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Abstract

We synthesized cellulose/gypsum composites in the presence and absence of sodium alginate and investigated the

interaction between the composite components as well as the mechanical properties of the final composites. Four

different types of cellulose fiber materials were used: cellulose UFC100, cellulose B400, nanofibrillated cellulose, and

Lyocell fiber. For all investigated composites the total amount of admixed cellulose was between 1 and 2 wt%, the amount

of admixed sodium alginate was 0.5 wt%. We determined the morphology of the composites and observed that the

particle and fiber dimensions of the admixed cellulose affect the mode of gypsum–gypsum interlocking and the total

porosity of the composites. This in turn had a substantial influence on the mechanical properties of the final composite

materials. The addition of sodium alginate resulted in an increase of ultimate strain values. Composites with Lyocell fiber,

a synthetic fiber, also had a high Young’s modulus.
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Introduction

Gypsum is a well-known low-cost material.1 It is
composed of interconnected needle-like calcium sul-
phate dihydrate crystals. These cystals entangle and
create a gypsum network. The main drawback of
gypsum as a building material is due to its heaviness
and brittleness. This drawback can be overcome by
combining gypsum with mineral particles,2 natural
fibers (waste paper,3 sisal fiber,4 stalk fiber,5 hemp
fiber6), synthetic fibers (polyamide fiber,7,8 glass
fiber9–11), or polymers.12 Gypsum-based composites
have a low cost production, a low thermal coefficient5

and a low solid content. All these properties are good
for insulating against heat and sound while the mech-
anical strength of the gypsum-based composites are
still retained.5,13

The mechanical properties of gypsum are correlated
to its total porosity.7,12–16 It turns out that the total por-
osity of gypsum is influenced by the water/hemihydrate
ratio4,13–16 and the aging time.4,14–19 It is well known

that the total porosity increases when the water/hemihy-
drate ratio increases.14–16 Moreover, the network struc-
ture, the intercrystalline interaction, the crystal sizes, and
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the pores affect the mechanical properties of the
gypsum.13,16 The crystalline habits and the arrangement
of the crystals influence the hardness of the gypsum, as
explained by Amathieu (1986).20 The hardness of the
gypsum increases by a factor of two to threewith reducing
the crystal size frommicrometer to nanometer scale level.
This increase is attributed to the strong entanglement of
the gypsum needle-like network.21

Cellulose is embedded into gypsum wallboard.
Gypsum wallboard is an important construction mater-
ial for building for example an interior wall.22,23 The
main drawback of wallboard is failure that occurs at
the cellulose–gypsum interface.23 Cellulose is formed by
sequences of glucose repeating units and has good
mechanical properties such as high tensile strength
and Young’s modulus.24–26 There are six different cel-
lulose polymorphs, cellulose I, II, IIII, IIIII, IVI,
and IVII.

27–31

This paper focuses on the effect of natural (cellulose
Arbocel UFC100, B400, and NFC) and synthetic
(Lyocell fiber) cellulose in the formation of gypsum
crystals and entanglement of the gypsum-gypsum
networks. De Maria Pinheiro Correia (2009) reported
an increase in mechanical properties and a thermal con-
ductivity of low porosity gypsum plates by an addition
of nanofibril cellulose.32 The addition of sodium algin-
ate is expected to reduce the cellulose-gypsum interface
failure by creating an intimate interlinkage of the
components.33

Materials and material preparation

Materials

Chemical compounds such as sodium alginate and
hemihydrate (CaSO4.1/2H2O) were obtained from
Sigma Aldrich GmbH, Germany, while cellulose
Arbocel was obtained from JRS Pharma GmbH &
Co. KG, Germany. Lyocell fiber was obtained from
Tencel� Lenzing AG, Lenzing, Austria.

Cellulose. Cellulose I or native cellulose is a polymorph
that is found in nature. Cellulose I has two different
polymorphs: cellulose Ia and Iß. Cellulose Ia and cel-
lulose Ib have the same conformation of the heavy
atom skeleton but differ in hydrogen bonding patterns.
Cellulose Ia is a metastable phase with a triclinic unit
cell containing one chain, while cellulose Ib has two
chains in its monoclinic unit cell. Cellulose II, derived
from cellulose I, has a similar unit cell as the unit cell of
cellulose I. The main difference to cellulose I is that
cellulose II has two cellulose chains that lie antiparallel
to one another.29,31

Swelling agents such as water or alkali treatments
(NaOH up to 8M) influence the degree of swelling,

the degree of crystallinity and the water retention
value (WRV) of the cellulose fiber, respectively.
Water retention value is an ability of cellulose to
uptake water.34–37 In water or under alkali treatment
of 2–4M NaOH cellulose II can swell extensively in
comparison to cellulose I.36,37 On the other hand
under strong alkali treatment, e.g. 5–8M NaOH, cellu-
lose I will swell more extensively than cellulose II.

As shown in Table 1, four different cellulose fibers
were taken for the preparation of the composites: 1.
Arbocel UFC100 an ultrafine cellulose powder with a
particle size of 1 mm; 2. Arbocel B400 a fibrous cellulose
with fiber lengths of about 900 mm and a fiber diameter
of about 10 mm; 3. Lyocell fiber with a fiber length of
38mm and a fiber fineness of 1.3 dtex. Dtex is the mass
of fiber in grams per 10000m length. The higher the
dtex value the thicker or coarser is the fiber.34,36 4.
Nanofibrillated cellulose (NFC) with fiber lengths of
2 mm and a fiber diameter in the range of several ten
nanometers.

Nanofibrillated cellulose production. Nanofibrillated cellu-
lose (NFC) was prepared by dispersing 0.93 kg of
Arbocel B1011 cellulose fiber in 9L of water. First,
the suspension was left in a thermo-static reactor at
10�C under continuous stirring for 4 days.
Subsequently, the cellulose suspension was processed
through a closed inline dispersing system equipped
with an ultra-turrax for the disintegration of the
fibers into smaller parts. The resulting suspension was
treated in a high pressure homogenizer by pumping the
resulting suspension with high velocities through fixed-
geometry interaction chambers (Y or Z morphology)
with diameters of 400, 200, and 75 mm. Pressures up
to 1000 bar were applied to generate high shear stresses
to the cellulose fibers.38 The NFC is prepared as a sus-
pension to preserve the NFC structure with content of
1.5wt% NFC (1.5 gNFC in 100mL water). The centri-
fugation and the heat appliance to reduce the water
content yielded to the NFC content of 2wt%
(2 gNFC in 100mL water). Further heat appliance
may lead to structure destruction of the NFC and cen-
trifugation does not resolve to more water content
reduction. This results to a problem in wo/ho ratio
adjustment of the cellulose/gypsum composites. NFC,
reported by some authors, has interesting properties
such as high strength and high stiffness.39–42

Sodium alginate. Alginate is a natural polymer and is
derived from cell walls of brown algae.43 Alginate can
be found as sodium alginate, calcium alginate, and
magnesium alginate salts within the cell walls and inter-
cellular mucilage of seaweed.44 It is a hydrophylic gel-
ling material that has interesting properties such as
stabilizing emulsions, high capacity of holding water
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and improved viscosity.43 Sodium alginate contributes
to the mechanical strength and the flexibility of algae
and is comparable to the cellulose of land plants.45

Sodium alginate is used in wide-range applications.
Recently, some researchers investigated the application
of sodium alginate in building and construction mater-
ials such as in cements,46 clays,43 and soils.47 An
increase in compressive strength from 2.23 to
3.77MPa by adding up to 19wt% of sodium alginate
to clay is reported by Marı́n-Galán et al. (2010).43

Production of gypsum–cellulose composites

Several different composites were prepared from the
four different cellulose types described above. The
water/hemihydrate ratio (wo/ho), the cellulose and
the sodium alginate contents were adjusted to get
the chosen value (Table 1). 1 M NaOH was added
in order to produce well dispersed sodium alginate.
This amount is well below the swelling maximum of
cellulose fiber and does not influence the swelling
degree of cellulose.

Methods

Microscope imaging

For scanning electron microscopy (SEM), dried cellu-
lose UFC100, B400, the Lyocell fiber and sodium

alginate samples were mounted on the holder using
carbon tape. They were then coated with carbon and
gold. The morphology of the samples was imaged with
a JEOL JSM-6500F SEM using an accelerating voltage
of 10 kV. A drop of the nanofibrillated cellulose (NFC)
was placed on a TEM grid and the NFC was imaged
with a Zeiss EM 10 TEM using an accelerating voltage
of 80 kV.

X-ray diffraction

The fine crystalline cellulose UFC100 and the thin film
of NFC, were investigated using a Bragg-Brentano
X-ray diffractometer (GE: XRD 3003 TT). X-ray dif-
fraction (XRD) data were recorded in reflection mode
using a 1-dimensional position sensitive semi conductor
detector (Meteor 1D) with a step size of 0.01� (y/y). The
thin film of nanofibrillated cellulose (NFC) was
obtained by drying some amount of NFC inside an
oven at a temperature of 60�C for 24 h. This diffract-
ometer was also used to record diffraction patterns of
hemihydrate, gypsum and the composite UFC 1a, in
order to follow the transformation of hemihydrate to
gypsum.

Both samples, the cellulose B400 and Lyocell fiber,
were packed into glass capillaries (ø¼ 0.5mm). XRD
data was collected in transmission mode on a single
crystal diffractometer (Agilent, Gemini Ultra)
equipped with a two-dimensional charge-coupled

Table 1. Bending and compressive strength values of gypsum composites that are completed with the water/hemihydrate ratio

(wo/ho), cellulose content (wt%), and sodium alginate content (wt%).

wo/ho ratio

Cellulose

content (wt%)

Sodium alginate

content (wt%)

Compressive

strength (MPa)

Bending

strength (MPa)

Gypsum 0.50 – – 9.25� 1.25 5.65� 1.15

Sodium alginate 0.50 – 0.5 6.04� 1.29 3.00� 0.58

Composite UFC 1a 0.50 1.0 – 17.82� 1.07 6.16� 0.94

Composite UFC 1b 0.50 1.0 0.5 9.02� 0.93 4.67� 0.74

Composite UFC 1c 0.50 2.0 – 5.98� 0.89 3.55� 1.09

Composite UFC 1d 0.50 2.0 0.5 10.51� 0.96 4.45� 0.71

Composite B400 2a 0.50 1.0 – 10.34� 0.44 4.49� 1.11

Composite B400 2b 0.50 1.0 0.5 7.76� 0.59 4.42� 0.38

Composite B400 2c 0.50 2.0 – 6.38� 0.72 2.78� 0.67

Composite B400 2d 0.50 2.0 0.5 6.62� 0.28 3.72� 0.23

Composite Lyo 3a 0.50 1.0 – 10.52� 0.79 5.40� 1.19

Composite Lyo 3b 0.50 1.0 0.5 7.94� 1.26 3.66� 0.47

Composite Lyo 3c 0.50 2.0 – 6.09� 0.69 4.00� 0.47

Composite Lyo 3d 0.50 2.0 0.5 5.71� 0.18 4.04� 0.80

Composite NFC 4a 0.50 1.0 – 10.95� 0.91 4.21� 0.70

Composite NFC 4b 0.50 1.0 0.5 10.11� 0.76 3.31� 0.83

Composite NFC 4c 0.97 2.0 – 3.17� 0.14 1.35� 0.34

Composite NFC 4d 0.97 2.0 0.5 4.21� 0.22 1.72� 0.36
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detector (Atlas). All XRD data were collected using Cu
Ka1 radiation.

The degree of crystallinity and the apparent crystallite
size were estimated by deconvolution of the diffraction
patterns in the range of 10–40�(2y) (Figure 1). The
Gaussian profile function was applied for the deconvo-
lution of the intensity of the four reflections 110, 110,
120, and 200, respectively, for crystalline cellulose27,30,35

and one broad peak at 2y� 18� for amorphous cellu-
lose.36,37 The crystallinity index was calculated according
to Xc¼ [Acr/(AcrþAam)]� 100%, where Acr and Aam are
the integrated intensities of the crystalline and amorph-
ous phases, respectively.38–40 The apparent crystallite
size (L) was calculated according to the Scherrer equa-
tion L¼ k�/(� cos �), where the Scherrer constant k for
an unknown crystal phase has been set to 0.9. � stands
for the applied X-ray wavelength, b is the FWHM of the
reflections 200 for cellulose I and 020 for cellulose II in
radian, and y is the corresponding Bragg’s angle.48–52

Porosity measurement

The total porosity of the composites was calculated
from the water-to-stucco ratio, p¼ (w� (wo/ho ratio))/
(wþweight of cellulose) where w is the total weight of
the gypsum composite. It follows the Gibson–Ashby
relation where the strength of the composite scales
with (1-porosity).13

Mechanical testing

For mechanical testing, the samples were prepared by
pouring the composite slurry intomoulds with dimensions
of 13.5� 13.5� 25mm3 for compression and
75� 10� 3.5mm3 for four-point bending testing. The
sampleswere driedwithin themoulds at room temperature
for 7 days. The number of specimens for each composite
was �10 specimens for bending and �10 specimens for
compression testing. Bending testing was carried out
with a UTS test system Typ 009, 3kN and with a Zwick
Universalprüfmaschine Typ Z005, 5kN while compres-
sion testing was carried out with a Zwick
Universalprüfmaschine Typ 1425, 100kN and a Zwick
Universalprüfmaschine Typ Z005, 5kN. Measurement
was stopped after the load dropped and the first cracks
were observed. Some specimens failed at point of force
transmission due to uneven surfaces and were excluded
from data interpretation. The preload for bending and
compression testing was 0.5N. The velocity values of
bending and compression testing were 0.02mm/min and
0.12mm/min, respectively. The strain rate values of bend-
ing and compression testing were 5.1� 10�5s�1 and
8� 10�5s�1, respectively. The strain is calculated by divid-
ing the elongation by the original sample length. The
Young’s moduli are derived from the steep slope of
stress–strain curve. The bending strength calculation is
based on four-point bending experiments. Thus, � ¼ 3Fd

bh2
,

where F is the applied load, d is the distance between the

Figure 1. Diffraction pattern of cellulose I showing peak deconvolution. The diffraction pattern has five major reflections at 110,

110, 120, 200, and 004 for the crystalline phase. Amorphous phase of cellulose I is observed at 2y� 18�.
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inner and the outer points of the bending machine, b is the
sample width (10mm), and h is the sample thickness
(35mm). The compressive strength is calculated by divid-
ing the applied load by the surface area of the samples.

Results

Gypsum crystallization (formation)

Gypsum crystallization occurs as a result of a solvent
mediated transformation that involves dissolution of
hemihydrate as well as nucleation and growth of
gypsum.53 The driving force for this process is the dif-
ferent solubility of gypsum and hemihydrates, i.e.
gypsum is less soluble in water than hemihydrate. As a
consequence, in contact with water, the dissolution of
hemihydrate leads to supersaturation of gypsum in the
solution. At this point, gypsum can nucleate and, for the
solute consumption involved, the system becomes again
undersaturated with respect to hemihydrates. The cou-
pling between hemihydrate dissolution and gypsum
crystallization defines a feedback loop which guarantees

that gypsum growth occurs under a constant supersat-
uration value that is controlled by the solubility differ-
ence between gypsum and hemihydrate. This mechanism
will operate while both water and hemihydrates remain
available in the system.

Figure 2 shows SEM images of hemihydrate (CaSO4.1/
2H2O) and gypsum (CaSO4.2H2O). Hemihydrate crystals
have an irregular shape and are aggregates of small crys-
tallites (Figure 2(a)). The single crystal size of b-hemihy-
drate is in the range of 1–10mm. The entanglement of
gypsum needle-like network (Figure 2(c)) creates pores
with pore sizes in the range of 5–10mm ((Figure 2(b)).
As shown in Figure 2(d), small particles of b-hemihydrate
appear indicating that some b-hemihydrate does not
recrystallize to gypsum. This occurs due to an insufficient
amount of water and/or a too short hydration time.

Cellulose particle, fiber morphology,
and crystallinity characterization

Diffraction patterns of the cellulose UFC100, B400,
and NFC (Figure 3) resolve the presence of the

Figure 2. SEM images of (a) b-hemihydrate (CaSO4.1/2H2O) showing the irregular shape of b-hemihydrate aggregates and (b)

fracture surface of gypsum (hydrated b-hemihydrate) with a water/hemihydrate (wo/ho) ratio of 0.5. Hydrated b-hemihydrate high-

lighted in (c) displays the mode of interlocking of gypsum–gypsum crystals. Interlocking of gypsum–gypsum crystals creates porous

gypsum aggregates indicated by white arrows in (b) while white squares in (d) indicate chunks of hemihydrate that remain intake.
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cellulose polymorph I. Cellulose polymorph I has the
following five major reflections: 110 at 2y� 15.12�, 110
at 2y� 16.35�, 120 at 2y� 20.57�, 200 at 2y� 22.50�,
and 004 at 2y� 34.57�. The diffraction patterns of cel-
lulose II or Lyocell fibers reveals three peaks 101, 101,
020 with reflections at 12.4�, 20.6�, and 21.4� (2y),
respectively (Figure 4).

The degree of crystallinity and apparent crystallite size
calculations of cellulose UFC100, B400, Lyocell fiber as
well as NFC cellulose are given in Table 2. The apparent
crystallite sizes evaluated fromXRDdata are basedon the
line broadening of the reflection 200 for cellulose I and 020
for cellulose II. These reflections are related to the thick-
ness of themolecular sheets in the stacking direction of the
a-axis of the cellulose unit cell. A reduction of the crystal-
lite size can be assumed by a change in cellulose chains
along the plane (200) or (020), resulting in an apparent
crystallite size of 4.28, 3.64, and 3.56 nm for UFC100,
B400 and NFC, respectively. Cellulose UFC100 has a
degree of crystallinity of 75.5%, while cellulose B400
and NFC show a degree of crystallinity of 70.2% and

Figure 3. Diffraction patterns of the cellulose (a) UFC100, (b) B400, and (c) NFC show characteristic reflections of cellulose

polymorph I. There are several overlapping peaks appear at 2y� 15� and 2y� 22�.

Figure 4. Diffraction pattern of Lyocell fiber and the decon-

volution of the intensity of reflections 101, 101, and 020 of cel-

lulose polymorph II along with a broad peak of an amorphous

phase at 2y� 18�.

Table 2. The apparent crystallite size (L) and the degree of

crystallinity evaluated from the intensity of the crystalline phase

reflections using the Scherrer equation.

Samples

Apparent

Crystallite

size L (nm)

Degree of

crystallinity

Xc (%)

Cellulose UFC100 4.28 75.5

Cellulose B400 3.64 70.2

Lyocell 3.47 52.3

NFC 3.56 67.8
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67.8%, respectively. Lyocell fiber has the lowest crystal-
linity index and apparent crystallite among the other cel-
lulose with a respective value of 52.3% and 3.47 nm.

Figure 5 shows the morphology of cellulose
UFC100, cellulose B400, Lyocell fiber, and sodium
alginate. Cellulose UFC100 is an aggregate of irregular
particles, while cellulose B400 and Lyocell fiber are
entirely composed of cellulose fibers. Sodium alginate
appears as an irregular particle with sizes ranging from
about 100 mm to some hundred micrometers. Figure 6
shows the fiber structure of nanofibrillated cellulose
with single nanofiber diameters around �10 nm.

The interaction of components in the composites

During hydration of hemihydrate, the gypsum crystals
appear as needle-like that is interconnected to each
other. An addition of biopolymers or other additives
modifies the morphology and habit of growing gypsum
crystals resulting in the change in microstructures and
total porosity of the gypsum composites. It occurs as the
presence of biopolymer or other additives changes
the supersaturation of the solution and surface topog-
raphy of the growing gypsum crystals.16 During the
growth gypsum crystals adopt a variety of habits
created by differences in relative growth rates of faces of
which the gypsum crystal is composed. Singh and
Middendorf (2007)16 reported the adsorption on the

step and kink sites of gypsum crystal faces by retarder
agents such as carboxyl groups. It results in the changes
of morphology.

The investigated composites were obtained by
mixing cellulose (1 and 2wt%) and hemihydrate in
the presence and absence of sodium alginate. The pres-
ence of cellulose independent to the presence of sodium

Figure 5. SEM images of the morphology of (a) cellulose UFC100, (b) cellulose B400, (c) Lyocell fiber and (d) sodium alginate.

Cellulose UFC100 appears as aggregate of small cellulose particles while both cellulose B400 and Lyocell fiber are fibrous cellulose

with diameter about 10mm.

Figure 6. TEM image of fibril aggregates of NFC. Uranylacetate

was added to increase the contrast of NFC.
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alginate changes the gypsum crystal morphology. This
change is observed in the different gypsum–gypsum
interlocking features (Figure 7). Gypsum crystals of
the Composite UFC 1a (Figure 7(a)) are thinner and
smaller than those precipitated in the absence of cellu-
lose (Figure 2(b)). The interlocking of gypsum–gypsum
crystals of the Composite UFC 1a is disoriented. The
addition of B400 (Figure 7(b)) or Lyocell fiber (Figure
7(c)) produces composites with thick gypsum crystals
while the addition of NFC (Composite NFC 4a) pro-
duces gypsum crystals with varied sizes (Figure 7(d)).

As shown in Figure 7, gypsum nucleation can also
occur on the cellulose surface, such as on cellulose B400

(Figure 7(e)) and the Lyocell fiber (Figure 7(f)) surfaces.
The nucleation of gypsum on cellulose surfaces (heteroge-
neous nucleation) impacts the size and morphology of
gypsum crystals. On both, B400 and Lyocell fiber, the sur-
ficial gypsum crystals tend to form aggregates through the
coalescence of individual crystals; marked by white
squares in Figure 7(e) and (f). This heterogeneous nucle-
ation is not observed on the surface of nanofibrillated cel-
lulose (Figure 7(g)). Small fibers, such as in the case of
NFC, absorb less water, thus, the amount of water to
support gypsum crystallization is less. Cellulose fibers of
B400 and Lyocell are marked with double arrows while
NFCfiber ismarkedwith single arrows (Figure 7(e) to (g)).

Figure 7. Scanning electron microscopy images of fracture surfaces of the composites. Gypsum crystals in Composite UFC 1a (a) are

thinner and smaller than that precipitated in the pure state without any cellulose (Figure 2(c)). Composite B400 2a (b) and Composite Lyo

3a (c) have thick and short gypsum crystals. Composite NFC 4a (d) has gypsum crystal with varied size. Figure (e) shows gypsum crystal

grown on the surface of fibrous cellulose B400. Gypsum crystals grown on the surface of Lyocell fiber are shown in figure (f). Figure (g)

shows that no gypsum crystals are growing on NFC surface. Double arrows and white squares on figure (e) and (f) indicate the cellulose

fiber and gypsum crystals on cellulose fiber surface, respectively. A white single arrow in figure (g) indicates the nanofibrillated cellulose.
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Diffraction patterns of b-hemihydrate (Figure 8(a)),
hydrated hemihydrate (gypsum) (Figure 8(b)), and the
Composite UFC 1a (Figure 8(c)) are used to follow the
transformation of hemihydrate. The hemihydrate peak
in the diffraction pattern of the Composite UFC 1a
appears at 14.7� and 29.4� (2y). The addition of 50%
of water seems to be insufficient to convert all hemihy-
drate into gypsum. The peak at 29.2� (2y) is due to
gypsum. The anhydrite peak at 25.4� (2y) is also seen
in the diffraction pattern of b-hemihydrate (an initial
ingredient), pure gypsum and the Composite UFC 1a.
The appearance of anhydrite in hemihydrate indicates
that anhydrite is formed during the hemihydrate pro-
duction process and is assigned to either anhydrite III
or g-CaSO4.

Porosity of the composites

The total porosity (vol%) of each composite changes
due to the presence of cellulose with or without
sodium alginate (Figures 9, 10, 12 and Supplementary
S1-S3). The total porosity of pure gypsum is 47.96 vol%
and increases to 51.31 vol%when 0.5wt% sodium algin-
ate is added. The increase in the total porosity due to
sodium alginate addition is a result of a gelation effect of
sodium alginate that creates channel-like pores.54,55 The
composites with cellulose B400 follow a similar total
porosity trend to that of composites with Lyocell

fibers. The more cellulose is used the higher is the total
porosity of the composites. Eve et al.7,8 observed the
same trend when polyamide fiber was used.

In the case of cellulose UFC100 a different trend was
observed. The addition of 1wt% cellulose UFC100
decreases the total porosity of the composite.
Cellulose UFC100 has small particles with sizes less
than 10 mm. These particles can fill the voids that
occur from the entanglements of gypsum crystals. The
addition of 0.5wt% sodium alginate indisputably
increases the total porosity of the composite. The com-
posite with 2wt% cellulose UFC 100 has an increase in
total porosity as a result of the increasing amount of
cellulose UFC100. The total porosity decreases when
0.5wt% sodium alginate is added having a similar
total porosity value to that of the composite with
1wt% cellulose and 0.5wt% sodium alginate. This sug-
gests that cellulose UFC100 only partly fills the chan-
nel-like pores created by sodium alginate.

The composite with 1wt% of NFC has a similar
total porosity value to that of the pure gypsum. The
total porosity does not change when 0.5wt% sodium
alginate is added. It proves that NFC fills the channel-
like pores created by sodium alginate. Composites with
2wt% NFC have a high water/hemihydrates ratio
resulting to a high total porosity. High water/hemihy-
drates ratio clearly influences the total porosity as seen
in Figure S1.

Figure 8. Diffraction patterns of (a) b-hemihydrate (CaSO4.1/2H2O), (b) hydrated b-hemihydrate (gypsum) with a water/hemihydrate

(wo/ho) ratio of 0.5, and (c) Composite UFC 1a with a water/hemihydrate (wo/ho) ratio of 0.5. Anhydrite is formed and then remains

intact. The intensity of hemihydrate peaks decreases and is replaced by the gypsum peaks along the formation of gypsum composites.
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Mechanical properties of the composites

The compressive and bending (flexural) strength values as
well as the total porosity are presented as a function of the

composites (Figures 9 and 10). The graphs of the total
porosity of the composites as a function of the compres-
sive and bending (flexural) strength are also shown
(Figures 9 and 10). Box the compressive and bending

Figure 9. The graphs of the total porosity and the compressive strength of the cellulose/gypsum composites as a function of the

composites: (A) composites UFC100, (B) composites B400, (C) composites Lyocell and (D) composites NFC. The graphs show that

the total porosity influences the compressive strength of the final composites. Figure (E) shows the total porosity of the cellulose/

gypsum (UFC100, B400, Lyocell and NFC) for different cellulose/gypsum mixtures given as a, b, c and d as a function of compressive

strength. The pure gypsum reference with wo/ho of 0.97 is shown in Figure S1.
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strength show maximum and minimum bars along with
the median, the lower quartile (75th percentile), and the
lower percentile (25th percentile) (Figure S2). The refer-
ence, the pure gypsum, has a compressive strength of

9.25�1.25MPa and a bending strength of
5.65� 1.15MPa (mean� standard deviation) (Table 1).
The content of cellulose added to the composite is 1 and
2wt% and that of sodium alginate is 0.5wt%. Regarding

Figure 10. The graphs of the total porosity and the bending strength of the cellulose/gypsum composites as a function of the

composites: (A) composites UFC100, (B) composites B400, (C) composites Lyocell, (D) composites NFC and (E) shows the total

porosity of the all cellulose/gypsum composites for different cellulose/gypsum mixtures given as a, b, c, and d as a function of bending

strength. The graphs show that the total porosity influences the bending strength of the final composites. The bending strength of the

composites follows the same trend like the other mechanical property of the composites such as the compressive strength.
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their compressive and bending strength values, all com-
posites differ from each other. The addition of 1wt%
cellulose UFC100 (Composite UFC 1a) increases the
compressive strength of the composite up to
17.82� 1.07MPa, almost twice the compressive strength
of the pure gypsum reference. The compressive strength
then decreases as 0.5wt% sodium alginate is added
(Composite UFC 1b), giving a compressive strength
value similar to that of pure gypsum. The decrease of
the compressive strength continues as 2wt% cellulose
UFC100 is added (Composite UFC 1c). Finally, the com-
pressive strength value increases, slightly to a value higher
than that of the pure gypsum, when 0.5wt% sodium
alginate is added to the composite of 2wt% cellulose
UFC100 (Composite UFC 1d). Composites with cellu-
lose B400 and Lyocell fiber show the similar trends.
Composites with cellulose B400 (Composite B400 2) or
Lyocell fiber (Composite Lyo 3) have the same decreasing
trend as more cellulose B400 or Lyocell fiber is added,
independent to the presence of sodium alginate.
Composites NFC 4c and 4d have low compressive
strength values due to the high porosity of the composite
material as a result of the high amount of water (Figure
S1). The addition of 1wt% NFC, independent of the
addition of sodium alginate (Composite NFC 4a and
4b), gave a slight increase in compressive strength in com-
parison to that of the pure gypsum reference. The bending
strength (Figure 10) follows a similar trend to that of the
compressive strength.

Figure 11 shows stress–strain curves of the cellulose/
gypsum composites tested in compression. As seen in
Figure 11(a) the slope of the stress–strain curve of the
Composite UFC 1a (C), up to an ultimate strain value
of 0.2%, is more steep in comparison to that of the

other composites. The Composites B400 2a (D), Lyo
3a (E), and NFC 4a (F) have a compressive strength
that is similar to that of pure gypsum (A) with the
ultimate strain values of 0.38%, 0.18%, and 0.25%,
respectively. The composites with 1wt% cellulose in
the presence of 0.5wt% sodium alginate such as
Composite UFC100 1b (G), Composite B400 2b (H)
and Composite Lyo 3b (I) have an almost constant
load after the first load drop is observed. These com-
posites have ultimate strain values that are in the range
of 0.4–0.8% and are even higher than that of the
sodium alginate (B). The addition of 0.5wt% sodium
alginate to 1wt% NFC, Composite NFC 4b (J), does
not give a big difference in the ultimate value in com-
parison to that of the Composite NFC 4a (F), compos-
ite without sodium alginate.

The Young’s moduli of investigated samples and the
total porosity are presented as a function of the compo-
sites (Figure 12). The box plot of Young’s modulus
shows maximum and minimum bars along with the
median, the lower quartile (75th percentile), and
the lower percentile (25th percentile) (Figure S3). The
Young’s modulus of pure gypsum in the absence and
presence of 0.5wt% sodium alginate are shown as ref-
erences. Composites with 1wt% cellulose UFC or
Lyocell fiber have significantly high Young’s modulus
values, almost as high as that of the pure gypsum refer-
ence. A slight increase of Young’s moduli is observed
when 1wt% cellulose B400 or NFC is added. The
Young’s moduli of all composites drop when 0.5wt%
sodium alginate is added to the composites. Composite
NFC 4b shows a slight increase of Young’s modulus
when 0.5wt% sodium alginate is added. Note the big
scatter of the data shown in the box plot (Figure S3).

Figure 11. Stress–strain curves of (a) composites with 1 wt% of cellulose without sodium alginate and (b) composites with 1 wt%

cellulose and 0.5 wt% sodium alginate. The stress–strain curves of pure gypsum in the presence and absence of sodium alginate are

included as references.
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Figure 12. The graphs of the total porosity and the Young’s modulus of the cellulose/gypsum composites as a function of the

composites: (A) composites UFC100, (B) composites B400, (C) composites Lyocell, and (D) composites NFC. Graph (E) show the

total porosity of all composites as a function of Young’s modulus. The graphs show that the total porosity influences the Young’s

modulus of the final composites. Composite with an addition of 1 wt% cellulose UFC100 (UFC 1 a) has the highest Young’s modulus as

an effect of low total porosity.
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Discussion

The role of cellulose in the gypsum crystallization

Polyamide, hemp, and cellulose fibers are commonly used
to reinforce gypsum composites and are well-known to
affect the properties of the compositematerials.However,
the role of cellulose during gypsum crystal formation,
growth, and gypsum–gypsum crystal interlocking has
not yet been clearly explained. In this contribution we
try to point out this issue. In several composites hetero-
geneous gypsum nucleation occurs on the surface of cel-
lulose. Such heterogeneous nucleation might be favored
by a good matching interface between the structures of
gypsum and the different characteristics of the celluloses
materials such as the ability of cellulose to absorb and
provide water for gypsum crystallization. When gypsum
nucleates heterogeneously on cellulose such as in the case
of cellulose B400 and Lyocell fiber (Figure 7(e) and (f)),
the crystal morphology as well as the interlocking features
strongly differ from the case in the pure gypsum precipi-
tates. Heterogeneous nucleation does not appear on the
surface of NFC. With a decreasing size of the fiber less
water is absorbed by the fiber. Thus, a smaller quantity of
water will be released to support gypsum crystallization.

As seen in the SEM image of the composite where
UFC100 1a is added (Figure 7(a)), cellulose UFC100
produces smaller gypsum crystals in comparison to
gypsum crystals precipitated without any cellulose.
The addition of UFC100 reduces the porosity of the
gypsum composite, thus enhances the bending and
compression strength of the Composite UFC 1a
(Figures 9, 10, S2, and S3).

The effect of cellulose characteristics and sodium
alginate on the mechanical properties of the
composites

Cellulose is a complex organic material with unique
properties. In this study, two distinct cellulose poly-
morphs were used: Cellulose I (cellulose UFC100, cellu-
lose B400, and NFC) (Figure 3) and cellulose II (Lyocell
fiber) (Figure 4). Cellulose UFC100, B400, and NFC are
natural fibers, while Lyocell is a synthetic fiber. Cellulose
I shows a high degree of crystallinity (degree of crystal-
linity values of 75.5%, 70.2%, and 67.8% for UFC100,
B400, and NFC, respectively) whereas cellulose II is
more amorphous in comparison to cellulose I (degree
of crystallinity value of 52.3%) (Table 2). The degree
of crystallinity is correlated to the arrangement of indi-
vidual fibrils within a cellulose fiber. The degree of crys-
tallinity further defines the degree of swelling and the
water retention value (WRV) of the cellulose. The
degree of swelling in water or NaOH (2–4M) is higher
for cellulose II in comparison to that of cellulose I. Under
strong alkali treatment (NaOH of 5–8M), cellulose I has

a higher degree of swelling than that of cellulose II.33 The
small swelling degree of cellulose I in water and under
alkali treatment (NaOH of 2–4M) is due to the fact
that cellulose I has a high degree of crystallinity and con-
tain less disordered interlayers between the crystallites of
the elementary fibrils.38 This results in a lower uptake of
water by cellulose I in comparison to cellulose II.

The degree of swelling togetherwith theWRV influence
the total porosity.33 The total porosity further influences
the mechanical properties of the composite (compressive
strength, bending strength, and Young’s modulus)
(Figures 9, 10, and 12). Note the scatter of data in the
box plots (Figures S2 and S3). The significant increase in
Young’s modulus of the composite with UFC100 is due to
a fact that cellulose UFC100 is an ultrafine cellulose
powder that can penetrate the pores created by the
gypsum needle-like matrix. This reduces the total porosity
of the composite. The high Young’s modulus of the com-
posite with 1wt% Lyocell proofs that Lyocell fiber (syn-
thetic fiber) has a high stiffness. The composite with 1wt%
NFC has a Young’s modulus value higher than that of
composite with 1wt% B400. NFC is reported by some
authors39–42 as having a high stiffness.

Cellulose and sodium alginate act as biopolymers that
influence the mechanical properties of cellulose/gypsum
composites. The composites consist of the gypsummatrix
enforced by cellulose fibers and sodium alginate. The
gypsum matrix infiltrates the cellulose fibers and affects
the mechanical property of the composites depending on
the fiber characteristics. The presence of sodium alginate
increases the total porosity of the composites by creating
more pores (Figures 9 and 10). Cellulose UFC 100, the
cellulose with small particles, is able to impregnate the
pores created by gypsum-gypsum interlocking, thus,
decrease the total porosity of the composite (Composite
UFC1a). The decrease in total porosity correlateswith an
increase in the mechanical properties of the Composite
UFC 1a (Figures 9 and 10). The stress–strain curve
behavior that is observed after the first load drop appears
as a result of an intimate interlinkage between cellulose
and sodium alginate so that an effective load transfer
between the matrix and the fibers is achieved. This behav-
ior is not observed when cellulose alone is added to
gypsum (Figure 11). The addition of sodium alginate to
the cellulose/gypsum composite withNFC does not affect
the Young’s modulus of the composites (Composites
NFC 4a and 4b). This clearly explains that sodium algin-
ate does not reduce the NFC-gypsum interface failure by
creating an intimate interlinkage between NFC and
gypsum interfaces.

Conclusions

We investigated the total porosity and mechanical
properties of cellulose/gypsum composites in the
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presence and absence of sodium alginate. Our results
show that the morphology of cellulose not only affects
the formation of gypsum crystals but also the micro-
structure and the mode of the interlocking of the
gypsum crystals. It occurs as the presence of cellulose
changes the supersaturation of the solution and surface
topography of the growing crystals. A heterogeneous
nucleation that is observed in the surface of the cellulose
is affected by a good matching interface between the
structures of gypsum and the different characteristics
of the celluloses materials such as the ability of cellulose
to absorb and provide water for gypsum crystallization.

The gypsum microstructure and mode of interlocking
further influence the total porosity and the mechanical
properties of the final composite material. The compres-
sive strength, bending strength and Young’s modulus
increase with the addition of cellulose UFC100 due to
the fact that UFC100 is a cut off fiber with an irregularly
shaped unit and is able to fill the pores of the composites.
A high stiffness of Lyocell fiber, a synthetic fiber, resulted
in a high Young’s modulus of the composite with the
addition of 1wt% Lyocell fiber. The addition of sodium
alginate reduces the interface failure as it is seen in stress–
strain curves showing a high ultimate strain value.

Acknowledgments

We thank Markus Sieber and the staffs of the workshop of

Department of Earth and Environmental Sciences, Ludwig
Maximilian University for technical support. We also thank
Dr Robin Beddoe from Centre of Building Material,
Technische Universität Muenchen for his help with the por-

osity measurement.

Conflict of interest

None declared.

Funding

This work was partially funded by projects AIB2010 DE-
00085, DAAD-50749739 and KAAD.

References

1. Wirsching F. Calcium sulfate. In: Pfefferkorn R and

Rounsaville JF (eds) Ullmann’s encyclopedia of industrial

chemistry. Fifth, completely revised edition. Weinheim:

VCH Verlagsgesellschaft GmbH, 1985, pp.555–584.

2. Gmouh A, Samdi A, Moussa R, et al. Lightened plaster-

based composite materials:Elaboration and mechanical

properties. Silicat Indust Ceram Sci Technol 2001; 66:

61–66.
3. Coutts R. Wastepaper fibers in plaster products. J Mater

Sci Lett 1991; 10: 77–78.

4. Olvares-Hernández F, Oteiza I and de Villanueva L.

Experimental analysis of toughness and modulus of rup-

ture increase of sisal short fiber reinforced hemihydrate

gypsum. Compos Struct 1992; 22: 123–137.

5. Li G, Yu Y, Zhao Z, et al. Properties study of cotton

stalk fiber/gypsum composite. Cement Concrete Res 2003;

33: 43–46.
6. Dalmay P, Smith A, Chotard T, et al. Properties of cel-

lulosic fiber reinforced plaster: Influence of hemp or flax

fiber on the properties of set gypsum. J Mater Sci 2010;

45: 793–803.

7. Eve S, Gomina M, Gmouh A, et al. Microstructural and

mechanical behavior of polyamide fiber-reinforced plas-

ter composites. J Eur Ceram Soc 2002; 22: 2269–2275.
8. Eve S, Gomina M, Pernot JP, et al. Microstructure

characterization of polyamide fiber/latex-filled plaster

composites. J Eur Ceram Soc 2007; 27: 3517–3525.
9. Ali MA and Grimer FJ. Mechanical properties of glass

fiber-reinforced gypsum. J Mater Sci 1969; 4: 389–395.
10. Wu YF and Dare MP. Axial and shear behavior of glass

fiber reinforced gypsum wall panels. J Compos Constr

2004; 8: 569–578.
11. Wu YF. The effect of longitudinal reinforcement on the

cyclic shear behavior of glass fiber reinforced gypsum

wall panels. Eng Struct 2004; 11: 1663–1646.

12. El-Maghraby HF, Gedeon O and Khalil AAA.

Formation and characterization of poly(vinyl alcohol-

co-vinyl-acetate-itaconic acid)/plaster composites, part

2. Composite formation and characterization. Ceramics

2007; 3: 168–172.

13. Chen Z, Sucech S and Faber KT. A hierarchical study of

the mechanical properties of gypsum. J Mater Sci 2010;

45: 4444–4453.
14. Lewry AJ and Williamson J. The setting of gypsum plas-

ter, part I: The hydration of calcium sulphate hemihy-

drates. J Mater Sci 1994; 29: 5279–5284.
15. Badens E, Veesler S and Boistelle R. Crystallization of

gypsum from hemihydrate in presence of additives.

J Crys Growth 1999; 198: 704–709.

16. Singh NB and Middendorf B. Calcium sulphate hemihy-

drates hydration leading to gypsum crystallization. Prog

Cryst Growth Ch 2007; 53: 57–77.
17. Yu QL and Brouwers HJH. Microstructure and mechan-

ical properties of b-hemihydrate produced gypsum: An

insight from its hydration process. Constr Build Mater

2011; 25: 3149–3157.
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