2c )
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is decreasing in u, there is at most one n~>/3 < 1y < 0.6 where the derivative of the exponent
vanishes. Moreover the derivative of the exponent at u = 0.6 is positive. Therefore, ug
is a global minimum, and the bound on P, is maximized at either u = n=*/3 or u = 0.6.
Elementary algebra then yields that the left point is the right choice, giving the estimate
P, = 0(2*”]/3), and the proof concludes by adding up this expression for all admissible
n23 <u<0.6. ]

In order to deal with larger subsets we switch to the Poisson cloning model. Let C
denote the (£ + 1)-core of Ifl,l,p,k, where p = ck/(Zj), and note that Theorem 2.4 and
Proposition 2.3 guarantee that PNI,,,pﬂk and H, ., are sufficiently similar. Observe that any
minimal /-dense set in ﬁnﬂpﬂk is always a subset of C, as otherwise, by removing vertices of
degree at most 7, the density would not decrease. In other words, C contains all minimal
/-dense subsets, and so it is enough to show that the core does not contain any /-dense
subset. Therefore, from now on we will restrict our attention to the study of C.

N Assume that the degree sequence of C is given by d = (dy,...,dy, ), where again we let
Ny41 denote the number of vertices in C. The number of edges in C is

Nyt

My =k d;
i=1

For ¢, € [0,1], let
Xgp = Xgp(C) = Xyp(d)

denote the number of subsets of C with |fN,,]| vertices and total degree |qkM,,].

Let " = X"¢; , k, where X" is the largest solution of the equation x = Q(xc; /k, 9 i
and note that &* satisfies (2.4). Moreover, let ¢ be given by & = Xck, where X is the
largest solution of the equation x = Q(xck,/)~!. As ¢ is increasing with respect to ¢ (see
Claim 2.11), there exists a 6 > 0 and a y = y(d) > 0 such that c = ¢; , —y and { =" — 0.
Also, y — 0 as & — 0 by continuity of the largest solution of x = Q(xck,/)*!.

We will assume that 6 > 0 is fixed (and sufficiently small for all our estimates to hold),
and we will choose ¢ < ¢; , such that ¢ = ¢, —y and { =" — 9. Set

€0, 7)

K0/ 1) 1)nf+1- (3.2)

n =0, /+1)n and myy =

By applying Corollary 2.10 (and using 6* instead of &) we obtain that with probability

1 —ne®

Ny =ni+8°n and My =myq +6°n. (3.3)

Moreover, by applying Theorem 2.5 we infer that C is distributed like the cloning model
with parameters N,,; and vertex degree distribution Po>/11(Acgy), where

Ay =¢8> =& —5+6% (3.4)
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Recall that the definition of &* implies that

o)
M= oE i

Let ex, denote the value of the first derivative of

xQ(x,7)
k{/Q(x,/ + 1)

with respect to x at x = &*. By applying Taylor’s theorem to
xQ(x,7)

o(x,7 +1)
around x = &, we obtain

/
my1=(1—eps 6 +0(%)/ - nsyq, where % =k{(1 —ery -0+ 0(5%)). (3.5)

Recall that Hqyx is a random hypergraph where the ith vertex has degree d;. We start
by bounding the probability that a given subset of the vertices in Hgy is maximal /-dense.
In particular, we will work on stage 3 of the exposure process, that is, when the number
of vertices and degree sequence of the core have already been exposed. We will show the
following.

Lemma 3.3. Letk >3,/ >2andd = (dy,...,dy) be a degree sequence and U = {1,...,N}
such that |U| = | BN]. Moreover, set M = k=" S_N | d; and q = (kM)™' ", di. Assume that
M < ¢ - N. If Py denotes the probability measure on the space of k-uniform hypergraphs
with degree sequence given by d, B(f, q) denotes the event that U is a maximal /-dense set
in Hqy, and H(x) = —xlogx — (1 — x)log(1 — x) denotes the entropy function, then

M

Pﬂww4»<MM”“(ﬂw

)ekMH(q)(zk _ 1)M7/\U\.

Proof. Recall that Hyy is obtained by beginning with d; clones for each 1 < i< N and
by choosing uniformly at random a perfect k-matching on this set of clones. This is
equivalent to throwing kM balls into M bins such that every bin contains k balls. In
order to estimate the probability for B(f,q), assume that we colour the kgM clones of
the vertices in U red, and the remaining k(1 — g)M clones blue. Let 6 be an integer such
that 0 < 0 < /. So, by applying Proposition 3.1 we are interested in the probability of the
event that there are exactly By = /|U| + 0 bins with k red balls. We estimate the above
probability as follows. We begin by putting into each bin k black balls, labelled with the
numbers 1,...,k. Let £ = {1,...,k}, and let Xi,..., Xy be independent random sets such
that for 1 <i< M

VK € K :PX; = K) = ¢F1(1 — g%

Note that |X;| follows the binomial distribution Bin(k, g). We then recolour the balls in
the ith bin that are in X; with red, and all others with blue. So, the total number of red
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balls is X = Zf\il |X;|. Note that E(X) = kqM, and that X is distributed as Bin(kM, q). A
straightforward application of Stirling’s formula then gives

P(X = kqgM) = P(X = E(X)) = (1 + o(1))2nq(1 — g)kM)~"/2.

Let R; be the number of X; that contain j elements. Then

/-1

/—1 ]PJ .
Pax(B(B.q)) <Y P(R. = By|X = kqM) = Z X P()?J\j ;\qRAZ) By)
0=0 =0
/-1
= 0(vM) " P(X = kqM A Ry = By). (3.6)
0=0

Let
N (K, -
pj =P(Xi| = j) = i) (I—q).
Moreover, define the set of integer sequences

k—1 k—1
A= {(bo,...,bk_l) €N':> bj=M—Bjand »_jb, =qu—kBg}.
j=0 j=0

Then
/-1

P(X =kqM ARc=Bp) <Y > (b b B) (Hp,) Py
(bo ,,,,, hk,I)E.A 0> k=1, 26 =0

0=0

Now observe that the summand can be rewritten as

k—1
e B 11 (W
By bO, . bk 1 =0

Z < M — B() ) A <k) bi < (§ (k>)M_B’} — (2]{ _ I)M_B{)'
(bos-sbr—1)EA bo, ... by j=0 J i=0 J
/—1

Thus, we have
M
P(X =kqM ARe = By) < ) (B )q"un — MR =t
0

Also,

—_

0=0
/—1

< ZMG’ M e*kMH(q)(zk o 1)M7(|U\ . (2/< o 1)79
= /U]

< /M/ </]|\[4]>(2k . l)M—/\U\e—kMH(q).

The claim then follows by substituting the above bound into (3.6). L]

As already mentioned, the above lemma gives us a bound on the probability that a
subset of the (£ + 1)-core with a given number of vertices and total degree is maximal



The Multiple-Orientability Thresholds for Random Hypergraphs 887

/-dense, assuming that the degree sequence is given. In particular, we work on the
probability space of stage 3 of the exposure process. In order to show that the (7 + 1)-
core contains no /-dense subset, we will estimate the number of such subsets. Recall that
X4p(d) denotes the number of subsets of Hgqx with |BN,41] vertices and total degree
lg - kM, ]. Also, let X((;[); denote the number of these sets that are maximal /-dense. As
an immediate consequence of Markov’s inequality we obtain the following corollary.

Corollary 34. Let B(q, ) be defined as in Lemma 3.3, and let d be the degree sequence of
the core of Hypk. Then

P(X) >0 d) < X,5(d)Pas(B(q. B).

By applying Lemma 3.2 we obtain that H, .., does not obtain any /-dense set with
less that 0.6n vertices. In particular, this is also true for C, and so it remains to prove
Theorem 2.2 for sets of size bigger than 0.6n > 0.6N,, ;. We also observe that it is sufficient
to argue about subsets of size up to, say, (1 — e ,0/2)N,, 1, as (3.5) implies that for small
o all larger subsets have density smaller than /. Moreover, the total degree D of any
/-dense subset with BN, vertices is at least k/ - BN, that is,

D=k- q]\~/I/+1 = ki - ﬂN/_H <k- q]\~/1/+1.

By (3.3) and (3.5) we infer M,,; = /(1 — ©(5)). Combined with the above inequality this
implies that g > (1 + ©@(J))S. Note that as each of the vertices in C has degree at least
¢ + 1, the total degree of the (£ 4 1)-core with a /-dense subset with SN/, vertices and
degree ¢ - kM, satisfies

kM1 > q-kMsoq + (¢ + 1)(Nopt — BNssr)

(/ + 1)1 = PN/ G683, ¢+ DA —p)
kM; i = k¢ ’

=qg<1-—

where the last inequality holds for any sufficiently small 6. Therefore, we fix f and g as
follows:

_ (+DHd = p)
kt '

With Lemma 3.3 and Corollary 3.4 in hand, we are ready to show the following.

06<p<1l—eyp0/2 and /(14+00)f<g<1 (3.7)

Lemma 3.5. Let myy; and nsyy be as defined in (3.2) and let £ be the event that (3.3)
holds. Then

P(XY) > 0) < B(X, g|€)(2° — 1yt =/t . /st HB) -k H) 0@ 4. (573

Proof. Let & be the event that X, < n3E(Xq,ﬁ | £). Markov’s inequality immediately
implies that P(&; | £) > 1 —n 3. If d is a vector, we write d € {€ N &} to denote that d is
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a possible degree sequence of C where the events £ and & are realized. We have
P(X\)>0) <P(XY) >0|&NE)+PE)+PE)
= > P(X}>0/&nEandd=d) Pd=d|&ENE)+0n™)
de{En&y)
= > PX>0[d=d)-Pd=d[&NE)+0n).
de{eng;}
By applying Corollary 3.4 we infer that
P(X5>0) < Y Xop(d)Fy(B(.f) Pd=d|ENE)+0m™)
de{eng;)
< EX 18 Y Py (Ba.p)Pd=d| & NE)+0m).

de{Eng;)

Note that the assumption de {£N&) implies that the number of vertices N/, of d is
ns41 +6°n and the number of edges M, is msy + 6°n, by £. Further note that for
sufficiently small ¢,

My <mppr + 80 < (1= O(8) nyr + 8’0 < (N — O(S)n.

Using Stirling’s formula, we obtain

My (N \ .
Qﬁﬁ/ﬂ) = </ﬁN/+1> = exp((ns1 H(f) + 0(°n)).

Thus, applying Lemma 3.3 we obtain uniformly for all d € {E€N &} that

Pa,k(B(q:ﬁ)) — (2k _ 1)m/+1—/f"/+1 . e/n/+1H(/f)—km/+1H(q)+0(53n)'

The claim follows. U
The following lemma bounds the expected value of X, s conditional on &.

Lemma 3.6. There exists 09 > 0 such that, whenever 6 < dy,
E(Xqp | €)

k/(l—q))

< exp (W+1H(ﬁ) —nz41(1 —ﬁ)lé*( 1=p +0.4- ke “Ny410 + 0(52”)),

é*
where I:+ is the rate function as defined in (2.1).

Proof. Lett = |BN,,|. Conditional on £ there are
(N/+1) _ et H(B)+0( )
t

ways to select a set with t vertices. We shall next calculate the probability that one of them
has the claimed property, and the statement will follow from the linearity of expectation.
Let U be a fixed subset of the vertex set of C that has size t. We label the vertices as
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1,...,Ns41 so that the vertices which are not in U are indexed from ¢ + 1 to N,,. Let the
random variable d; denote the degree of vertex i. We recall that dl,alz,...,d,;,/+l are 1.1.d.
(¢ + 1)-truncated Poisson variables with parameter A = A, =&+ 53 and mean

QA7)
OAZ+1)
By Taylor’s expansion of u; around ¢ we obtain

_ . 97 3
HA_éQ(é,/—i—l) +0(57).

(Here and below, the Landau notation ® indicates a positive term.) We will calculate
the probability of the event 22:1 d; = qgkM,, conditional on £. This is equivalent to

pa = A

calculating the probability of the event Zfi’j "d; = k(1 — q)M, conditional on &, which
by using (3.2) is the same as the event

Ny

i, 0l 1-

q 3
Nom—t 0@/t 1-p 00

i=t+1

Let us abbreviate:

_ . Q&) 1—¢g 3
TR R
Using the lower bound of ¢ from (3.7), we obtain
L& B .
S =G ey TP 00 >0

As Ix(x) is a non-negative convex function and Ix(ua) =0, then Iz(x) is a decreasing
function for x < ua. Therefore, by Lemma 2.8,

Ny
P( Z di=z(Njp1 —1) | 5> = exp (—nz41(1 — B) - Ia(2)(1 + o(1)))

i=t+1

and
In(z) = z(log T: —logA) = T: + A —1log Q(T-,/ + 1) + log O(A, 7 + 1),

where T, is the unique solution of

g QT
T+ 1)
(By Lemma 2.8, the function I4(z) is strictly positive for z # u,.) Note that
0Ix(z) ——£—|—1~I- e M) ——i—l- OAY) pa—z
0N A OA/+1) A OA‘+1) A

But recall that A = & +63 = &* — 6 + 6°. Using Taylor’s expansion around &* to write
IA(z) in terms of I (z), we obtain

s —z
.

1Mﬂ=k4ﬂ—(M§

3 2y _ 1. ke a—B 2
)wié>iM6wJAn g 000,
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The last equality holds as

1;‘1(1 — ers0 + O(32)).

Z= Moy
Since f > 0.6 we have ¢ — f§ < 0.4. Also, pe+ = k. Therefore,
ING) > 1) — o o 0 £ 0) (38)

Note that
Uez) _ log T, —log &".
0z
By Taylor’s expansion of I¢(z) around
—yl—a
zZy = k/l —B
we obtain
I (z) =1} kel=d +0 ey k/l;q log < + 0(5%). (3.9)
) : - ﬂ " 1— ﬁ TZo o

By Claim 3.14 the function y; is increasing with respect to t. This implies that T, < &”
as zo < k/, whereby log(£*/T:,) > 0. Also recall that e;, denotes the value of the partial
derivative of

1 10(t,7)

k¢ 0@t/ +1)

with respect to t at t = £*. Again, Claim 3.14 implies that this is positive. We therefore
obtain

Io(z) > I (k/i_‘é) — 0. (3.10)
Combining (3.8), (3.9) and (3.10) we obtain
1—¢q ke 04 2
I I (ke——3) %00 22 5 0(6?).
The proof is then completed by using the fact that P(£) = 1 — n~(), O

Lemma 3.5 along with Lemmas 3.3 and 3.6 yield the following estimate.

Corollary 3.7. There exists dg > 0 such that, whenever § < dy,

P(XY) > 0) < O(m™) + F(B.q:7),
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where
F(B,q;0) = (Zk — 1)’”/+1—/ﬁnz+1

X exp <(/ + Dngp  H(B) — kmgp1H(q) — ngs1(1 — Pl (kfl(l__ﬁq)>

k¢
+04- ERLETE S+ 0(5%)).

Let us abbreviate:

k —
FB.a) =+ DH() + ¢ (1 = priog — 1) —ke - (q) — (1 = ptee (1)

By using Corollary 3.7 we infer that

k _
11ogF(/f,q;/)<f(ﬁ,q>+ek,f~5-kf(H<q)—log(z Dy 0’,4*) 0(5%).
Ny k exs ¢

We bound the product e, - ¢*, and therefore the function log F(f3, q; /), using the following
technical result, whose proof we postpone until later, where we bound f(f, q).
Claim 3.8. Let ey, be the value of derivative of

xQ(x,7)
k- Q(x,/ + 1)

with respect to x at x = &*. Then ey, - £* > 0.77.

By the above claim, e;, > 0.77/&". So
1

n/41

_ log(2F —1)
k

We will now prove the main tool for the proof of Theorem 2.2.

log F(B,q;¢) < f(B.q) +exs 6kt <H(q) + o.52> +0(8%). (3.11)

Lemma 3.9. There exists 6 = S(k,/) > 0 such that if 0 < < 5 the following holds. With
probability 1 —n=°W, for any 0.6 < f <1 —e0/2and p < q < 1— (£ + 1)(1 — B)/kt, we
have X[(;/; =0.

Proof of Theorem 2.2.  First, note that it is enough to argue that with probability

1—o0(1) the (/+ 1)-core does not contain any maximal /-dense subset; this follows

from the discussion after Lemma 3.2. Moreover, by Theorem 2.4 and Proposition 2.3,
n—1

it is enough to consider the (£ + 1)-core C of H,,, where p = ck/(}~}). The proof is
completed by applying Lemma 3.9, as we can choose é > 0 as small as we please. |

To deduce Lemma 3.9 our main tool is the following assertion.

Claim 3.10. For any k > 3 and ¢ > 2, there exists C > 0 such that for any ¢ < 1/e the
following holds. For any 0.6 < < 1—¢, and q as in Lemma 3.9, we have

f(B,q) < —Ce.



892 N. Fountoulakis, M. Khosla and K. Panagiotou

Proof of Lemma 3.9. We show that for 6 small enough the rest of the right-hand
side of (3.11) is negative. First, let §; = d1(k,/) be such that for any ¢ < J; we have
1 —exs0/2 > 0.999. We will consider a case distinction according to the value of q.

If ¢ < 0.99, then < 0.99 as well, and Claim 3.10 implies that f(f,q) < —0.01 - C, where
C > 0 depends on k and 7. Then let d, = d,(k,/) > 0 be such that for 6 < J,, we have

log(2k — 1)

ey 0kt <H(0.6) -

+ 0.52) + 0(8%) < 0.005 - C.
Here recall that f > 0.6. So for any ¢ < min{do, d1,0,}, (3.11) implies that
1 log F(fB,q;¢) < —0.005- C.
Ny

Assume now that ¢ > 0.99. The monotonicity of the entropy function implies that

B log(2¥ — 1)
k

log(2k — 1)

k>3
T +0.52 < —0.072.

H(q) +0.52 < H(0.99) —
Now with 0.6 < f <1 —e,0/2 as in Lemma 3.9, the bound of Claim 3.10 substituted

in (3.11) yields

1
——log F(B,q;¢) < —Cexy - /2 + O(5%).
Ry41
In turn, this is at most —Cey, - 0/4, if 0 < 03 = d3(k,/). The above cases imply that if
& < min{do, 81,0, 83} =: 5, then with probability 1 — e~%"+1) — O(n~?) we have X/} =0,
for all f and g as in Lemma 3.9.

The rest of the paper is devoted to the (rather technical and analytical) proof of
Claim 3.10 and contains a detailed analysis of the function f. We proceed as follows. We
will fix arbitrarily a f and we will consider f(f,q) solely as a function of gq. Then we
will show that if gy = go(f) is a point where the partial derivative of f with respect to f
vanishes, then f(f3, q9) < —Cie. Additionally, we will show that this holds for f(f, ) and

f(p 1=+ 1A = p)/kL).

Bounding f (B, q) at its critical points. Let § be fixed. We will evaluate f(f,q) at a point
where the partial derivative with respect to g vanishes. To calculate the partial derivative
with respect to ¢, we first need to determine the derivative of I(z) with respect to z.
According to Lemma 2.8,

I:(z) =z(log T, —log &™) —log Q(T.,/ + 1) — T, + log Q(&",/ + 1) + &7,

where T, is the unique solution of

oT:,7)

=T, =2
: OT../ + 1)
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Differentiating this with respect to z, we obtain

’ _ ® z de de Q(Tza/)_Q(TZs/+1) de
[e(z) =log T: —log & + 7 = = O(T../ +1) dz

_ .,z dT; o(T.,/) dT,
=logT:—logc + 0 -~ o/ +1) d-

=log T, —log&”. (3.12)

Note that in the differentiation of f we need to differentiate I (kZ(1 —q)/(1 — f)) with
respect to ¢. Using (3.12), we obtain
() gy
0q 1—p
where H, is the unique solution of the equation

k(1 —q) _ Hy- Q(Hy,0)

1-p O(H,./ +1)

Observe that the choice of the range of g is such that the left-hand side of the above
equation is at least Z+ 1. So, H; is well-defined. Also, an elementary calculation shows
that the derivative of the entropy function, H'(q), is given by log((1 — ¢q)/q). All the above
facts together yield the derivative of f(f,q) with respect to g:

(log H; —log &™),

1—
orb.a) _ k¢ (— log(q> + log Hf).
dq q ¢
Therefore, if gq is a critical point, that is, if
B _,
Gq q4=4q0
then with Ty = H,,, qo satisfies
1—q0 k¢(1—qo)  ToQ(To, /)
Ty = d = . 3.13
S Ty R TV Y G139

At this point, we have the main tool that will allow us to evaluate f(f,qo). We will use
(3.13) in order to eliminate T, and express f(f3,qo) solely as a function of ¢.

Claim 3.11. For any given f € (0.6,1), if qo = qo(f) satisfies (3.13), then

_ tog (o1 <2—1><1—q>>(“<<1—ﬁ><kf—é>>ﬁ) 314
£(8.490) log(e qo< . va—ci—p) ) G

Proof. Note that

! (kf(l—qo)) _ k—q
(M)

To QL+ )
l—ﬁ log 5* +log<eT0Q(T0,/—|— 1))

3.13) k/(1 — qo) 1—qo e Q(E L+ 1)
T 1B 1°g< m )“‘)g(eToQ(To,Hl))'
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Therefore,
(kA —qo)\ _ 1 —qo _ e Q(To,/ +1)
_(I—B)Ig*( =5 ) =—k/(1 qo)log( o ) +1 ﬁ)log( FOCEL ) )
= —k/(1 — qo)log(1 — qo) + k¢ log(qgo) — k/q010g(q0)

e Q(Ty, + 1)
+(1 _ﬁ)log(ef*Q(é,/—i— 0 >

Also, the definition of the entropy function implies that

—k¢/H(qo) = kqolog(qo) + k(1 — qo) log(1 — qo).

Thus
k(1 — qo) ,(eTQ(To, 0 + 1)\
—(1 =Pl <1—ﬁ0> — k/H(qo) = log (5116/<e¢Q(5:j/_|_1)> ) (3.15)
Let
o =)
: =5

Now we will express e’°Q(Tp,7 + 1) as a rational function of Ty and z,. Solving (3.13)
with respect to eT0Q(Tp,/ + 1) yields

1, 10Q(To,7) _ el Ty

Z0 Z0

eDQ(To,/ +1)=e

T{
(Q(To,/+1)+eT‘);’>.

Therefore,
/ —1
el Q(Ty,/ + 1) = 7;0’(;% — 1) .
Note that
kf(1—qo)  <"(1—qo) _ (1 —qo)(k/qo — & (1 — B))
1—-p qo (1—B)q0 )

zZy) — T() =
Thus we obtain

TO/-H
log(e™Q(To, £ +1)) = log<>

CIDIN <<é*(1—qo))”1_ (1—P)qo )
-8 0 (1 — qo)klqo — & (1 — p))/ ]

B (5*)/*1(1—%)/, 1- )
- 10g( /1 0 klqo—&(1—p))

Also, by definition of £* we have

_E0E)
Q&+ 1)
which is equivalent to

ey
k/‘é( 0.7+ 1) )
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and implies

E* * (é*)/Jrl//!
; =-2_7°°
e Q(é b / + ) k/ _ é* *
Substituting this into (3.15) and adding the remaining terms, we obtain (3.14). U]

We will now treat go as a free variable lying in the interval containing g, and we will
study f(f,qo) for a fixed f as a function of g¢. In particular, we will show that for any
fixed f in the domain of interest, f(f, qo) is increasing. Thereafter, we will evaluate f(f3, qo)
at the largest possible value that gy can take, which is

Y
kt ’

and show that this value is negative.
Claim 3.12. For any k > 3,/ > 2 and for any f§ > 0.6, we have 0f(f,qo)/0qo > O.

Proof. The partial derivative of f(f, qo) with respect to qo is
0fBoao) _ k1= 1= k(1—p)

4o q@0  1—qo Q@ kigo—&(1—p)
Since
(Z+ 1)1 —p)
<l——F
qo i/
we obtain
_1—/3 5 _ k¢ .
1—qo [+ 1

Also, qo > f and ¢ < k/. Therefore,
kfqo—E(1 — B) > ki —k((1 — B) =2Bkd —kt = k((28 — 1).

Substituting these bounds into

af (B, q0)
290
yields
0f(Boao) Kt _ k2 (U=B) 1—p K —t(U-p) k> 1P
dq0 g0 [(+1 4o 2p—1 4o /+1 2 —1
y kl —¢1—=B) k/? _1-B >k(/— /2 _1-B >
Tkt —(C+ 1)1 —=p) L+1 2—17 /+1  kQ2B—1)
(-t
[+1 k(2B—1))°
But

(1=
/+17 kQp—1)
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as k/(2f —1)> (£ + 1)(1 — ), which is equivalent to > (k/+¢+1)/2ké+£+1).
Elementary algebra then yields that (k/ + ¢ + 1)/(2k¢ 4+ £ + 1) is a decreasing function in
k and /. In particular, its maximum is 0.6 for k =3 and / = 2. Since f§ > 0.6, the above
holds. =

We begin by setting
DU —p)
k¢
into f(f3,qo) and obtain a function which depends only on f, namely

. 4 (2k _ 1)(/+ 1) >/ ki — é* )lﬁ
h(f) := log <B <(k/—(/+1)(1 —B)) kt —(1+¢+ (1 —P)

¢+ 11—\
x(l—k/ ) )

Bounding f(f,q) globally. To conclude the proof of Claim 3.10 it suffices to show that
there exist &y and C > 0 such that for any ¢ < & the following bounds hold:

h(B), f(B, 1 = (£ + 1)(1 = B)/k/), (B, p) < —C, (3.16)

for all 0.6 < § < 1 —&. These three inequalities will be shown in Claims 3.17, 3.18 and 3.19,
respectively. We will first compute bounds for ¢* which we will require to bound the above
functions. We start by proving two technical results, where we obtain bounds on k/ — &*
and ex, - &*, respectively. One of them (Claim 3.8) was also used in the proof of (3.11).

qo =1

Claim 3.13. Let k > 3,/ > 2 and let &* satisfy (2.4). Then &* > k/ — 0.36. Moreover, k! —
& <019 fork=3,/>4and k >4,/ > 2.

Proof. Recall that

gy
= o vy
By definition we have
kt Q(¢",7) P(Po({") = /) 1
= e (3.17)
&0+ Q&L+ 1) Yot TR
Let
I e S (S0 S (30
S '_;(/—i—l)...(/—i-i) and 8= G L r )
Substituting
k¢
.

T 1118
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we obtain
o () .
G+ G+
By (3.18) we have
ke - 525 k¢
== —_— 1 2 1. -1
S>& 1 :S>{+1 (3.19)
So
g k{ S kj
14187 2
and thus &* > 3//2. Therefore we obtain
k//2 (k£ /2)? (k¢ /2)?

S >

1+ D)+ T D2 +3)

The right-hand side is increasing in k and 7. Therefore, substituting k =3 and 7 =2 we
obtain § > 2.2, implying that

& > (11/16)k/ > (33/16)C. (3.20)

In order to improve the bound upon k/ — &*, we use the fact that k/ — &* = ¢*/S, and
show that §/&* > 1. We obtain

- ! (&) (&)
Z(/+ (+i) /+1<§(/+2)...(/+i)+z(/+2)...(/—|—i)>

i>/+1
(320 1 (27)1 )
> {+ —_ ]
/+1< ;](/—I— 2)..(+10)

For ¢/ > 3 observe that the term fori=7/+1 is

(2¢)-1 22

CFDl+3) .07+ /=D -

For / = 2 we have

20y > 4
> “+2)..(+0) >;(z+i)(2+i—1)...5 > 1.

iz/+1

By (3.17), we have

1

v*),_l ]

i>1 7+1)..(/+)

kl —¢& =
and so

1 (&)t (k¢ — 1)~
T VR e e Rl N ey

/41 i>/+1
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Let
(k¢ — 1)1
+1D...(/+i0)

Clearly Si(k,?) is increasing with respect to k. Taking the derivative with respect to 7, we
obtain that

0

o7Sik,() = S(k/( Z/ﬂ)
’ Si(k,?) J
>S(k/<_]z:/+]> / <._ /+j_1>

1

>S(k/)< i—1 l._1)l>/>+1S(k/)<2+/+1_1>>O.

Si(k,/) =

4 {+i—1  (+i { 20+ 1
Therefore, for all i > / + 1, Si(k,/) increases with respect to /. We have
1 1
<0
D it Si(3»3) E 15i(3,3)

i

1 1
< <0
YisaSi3.4) T Y, 83,4)

>

and
1 1
< < 0.19
YizsSi42) R 5i4,2)
For the case (k,/) = (3,2) we compute £ using its definition which gives us k/ — &* < 0.36
for this case. L]

We are now ready to bound e, - £".

Proof of Claim 3.8. We write

X0(¢) _ xQLo/+ D) +PPo(x) =/) _ i
O(x,2+1) o(x,2+1)

1 x 2 oo
et e T
By definition,

1 28 3T
K/ — 1 — 1 7y ot
- a 1 & SR L
<</+1)! temit et )

1 2 32
+ + + -
=kt — &) 12! T 73! T 7!

€kt

Py %2
1 ¢ ¢
ottt T

/41 C+DE | (+DE
TICESV SRS
(ke — &) ( v T T v )

*2

1 < e
At T tee t
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1
1 PV
=1—(k/—é*)'<1—/t -(1— (GARV ))
¢ W)+ i+ o+

73!

. (+1  kt—¢&
— 11—kt — - Moo
(k¢ 5)(1 & T )
B o L1 ke
=1—(k/—=¢ )<— z +5>

Thus,

U B _/—I—l_i_kl
Tkt k! e e
L (41 (1 k=

“wtE Tk &
=;*<1—(k/—é*)+k/_é )

k
By Claim 3.13 we have k/ — £* > 0.36 for k =3 and 7/ > 2. Plugging this value into the
above equation, we obtain that for k = 3, ex, > 0.77/&". For other values of k and /7 we
use

eps &> 1— (k¢ — &)
which by the second part of Claim 3.13 is at least 0.81. U]

Claim 3.14. For every t > 1, the function x — xQ(x,t — 1)/Q(x,t) is increasing for x > 0.

Proof. Set
1 1

11 2
C=Db S+ @mtamt

gi(x) =

t!

Then

xQ(x,t —1)  x(Q(x,1) +P(Po(x) =t — 1))
ox,1) O(x,1)

To see the claim it thus suffices to show that

= x + gi(x).

—g(x) < 1.

But

L 2x 3x?
1 (1+ + (t+\2)! + (th)! +

1

il

0!
1) x 2 2"
t—1). ('+(r+\1)!+(r12)!+'”)

—g,(x) = (

We therefore need to prove that

1 1 2x 3x2 1 X x2 2
(t—l)!((t+1)!+(t+2)!+(t+3)!+ )<(t!+(t+1)!+(t+2)!+ :
(321)
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We compare the coefficients on both sides one by one. Note that

1 1
ENE

holds as it is equivalent to (,*,) < (*). Moreover,

t—1
2 < 2 <st<t+?2
(t—1DNt+2)! tl(t+ 1)! )

Next, the coefficient of x* for s > 2 on the right-hand side is

L(s—1)/2] 1 1

’ ; (t+i)!(t+s—i)!+ (t+[(5_1)/2])!2
[(s—1)/2] 1 -
2 ; T if s is odd.

if s is even,

Note that in any case we have less than s+ 1 summands. So it suffices to show that
each one of them is larger than 1/((t — 1)!(t + s+ 1)!). This is indeed sufficient as the
coefficient of x* on the left-hand side is equal to (s+ 1)/((t — 1)!(t + s + 1)!). But this is
the case, as for any 0 < i < s we have

i i
C—Dts+ D! S Gt)lits—i)!

< [[e+h<]Je+s—j+D.
j=0

j=0

This now concludes the proof of the claim. ]
We immediately obtain the following.

Corollary 3.15. Let k > 3,/ > 2 and &* satisfies (2.4). Then

0(&%.7)

“ 0@ 1)

is increasing with respect to .

Claim 3.16. For any k > 3 and / > 2 we have " < k/ and
e M (kt) - (k¢ — 0.36) ( (—(k/ /4064y > ) -
1 —exp ]

&>kt - /1 %/ =072

Proof. We have

0(&%.7)

K= e

(<%, 7)
(&7 +1)

> 1
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for all ¢* and /, we deduce that £* < k/. By Claim 3.13 we know that for all k > 3 and
(>2,& >k{—0.36. In order to improve upon the above bound, note first that

&/ +1) ., PB(Pol&) =) . B(Po(k/ —0.36) = /)
o MM E PN M T o —036.0)

Let X be a Poisson random variable with parameter u = k/ — 0.36. Thus, Q(k/ — 0.36,/) =
1—P(X </ —1). We define 6 =1—(/ — 1)/u. Now, for any ¢t < 0 we have

&=kl

(3.22)

P(X </ —1)=P(X < (1 —0)u) =P > 17
E(e™)  exp(—u+pu-e)

S el exp(u(1 — o))

Setting t = log(/ — 1) — log(u), we have

e o —(u—¢+1)7
<= —_— _ . .
PX</-1)< <(1_5)(1—5)) <exp< Gy ) (3.23)
The combination of (3.22) and (3.23) leads us to the stated lower bound. U]

In what follows we use the definition

| 036\ —(k¢ — ¢ +0.6472\\ !
tk, /) = <I—M) (1—6"19( 2kl —0.72 >) '

We are now ready to deduce the inequalities in (3.16), starting with a bound on h(f).

Claim 3.17. For any k > 3 and ¢ > 2 there exists Cy > 0 such that, for any 0 < e < 1 and
any 0.6 < f < 1—¢, we have h(f) < —Ce.

Proof. By Claim 3.16, we have

efk((k/)/-&-l

k¢ —t(k,?) - 7

<& <kt

Using these bounds for &* we obtain

h(p) —(t+1)p k=1 +1) >((1ﬂ)
el (k/—(/+1)(1_5)

k) G N e —p)Y
X(k/—(/+k/+1)(1—,8)) (‘ % )

_ (2" — 1 )M_B)O ¢t —ﬁ))““"”
& pRR %

(C+ ke + 1)1 =p)\ P
X (1 . % >

y ((,/ +1) - t(k,/))lﬁ <1 _(+n —ﬁ))"”
BE/I=F) /] k¢ '

(3.24)
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Using the inequality

2
1—x)'< X
(1—x) exp(x—|— 1'4>

for x < 0.4 we can deduce

ﬁ—ﬁ/(l—ﬁ) =(1-(01- B))—/f/(l—/f) < PHU=PIB/1.4 (3.25)
Also,
(¢ + 11 —p)\~" (/+ D1 =p)  (/+1D*A—=p)
(1 T K > S eXp{ K T 1akep }
(147 +ko)(1—B)\ "V (1=B)L+/+kl) (1—=PPA+/+k0)?
(1 — % ) < GXP{ k2 k2/3 }’
H1 =\ 1)2(1 — p)?
(1_(/+ li(/ ﬁ)) <exp(—(/+1)(1—/3)—(/+ )2;/ h) )

By Stirling’s formula and (3.25) we have

(/+ 1)y (1+1/¢) exp(¢) B(1—p)
AR ey P (ﬁ 14 )

Now combining the last two terms in (3.24), we obtain

((Hl)t(kf))’(l _ Mu—ﬂ))
k¢

BBI=B1/1
- ((1 +1//)/-t(k,/)>1_ﬂ
NZG
B(1—B)? (/ + 1)1 —B)
XeXP(ﬁ(l—ﬁ)‘f‘M—(l—ﬁ)—M)
3 <(1 + 1//)/-t(k,f)>1ﬁ
- T
B(1—B)? 1\ (/ + 1)(1 — p)?
xexp<ﬁ(1—ﬁ)+14—(1—ﬁ)— <1+/>2k>'

Also, recall that

036’ —(kt — ¢ +0.6472\\
t(k’/)_<1_k/) (1_‘”‘1’( %7 —0.72 )) :

Substituting these bounds in (3.24), we obtain

eh(ﬁ)<<( 21 )‘,<1+1//>/exp(ﬁ+f“m—1)>l"‘ 526)
exp (k — Axsp) \/27 (1 —exp (%W)) ) .
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where

_ _ 201 _ R .
Aivp gy L=PF (A DA=f)  CHIDA—f) (A= p)A+K +0)

14 % L4kl ) k72
(1= BYR(1 + K/ + )2 1\ (/4 1)(1 =)
+ K2/ - <1 + /> 2l
_ (1=P)p , (+1)A—=p)  (+1D*A—B)  (1—=Pp)YL+kl+7)
S 7 R T i S T R /2
N (L=BP(+k/+4) 1 (£+1)(1—=p)
R Y

(1—pp  1-p 1\ , (1—p) 1\ 1-p/1 1
4 <1+/>+ 14K (1+/) T <2k/+1+2k>

— B)2 2
(G re).

:[34_

l kt k

We note that each term in Ay, is decreasing in k and /. The partial derivative of A,
with respect to f§ is given by

S Ay 12 1\ 1-p N 171 1
Kb TTag T 5 (+/> o\ T7) 7\ ae T

2(1—ﬁ) 1 1\?
-/ (k/+1+k>

Observe that each term (with the sign) in

OAk,/,,;
op
is increasing with k and /. Let
2k —1 exp(1)
Pkl B) = <> and  g(k/) =
exp(k— Airg) Vot (1 —exp (FLE0ET))

One can check that
"D < ((pk, ¢, B)) gk, )~

We start with the case k > 4. First note that A:LZ,lf = —519/448 + (297/448)p, which is
negative for all f < 1. Also, as (2 — 1) - exp(—k) is decreasing in k and Aisp is decreasing
in k and /, we infer that for k >4,/ > 2, thus the maximum value of p(k,Z,f) is
p(4,2,0.6). Direct substitution yields p(4,2,0.6) = 15¢73237/1120 < 0.84. We note that the
partial derivative of

(k¢ — ¢ +0.64)
2%t —0.72
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with respect to / is

2kl — £ +0.64) <k k=l 0.64)k>

2k —0.72 2k —0.72
_2(k/ — 7+ 0.64) k—1— (k¢ — ¢ + 0.64)k
2k —0.72 2k
2kt — ¢ +0.64) k_l_/(k—1)+0.64
2k —0.72 2/
2kt —£+0.64) (k—1 0.64
T 2kl —072 < 2 2/) <0 (327)
and with respect to k it is
B 20(kt — ¢ + 0.64) B k¢ — ¢ +0.64
2k —0.72 2k —0.72
. _2/(k/ — 7 +0.64) 1 k¢ — ¢ +0.64
2k —0.72 2k
20kl — ¢ +0.64) [ 1 1 0.64
<— S : .
= 2k —0.72 (2 + 2k 2k ) 0 (3.28)

We can now conclude that
J2Rl(1 — e~/ +0642 2k ~0T72)

is increasing in k and / and therefore g(k,/) is decreasing in k and /. Direct substitution
yields that g(3,2) < 0.91, which completes the proof for k > 4,/ > 2.
For the case k = 3, first note that

bsp = 229/875 — (52/125),

which implies that Asspz is maximized at f = fma. = 229/364. Therefore, for 7 > 5,
p(3,7, ) is maximized at p(3,5, fmax). Numerical computations show that

p(3’ 5’ ﬁmax) — 76750231/25480 < 0.98.

For the cases / < 4, first note that

, p>0

34 = —1/21—-17p/96 < 0.
Now let

m(k, ¢, B) = p(k,Z, B) g(k, /).

Recall that Af%/g is increasing in k and /. Also, Asz4p is decreasing in . We can
therefore conclude that for all f > 0.6 and / < 4, m(3,7, ) < m(3,7,0.6). One can check
that m(3,3,0.6) < 0.93 and m(3,4,0.6) < 0.62. The case / = 2 is more tedious. We substitute
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k =3,/ =2 in (3.26). Then

2 1-p
SN 1—p) ( 7 ) 1+ 1/2Pexp(B+ L2 — 1)
)

) i (1 -exp (440))
7 ? 2.25 - exp(—1
< ( 3_A F_ B0 > ' S —(3.64)2 (3.29)
exp (3= Aszp — 5 — F55) Van - (1—exp (Si3%0))
Now we check that the partial derivative of
B, B(1—p)
Asapt 3+ 75
with respect to f is
1 99 33 1 B 51 13
! _—— = —— _— _—— = —— _—
2573758 = T TP T3 728 75 T a8l
p<t 25
X ﬁ’

which implies that the right-hand side is decreasing with respect to f for f < 1. We
complete the proof by calculating the above expression for f = 0.6, which gives ¢"#) <
(0.91)!-F, U]

The following claim, which bounds f(f, ), also imposes an upper bound on e.

Claim 3.18. For any k > 3 and ¢ > 2 there exists Cy > 0 such that the following holds. For
any ¢ < 1/e, if 0.6 < f < 1 — & we have

f(B.B) < —Cae.

Proof. By Lemma 2.8, it follows that substituting ¢ = f in

k(1 —q)
1—p
we have
k{(1 —
So,

f(B.B) = —(k¢ —¢ = DH(B) +£(1 — ) log(2* —1).

Note that for any k > 3 and /7 > 2 this function is convex with respect to 8, as —H(f) is
convex and the linear term that is added preserves its convexity. Note that —H(1 —¢) <
—¢elog(1/¢), whereby it follows that there exists a constant C, = C;(k,/) > 0 such that for
any 0 < & < 1/e we have

f(l—¢1—¢) < —Chelog(l/e) < —Cae.
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Since H(0.6) > 0.6, we have
£(0.6,0.6) < —0.6(k¢ — ¢ — 1) + 0.4/ log(2* — 1).
The derivative of this function with respect to k is

2K1og 2

2k —1"

A simple calculation shows that the second summand is less than 0.32/ for all k > 3. The
derivative with respect to / is —0.6k + 0.6 + 0.4log(2¥ — 1) which is again a decreasing
function in k and less than —0.42 at k = 3. So, we may set k = 3 and / = 2, thus obtaining
£(0.6,0.6) < —1.8 4+ 0.8log7 < —0.24. The above analysis along with the convexity of
f(B, p) implies the claimed statement. ]

—0.6/+7-04

Claim 3.19. For all k >3 and £ > 2, there is a C3 > 0 such that, for all ¢ and for all
B<1—g

fB 1=+ 1)1 = B)/kt) < —Cse.

Proof. Substituting 1 — (£ + 1)(1 — f)/k¢ for q into the formula of f, we obtain

f(ﬂ U+ DHd—p)

% ) =/ +DHP)+ /(1 — p)log(2k — 1)

k¢ — (£ + 1)1 —p)
—k¢H
(%
Note that for f = 1 the expression is equal to 0. To deduce the bound we are aiming for,
we will show that in fact f(f,1 — (£ + 1)(1 — )/k/) is an increasing function with respect
to . That is, we will show that its first derivative with respect to f is positive for any

p < 1. Finally, Taylor’s theorem based around f# = 1 implies the claim.
We get

af(ﬁ,l _ (/+1}:(/1—ﬁ))
op

) — (1 =P +1).

=(/+1)log<1;ﬁ

) —/log(2F —1)

(¢ + (1 —p)
Kkl —(/+ 1)(1—p)

Substituting for I:(/ 4 1) the value given in Lemma 2.8 and since

EQE 1) =T ke — &7,

—(/—I—l)log( )+15*(/+1).

we obtain for f <1
3 1 — ¢+Db=p) _ _ /+1 oy
of (. —H) :log<(k/ (/ + 1)1 ﬂ)) @1y /+1*>'
op ¢+ 1)p k¢ —¢&
We will show that the fraction inside the logarithm is greater than 1. Note first that

K=+ D(1=B) 1 (K —(+1) k=11
7+ 1)p _5< /+1 )“ ( /+1 )H

B
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is decreasing with respect to f, so we obtain a lower bound by setting f = 1. Substituting
fp =1 we obtain

of (B.1 — LEhU=p) [+1 ’ 1
S5 ) eg(((KC) oy LD,
op {41 kt —&*
By Claim 3.16, for all k > 3 and / > 2 we have

e—k/(k/)/-&-l
(1 — o—(k{—£+0.64) /2k/70.72) ’

kt =& <

which yields

/+1 K/ o —(kt—£+40.64)2 )2k —0.72
/ /+ 1 I(1
ks (2,{_1),/'(/—%) > el —e / )
/+1 ki —¢& 2k —1)/(/+ 1)
K p1(] — o—(k(—(+0.64)/2k/—0.72
_ efd—e ) (3.30)
2k — 1)/ (1+1/0)
ltx<e® /) ek/(l _ e—(k/—/+0.64)2/2k/’—0.72)
> — -
e- /{ (2k _ 1)/
Using the bounds /! > /2n/(//e)’ and 1+ x < e, we can further bound the right-hand
side of (3.30) as follows:
/1 (1 — o—(k/—/+0.64)? /2K¢~072) \/277 (1 — okl —/+0.64) /2k¢~072)
e/ ' (2I< _ 1)/ 7 el ’ (2k _ 1)/ '
We note that the partial derivative of
(k=1 + 0.64)°
2ks —0.72

with respect to k and 7 is less than 0 (see (3.27) and (3.28)). We can therefore conclude
that

(3.31)

2 (1 — k0642 2k0~072)

is increasing in k and /. Also the first derivative of the function /(2% — 1) with respect
to k is eX(2¢(1 —log2) — 1)/(2X — 1)?, which is positive for any k > 3. Moreover, the first
derivative of the function ¢*—/~1/(2¥ —1)’ with respect to 7 is e~/=1(2k — 1)~/(k —
log(2X — 1) — 1), which is positive for any k > 3 and / > 2. So we infer that the right-hand
side of the above inequality is increasing in both k and /. Plugging the values (k,/) = (3,2)
into (3.31), we obtain that the right-hand side is greater than 1.2. The above arguments
establish the fact that the derivative of f(f,1 — (£ + 1)(1 — B)/k/) with respect to f is
positive, for all k > 3 and 7 > 2. |
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