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When one takes into account the presence of virtual charged states in the quantum
vacuum, a nonlinear self-interaction can arise in the propagation of electromagnetic
fields. This self-interaction is often referred to as ‘real photon–photon scattering’.
When the centre-of-mass energy of colliding photons is much lower than the
rest energy of an electron–positron pair, this quantum effect can be included in
the classical field equations of motion as a vacuum current and charge density
using the Heisenberg–Euler Lagrangian. Using analytical and numerical methods for
subcritical fields, the intrinsic solution to Maxwell’s equations has been found for
counterpropagating probe and pump plane waves in the presence of vacuum four-
and six-wave mixing. In the corresponding all-order solution for the scattered probe,
a route to vacuum high-harmonic generation is identified in which a long phase
length can compensate for the weakness of interacting fields. The resulting shocks
in the probe carrier wave and envelope are studied for different parameter regimes
and polarisation set-ups. In this special issue, we study two additional set-ups: that
of a slowly varying single-cycle background to highlight the effect of an oscillating
background on the probe harmonic spectrum, and that of a few-cycle probe to
highlight the smoothing of the harmonic peaks produced by a wider spectrum of
probe photons. We also correct sign errors in an earlier publication.

1. Introduction
That real photons scatter off one another due to their interaction on mutual virtual

pairs has been predicted to occur for over eighty years (Sauter 1931; Halpern
1934), with the first low-energy calculations performed by Euler & Kochel (1935),
Heisenberg & Euler (1936) and, independently, Weisskopf (1936). Recent advances
in laser technology (Danson, Hillier, Hopps & Neely 2015) have generated much
interest in measuring this effect using high-power laser pulses (reviews can be found
in Marklund & Shukla (2006), Di Piazza et al. (2012) and King & Heinzl (2016)),
in which the high flux of photons compensates for the very small cross-section
(Berestetskii, Lifshitz & Pitaevskii 1982). In such scenarios where the centre-of-mass
energy of the colliding photons is much less than the electron rest energy, an
effective interaction based on the Heisenberg–Euler Lagrangian in which fermion
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dynamics have been integrated out, is a good approximation (King 2010). Most
scenarios suggested to measure real photon–photon scattering involve a stronger,
polarising ‘background’ pump pulse in which a weaker ‘probe’ pulse is scattered.
The leading-order signal of real photon–photon scattering in such a laser-based set-up
is well described by a four-wave mixing process, which provides signals of modified
probe angular dispersion (Di Piazza, Hatsagortsyan & Keitel 2006; Heinzl et al.
2006; King, Di Piazza & Keitel 2010b; Kryuchkyan & Hatsagortsyan 2011; Monden
& Kodama 2011; King & Keitel 2012), polarisation (King, Di Piazza & Keitel 2010a;
Dinu et al. 2014a,b) and frequency (Lundström et al. 2006; King & Keitel 2012).
Four-wave mixing has been the subject of several experiments (Bernard et al. 2000;
Zavattini et al. 2012; Cadène et al. 2014) and is a planned experiment at the HIBEF
(Helmholtz International Beamline for Extreme Fields) on the European XFEL facility
at DESY (Schlenvoigt et al. 2016).

In contrast, of particular interest in this project was the production of higher
frequencies through real vacuum photon–photon scattering. Such ‘vacuum high-
harmonic generation’ has been studied for a range of field strengths and frequencies
by considering single events of 2n-photon scattering (Di Piazza, Hatsagortsyan &
Keitel 2005; Fedotov & Narozhny 2006), where field strengths of the order of the
critical field were calculated as required for the process to be observable. In the
current study (King, Böhl & Ruhl 2014; Böhl, King & Ruhl 2015), an alternative
route to producing higher harmonics in a vacuum by using arbitrary numbers of four-
and six-photon scattering, was calculated. This can be achieved by solving the wave
equation in the presence of the polarised vacuum current. Such a calculation is similar
to studies of a plane wave propagating in a constant magnetic background, relevant
in astrophysical contexts (Bialynicka-Birula 1981; Zheleznyakov & Fabrikant 1982;
Rozanov 1993; Heyl & Hernquist 1998, 1999) but appears to have been performed
for the first time for a plane-wave background.

In this special issue, we build upon results in Böhl et al. (2015) by considering
set-ups more relevant for collisions of intense laser pulses. First, we consider the
head-on collision of an oscillating probe pulse with a single-cycle background to
exhibit the change in the probe’s harmonic spectrum when the background, however
slowly varying, oscillates an integer number of cycles. Second, we simulate a
few-cycle probe pulse colliding head on with a constant background to show how,
even though the harmonic peaks become less well defined, the shock-wave effect
persists and the power-law behaviour is identical.

2. Modified electromagnetic wave propagation
Photons can scatter off one another by a mutual coupling to the virtual fermionic

states of the vacuum (see figure 1). When the centre-of-mass energy is much less
than the electron rest energy mc2, the scattering can be well described by an effective
description in which the fermion dynamics have been integrated out (it is exact for
constant fields). The corresponding Lagrangian was derived by Heisenberg and Euler
(Heisenberg & Euler 1936) and takes the form:

LHE =− m4

8π2

∫ ∞
0

ds
e−s

s3

[
s2ab cot as coth bs− 1+ s2

3
(a2 − b2)

]
, (2.1)

(unless they occur explicitly, h̄= c= 1), where the secular invariants a and b are given
by:

a=
[√

F 2 + G2 +F
]1/2 ; b=

[√
F 2 + G2 −F

]1/2
, (2.2a,b)
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Vacuum high-harmonic generation 3

FIGURE 1. For weak fields, the full interaction with the charged electron–positron states of
the vacuum (left) can be expanded in terms of four-, six- and eight-wave mixing diagrams
(right).

where F = (E2−B2)/2 and G=E ·B and to simplify expressions, we express electric
and magnetic fields in units of the critical field Ecr = m2c3/eh̄ = 1.3 × 1016 V cm−1.
The critical or ‘Sauter’ field Ecr gives the field strength scale (field strengths occur
normalised by this quantity) for vacuum polarisation effects. Although Ecr is several
orders higher than the current record for the strongest field produced in a laser
(Yanovsky et al. 2008), the field scattered due to vacuum effects also depends on the
phase length of the probe, which can compensate for the small ratio of E in laser
experiments. This aspect is exploited in the reported work.

Applying the Euler–Lagrange equations to L=LM +LHE where LM =m4(E2−B2)/

8πα is the purely classical term, modifies the inhomogeneous Maxwell equations:

∇ ·E= ρvac[E,B]; ∇ ∧B= Jvac[E,B] + ∂E
∂t
, (2.3a,b)

with the vacuum charge density ρvac and vacuum current Jvac:

ρvac =∇ · P; Jvac =∇ ∧M+ ∂tP, (2.4a,b)

where the vacuum polarisation P= ∂LHE/∂E and vacuum magnetisation M= ∂LHE/∂B.
Equations (2.3) demonstrate the neoclassical approach (modifying classical equations
of motion to subsume the effect of quantum phenomena on smaller length scales
(Delphenich 2006)). This approach is valid as photon energies are below the (effective)
threshold for pair creation, clearly a quantum effect beyond the classical framework.
It has the advantage that established methods from classical electrodynamics can be
employed to solve for the resultant field. Standard approaches calculating observables
for laser-based experiments neglect the dependency of vacuum polarisation on the
scattered field itself, and a highlight of the project was to take this into account to all
orders in the corresponding Dyson-like iterated series.

For application to terrestrial experiments, it suffices to take a weak field (E,B� 1)
expansion of the Heisenberg–Euler Lagrangian equation (2.1) (depicted in figure 1):

LHE = m4

α

∞∑
i=1

Li, (2.5)

L1 = µ1

4π
[(E2 − B2)

2 + 7(E ·B)2], (2.6)

L2 = µ2

4π
(E2 − B2)[2(E2 − B2)

2 + 13(E ·B)2], (2.7)

L3 = µ3

4π
[3(E2 − B2)

4 + 22(E2 − B2)
2
(E ·B)2 + 19(E ·B)4], (2.8)
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FIGURE 2. The calculational and simulational set-up studied. The oscillating probe pulse
moves from left to right and the strong field from right to left.

where µ1 = α/90π, µ2 = α/315π, µ3 = 4α/945π and α ≈ 1/137 is the fine-structure
constant. The term Ln corresponds to 2(n + 1)-photon scattering, or equivalently in
this neoclassical approach, vacuum 2(n+ 1)-wave mixing.

To investigate the long propagation behaviour of electromagnetic fields when
photon–photon scattering is present, the modified Maxwell equations (2.3) were
solved for the case of counterpropagating probe and strong plane waves (depicted in
figure 2):

E(0)
p (ϕp)= εp Epe−(ϕp/Φp)

2
cos ϕp E(0)

s (ϕs)= εs Es Rect
(
ϕs

Φs

)
, (2.9a,b)

where Rect(ϕ/Φ) = θ(ϕ + Φ/2) − θ(ϕ − Φ/2) is the rectangular function, θ(·) the
Heaviside function, ϕp = kpx = ωpx−, ϕs = ksx = ωsx+, x± = t ± z, Φp = ωpτp, Φs =
ωsτs with the probe and strong-field wave vectors kp,s and polarisation vectors εp,s
obeying εp · εp = 1, εs · εs = 1, kp · εp = 0, ks · εs = 0. Initially, the probe pulse is
assumed to be much weaker than the strong background Ep � Es, although this is
just for convenience. We also assume Es � 1. Initially, the probe and strong fields
are well separated: limt→−∞ F , G = 0. The configuration equation (2.9) was chosen
to represent a tractable case when the probe is much more rapidly oscillating than
the background. The index (0) represents the classical vacuum solution to the wave
equation: [∂2

t − ∂2
z ]E(0)

p,s=0 and the total electric field is E=Ep+Es. We concentrate on
the forward-scattered probe wave and search for plane-wave solutions to (2.3) (ωpBp=
kp ∧Ep).

3. Multiple four-photon scattering
To illustrate the technique used, we begin with the familiar example of four-photon

scattering. Since for counterpropagating plane waves ρvac = 0, the probe field can be
solved for with the ansatz:

E(n+1)
p (ϕp, ϕs)=E(0)

p (ϕp)−
∫ ϕs

−∞

dy
2

Jvac[E(n)
p (ϕp, y),E(0)

s (y)]. (3.1)
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Vacuum high-harmonic generation 5

FIGURE 3. Arbitrary numbers of four-photon scattering are considered in the propagation
of the probe in the strong background.

Equation (3.1) is derived by solving iteratively the wave equation for the probe field
[∂2

t − ∂2
z ]Ep =−∂tJvac[Ep,Es] using the retarded Green’s function GR(t, z)= θ(t)θ(t−

|z|)/2 (Mahan 2002). If Jvac is derived from L1 in (2.6), then E(n)
p is accurate up to

order O(Es)
2n, which acts as a perturbative parameter.

A diagrammatic illustration of this iteration is shown in figure 3, where strong-
field legs have been suppressed and the virtual pair has been shrunk to an effective
interaction vertex. Suppose we ignore the envelope of the probe and choose E(0)

p =
εp Ep cosϕp. If the probe and strong-field polarisations are parallel then the asymptotic
form (ϕs→∞) of the probe that would reach detectors, for the first few iterations is
(the replacement υ1→−υ1 corrects a sign error in Böhl et al. (2015)):

E(0)
p = εp Ep cos ϕp, E(1)

p = εp Ep
[
cos ϕp + υ1 sin ϕp

]
,

E(2)
p = εp Ep

[
cos ϕp + υ1 sin ϕp − υ

2
1

2
cos ϕp

]
,

 (3.2)

where υ1 = υ‖1 = (n‖vac − 1)Φ, n‖vac = 1 + 8αE2
s /45π and Φ = ωpτs. The full solution

exponentiates and becomes:

Ep(ϕp)= lim
ϕs→∞

lim
n→∞

E(n)
p (ϕp, ϕs)=E(0)

p (ϕp − υ1). (3.3)

This all-order solution was recently demonstrated using the full polarisation operator
(Meuren et al. 2015).

4. Multiple six-photon scattering

To calculate the change in the probe wave due to only six-wave mixing, (3.1) can
be used with Jvac derived from L2 in (2.7). From the six photon legs of the hexagon
diagram in figure 1, one is for the scattered field and three for the strong field, leaving
two for the probe. Suppressing the low-frequency strong legs, gives the three-pronged
diagram in figure 4.

Due to two photon legs coming from the probe, which is iterated, many more
topological structures are produced in this series rather than the simple chain
produced for four-photon scattering in figure 3. For higher orders, the series becomes
complicated with the nth iteration containing terms from the first to the (2n − 1)th
perturbative order. For parallel probe and strong field polarisation, the first few
iterations are (the replacement ν2→−ν2 corrects a sign error in Böhl et al. (2015)):

E(0)
p = εp Ep cos ϕp E(1)

p = εp Ep

[
cos ϕp + ν2

2
sin 2ϕp

]
E(2)

p = εp Ep

[(
1− 1

2

(ν2

2

)2
)

cos ϕp

+ ν2

2
sin 2ϕp − 3

2

(ν2

2

)2
cos 3ϕp −2

3

(ν2

2

)3
sin 4ϕp

]
,


(4.1)
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6 P. Böhl, B. King and H. Ruhl

FIGURE 4. Arbitrary numbers of six-photon scattering are considered in the propagation
of the probe in the strong background. For higher orders of interaction, the number of
possible topological structures becomes increasingly complicated.

where ν2 = (n‖vac,2 − 1)Φ was referred to as the ‘shock parameter’ in Böhl et al.
(2015) and n‖vac,2 = 1+ 192µ2E3

s Ep defines a refractive index for six-photon scattering.
If the probe has an envelope, this multiplies the parameter. So for (2.9), the nonlinear
parameter depends linearly on the probe amplitude and therefore also the envelope
and accordingly becomes ν2 exp[−(ϕp/Φp)

2]. Unlike the familiar ‘nonlinear vacuum
refractive index’ in the context of four-photon scattering, when six-photon scattering is
considered, the refractive index becomes probe-dependent. This implies the polarised
vacuum in this set-up displays a self-focusing or Benjamin–Weir instability (Moloney
& Newell 2004), in which the probe can be focussed to very high intensities before
dissipative effects – such as pair creation – break the pulse apart. Due to the
similarity with classical plasma instabilities, we liken the polarised vacuum to a
‘vacuum plasma’. The full solution to Maxwell’s equations for the probe scattering
due to six-photon scattering is then (the replacement ν2 → −ν2 leads to a slightly
different formula to that published in Böhl et al. (2015), but this does not affect the
numerical solution nor the plots presented):

Ep(ϕp)= 2εp Ep

∞∑
j=1

(−1)j+1

[
J2j(2jν2)

2jν2
sin 2jϕp + J2j−1[(2j− 1)ν2]

(2j− 1)ν2
cos(2j− 1)ϕp

]
,

(4.2)

where Jl(·) is the lth-order Bessel function of the first kind (Gradshteyn & Ryzhik
2007). We note that this all-order solution resembles the Fubini solution (Fubini-
Ghiron 1935) for the propagation of lossless finite-amplitude planar acoustic waves
in nonlinear media (Rossing 2007).

5. Numerical simulation of field propagation in the nonlinear polarised vacuum

The numerical method applied is based on the ‘pseudocharacteristic method of
lines’ (PCMOL) (Carver 1980), matrix inversion to convert the discretised system
into a system of ordinary differential equations (ODEs) and the ODE solver CVODE
(Hindmarsh et al. 2005).

For simplicity, let us first look at Maxwell equations without quantum corrections.
For the set-up of two counterpropagating plane-wave pulses with only transverse
polarisations, the linear dynamic Maxwell equation (2.3) with vanishing Jvac = 0
together with the homogeneous equation ∂tB+∇ ∧E= 0 reduce to

14 ∂t f +Q ∂z f = 0, (5.1)

with the vector f = (Ex,Ey,Bx,By)
T, where 14 is the identity matrix in four dimensions

and the coefficient matrix Q = adiag(1, −1, −1, 1) is anti-diagonal. Within the
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Vacuum high-harmonic generation 7

PCMOL, the system is transformed to a new basis u := S f in which the new
coefficient matrix Λ= SQS−1 = diag(−1,−1, 1, 1) is diagonal with real eigenvalues.
The transformation matrix is given by:

S = 1√
2

−1 0 0 1
0 1 1 0
1 0 0 1
0 −1 1 0

 . (5.2)

In this new basis, the system is decoupled into four independent advection equations:

14∂t

u1
u2
u3
u4

+
−1

−1
1

1

 ∂z

u1
u2
u3
u4

= 0. (5.3)

The new components of u are related to the E- and B fields via

u := S f = 1√
2

By − Ex
Ey + Bx
Ex + By
Bx − Ey

 . (5.4)

The sign of the eigenvalues λi of Λ determine the direction in which the component
ui propagates. For a positive sign, the component ui travels to the right, for λi < 0 it
travels to the left. Now the system is discretised in space by introducing a co-located
grid with spacing 1z = L/(N − 1) where L is the length of the simulation box and
N is the number of spatial points. Each grid point is thereby assigned the field
values ul = (ul

1, ul
2, ul

3, ul
4) where ul

i := ui(1z · l) and 0 < l 6 N is the index on
the grid. Following (Schiesser 1991), the spatial derivatives are approximated with
biased five-point-stencils as, for a fixed grid method, they show good behaviour with
minimal oscillations where high gradients in the solution are present and thereby
introduce only minimal numerical diffusion. Due to the discretisation, we are left
with a 4N-dimensional system of ordinary differential equations, ũ′(t) = g[ũ] with
g[ũ] =−Λ̃ D ũ. The prime ′ denotes the time derivative, D is the matrix representing
the finite differencing and Λ̃= 1N ⊗Λ where ⊗ is the Kronecker product. We use the
tilde ∼ to denote quantities on the grid. The system is then integrated using CVODE.
The initial conditions are set-up in the f̃ -basis, integrated in ũ and then transformed
back to f̃ . The number of grid points is thereby chosen sufficiently high to minimise
the effect of numerical diffusion and properly resolve steep gradients in the solution.
Since the Rect-function in (2.9) actually shows an infinite slope, it is approximated
in the simulation by some mirrored Fermi–Dirac-function FD(y) which is given by

Rect(y)≈ FD(y)= 1

1+ exp
( |y| −ωszm

ωszb

) . (5.5)

The parameters zb and zm can be thought of as the ‘temperature’ and ‘chemical
potential’ which control the width and steepness of the pulse. The simulational set-up
is shown in figure 2.
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8 P. Böhl, B. King and H. Ruhl

For the nonlinear case, Jvac contains nonlinear corrections with spatial and temporal
derivatives of polynomials in the fields fi. Using the chain rule, one can always write
the derivative of monomials like ∂t( fi)

n of the field components as some (field
dependent) coefficient times the linear derivative, e.g. ∂t( fi)

n = n( fi)
n−1∂t fi. In this

way, the nonlinear corrections to (5.1) can be written as:

(14 + X)∂tf + (Q+ Y )∂zf = 0. (5.6)

For the detailed form of X and Y the reader is referred to Böhl et al. (2015). In the
discretised version, the matrices X and Y also become 4N× 4N dimensional matrices.
Since both only depend on local field values, they are of block diagonal form:

X̃ =
N⊕

l=1

X l, Ỹ =
N⊕

l=1

Y l, (5.7a,b)

where
⊕

is the direct sum and X l and Y l are the matrices X and Y evaluated at grid
point l. It remains to invert the matrix (14N + X̃) to bring the discretised version of
(5.6) into the form of a set of ODEs. Since the inverse of a block diagonal matrix
is also block diagonal, the problem reduces to N times the inversion of the matrix
14+ X l. To further reduce the computational cost, we rewrite X l as X l=G H l with

G=

1 0
0 1
0 0
0 0

 , H l =
(

xl
11 xl

12 xl
13 xl

14

xl
21 xl

22 xl
23 xl

24

)
. (5.8a,b)

The inversion can then be further reduced to

(14 + X l)−1 = 14 −G(12 + H lG)−1H l, (5.9)

where we used the Woodbury formula (Golub & Van Loan 2012). The inverse of the
2× 2 matrix is calculated via a LU-factorisation (Lower Upper factorisation) for each
grid point at each evaluation of the now nonlinear function g[ũ] in ũ′(t)= g[ũ] with

ũ′(t)=−S̃(14N + X̃)−1(Q̃+ Ỹ )S̃
−1

Dũ, (5.10)

where S̃= 1N ⊗ S and Q̃= 1N ⊗Q. Since the nonlinear corrections do not change the
signs of the eigenvalues λi for the parameters considered here, we use the same biased
differencing D as in the linear case. The signals are analysed using a spatial Fourier
transform in Wolfram Mathematica (Wolfram Research 2012) under the assumption
ω= |k|.

6. Vacuum high-harmonic generation
In general, both four- and six-photon scattering will be present. The extent of four-

photon scattering can be quantified with υ1 and six-photon scattering with ν2. Since
we are interested in the case Ep� Es� 1, we must consider when υ1 is larger than
ν2. For the case of parallel probe and strong polarisations, the produced harmonic
spectrum is similar to that in the limit υ1 → 0 given by (4.2). The numerical and
analytical solutions are plotted for ν2 = 0.05, 0.6, 1 in figure 5. As ν2 → 1, higher
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Vacuum high-harmonic generation 9

FIGURE 5. Harmonic spectra generated by six-photon scattering of a probe, polarised
parallel to the background, for shock parameter ν2= 0.05, 0.6, 1 (left-to-right). The squares
show the leading-order perturbative term for that harmonic, the smooth solid brown line
is the all-order analytical solution equation (4.2) and the jagged solid red line is from
numerical simulation.

(a) (b)

FIGURE 6. (a) For parallel probe and strong polarisations, a shock wave accompanies
the generation of higher harmonics as ν2 → 1. (b) For perpendicular probe and
strong polarisations, different shock waves are generated in the field parallel (E‖p) and
perpendicular (E⊥p ) to the probe. This shock can change form depending on the ratio of
four- to six-photon scattering. Here υ1 = 5, ν2 = 1 and the shock resembles that from a
nonlinear Kerr medium.

harmonics move from being exponentially to only power-law suppressed and the shock
wave in figure 6(a) is generated. The amplitude of the field of the nth harmonic
relative to the initial probe scales as ∼(EpE3

sΦ)
n−1 for multiple six-photon scattering

whereas it scales as ∼En−1
p En

sΦ for single 2n-photon scattering. If the amplitude of the
nth harmonic is not to be vanishingly small for large n, the latter route requires Ep

and Es being close to 1 for large n, whereas the former route of repeated six-photon
scattering allows for the possibility of smaller field strengths being compensated for
by a long phase length Φ.
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10 P. Böhl, B. King and H. Ruhl

For the case of perpendicular probe and strong polarisation, a shock wave also
accompanies high-harmonic generation, but both are suppressed compared to the
parallel case. This is due to the problem of phase matching. Since the vacuum
is birefringent, a probe photon polarised parallel to the background will propagate
with a different phase to a probe photon polarised perpendicular to the background.
To reach higher harmonics, the probe photon scatters multiple times. The higher the
harmonic, the more channels there are to reach that harmonic. These channels involve
the photon being in intermediate even (polarisation parallel to the background) and
odd (polarisation perpendicular to the background) harmonics to differing degrees.
This leads to contributions for higher harmonics from different channels being
added incoherently and hence less efficiently than in the case of parallel probe and
background polarisations.

The effect of dispersion is most clear when probe and background polarisations
are perpendicular. For the non-dispersive case (υ1 ≈ 0), the shock generated in the
odd harmonics is square-wave-like and in the even harmonics is sawtooth like (Böhl
et al. 2015). However, for the dispersive case of υ1 = 5, when ν2 = 1, the shock
in figure 6(b) was observed in the numerical solution. This is reminiscent of shocks
generated in a Kerr medium, which contains a cubic nonlinearity in the polarisation
Pi = χ (1)ij Ej + χ (3)ijkl EjEkEl. In the strongly dispersive case υ1 � ν2, the nature of the
scattered field depends more sensitively on the ratio of υ1 to ν2. The probe pulse
envelope has frequency components of the order of ∼1/τp, so when the lag induced
by four-wave mixing for these frequencies becomes of the order of or larger than unity
i.e. when υ1 &ωpτp, we find the pulse envelope itself is deformed.

The set-up in figure 2 is useful for studying the physics of vacuum high-harmonic
generation as the probe propagates through a half-cycle of the more slowly varying
background. However, in any laser-based experiment, one should take in account at
least a complete cycle of the background field. For this special issue, we include the
set-up in figure 7 of a single sinusoidal cycle in an otherwise square-wave background
and compare the harmonics generated with the constant background case of figure 2.
Since the nth occurrence of high-harmonic generation through six-photon scattering
of the probe scales as ∼(E3

s E2
p)

n, one would expect even harmonics to be heavily
suppressed due to integrating over an odd power of the oscillating background Es.
This is displayed in the spectrum in figure 7, which shows also an overall suppression
compared with the square-wave case. n= 2, which contributes to the fundamental and
third harmonic of the probe, is the leading-order term that contains a constant, which
does not disappear when the background is integrated over. Since the corresponding
constant from the E6

s term ∼sin6ϕ is equal to 5/16, we choose to compare the
spectrum of ν2 = 1 for a square-wave background to ν2 = (16/5)1/2 (since ν2 ∼ E3

s
and for n= 2 is for Ep∼ ν2

2 ) for the single-cycle sine wave background. The result in
figure 7 shows (i) the harmonic spectrum is considerably suppressed for this set-up;
(ii) the third and fifth harmonics are less suppressed than other harmonics and (iii)
for this parameter, several high harmonics are no longer exponentially suppressed
with respect to one another. This demonstrates that even though ν2 was increased
to compensate for the integration over the sinusoidal shape of the new background,
harmonic generation is greatly suppressed. The constant that arises due to this
integration is [1 + (−1)n](3n)!/[(3n/2)!]2/23n+1. When the increased value of ν2 is
included, this coefficient for the nth occurrence of six-photon scattering increases
with n. This suggests that the background pulse shape plays a more complicated role
than a simple power scaling.
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(a) (b)

FIGURE 7. (a) The modified set-up of a right-moving oscillating probe with envelope
and a left-moving background with a single sinusoidal cycle. (b) A comparison of the
harmonics produced in a constant background (figure 2) for ν2 = 1 and in an oscillating
background for ν2 = (16/5)1/2. ‘Box’ and ‘Hexagon’ refer to the four- and six-photon-
scattering shown in figure 1.

Even though the background now has a frequency ωs which is not much smaller
than the probe frequency ωp, we do not observe the phenomenon of vacuum frequency
mixing. Although the merging of np probe photons and ns background photons would
generate a range of frequencies, for example: npωp+ nsωs by frequency mixing, it can
be shown by energy–momentum conservation for our head-on set-up, that all mixed
frequencies with ns 6= 0 cannot propagate.

Another source of effects on the probe harmonic spectrum is the probe pulse
duration. For this special issue, we have simulated the collision of a few-cycle probe
(Φp = 5 in (2.9)) with a constant background. The original probe, the generated
shockwave and its corresponding harmonic spectrum are plotted in figure 8. The
result of a shorter probe pulse and hence a wider initial probe spectrum can be seen
by contrasting the generated spectrum in figure 8 with that for a long-cycle probe in
figure 5. Although the plot in figure 8 only includes six-photon scattering, the result
is similar (but phase shifted) when four-photon scattering is taken into account. The
effect of the wider probe spectrum is to smooth out the harmonic structure, but to
maintain the same power-law exponent. This is straightforward to understand. For
a long pulse the spectrum is quasi-monochromatic so the generated frequencies are
well defined around the nth harmonic nωp. For a short pulse, probe photons have a
range of frequencies so the merging of n photons gives a signal at

∑n
l=1 ωp,l, where

ωp,l are the individual frequencies taken from the probe spectrum. That the gradient
of the spectrum is very similar to that for a long pulse is also what our original
analysis would have predicted, so is valid here too.

7. Discussion

It was found that when the nonlinear parameter ν2 = 64αE3
s Epωpτs/105π tended

towards unity, the high-harmonic spectrum produced in an oscillating probe wave
counterpropagating with a much slower varying background moved from an
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(a) (b)

FIGURE 8. (a) The shock wave generated when a few cycle (Φp = 5) probe pulse
with counterpropagates through a constant background. (b) The corresponding harmonic
spectrum for ν2 = 1 (blue thick line), the harmonic spectrum for the first set-up with a
long pulse (Φp� 1) when ν2= 1 (black thin line) and original probe spectrum (red dashed
line).

exponential suppression of higher harmonics to just a power-law suppression. A
similar transition is found for increasing field strength in high-harmonic generation
in laser-irradiated foils. The ‘oscillating mirror model’ of laser–foil interactions
has been used to predict different power-law exponents γ , for example γ = −5/2
(Gordienko et al. 2004) and γ = −8/3 (Baeva, Gordienko & Pukhov 2006) have
been postulated, and experiments on solid targets have recorded intensity-dependent
power-law exponents, for example in Norreys et al. (1996) of −5.50 < γ < −3.38.
For vacuum six-wave mixing we found power-law exponents −4 < γ < −2.4 for
0.9 < ν2 < 1.4. Also similar is the generation of even harmonics with a polarisation
perpendicular to the probe and odd harmonics with a polarisation parallel to the
probe. In the current study, this was observed when the initial probe and strong
field polarisations were perpendicular, whereas it is observed in laser-irradiated foil
experiments for harmonics generated with s- (perpendicular to plane of incidence) and
p- (parallel to plane of incidence) polarisation (Lichters, Meyer-ter-Vehn & Pukhov
1996).

The presented work has made an analogy of photon–photon scattering in
counterpropagating plane waves with the interaction of a probe and a ‘vacuum
plasma’, and found a shock-wave instability for this idealised case. The effect on the
probe due to six-photon scattering in the parallel-polarised background was found to
be describable in terms of a probe-dependent vacuum refractive index, which when
added to the usual four-photon refractive index gives:

n‖vac = 1+ α E2
s

π

[
8

45
+ 64

105
EpEs

]
. (7.1)

Other than four-photon scattering, no dispersive mechanism, such as pair creation
from vacuum (Schwinger 1951) or photon-seeded pair creation (Nikishov & Ritus
1964) have been included, nor have transverse degrees of freedom. Therefore to what
extent the polarised vacuum can indeed be used as a lens to focus ultra-intense laser
pulses to the highest intensities remains an uncertain but tantalising question.
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