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The use of Computer Simulation to Evaluate the
Testability of a new Fitness Concept

Wilfried Cabriel, Plon

Abstract

Using a model for the evolution of fitness, we show how computer simu-
lation can be used to examine whether a theoretical model can be tested
by experimental data. A maximum-likelihood-fit on simulated measurements
was able to separate the parameters. Such measurements can be made in

a realistic experimental set-up. Therefore, the concept and the predictions
of the model can be experimentally tested.

Zusammenfassung

An dem Beispiel eines neuen Fitnesskonzepts, wo der Verlauf der Fitness-
funktion selbst der Evolution unterworfen ist, wird gezeigt, wie Computer-
Simulation hilfreich sein kann, um die Testbarkeit von Modellvorstellungen
zu untersuchen. In diesem Modellkonzept mit quantitativ genetischen An-
sdtzen war es ungewill, ob die wesentlichen Modellparameter Uberhaupt aus
experimentellen Daten bestimmbar sind. Mit einem Maximum-Likelihood-Ver-
fahren gelingt es, diese Modellparameter zu separieren. Simulierte Messun-
gen demonstrieren, daf der dazu notwendige MeBaufwand in realisierbarem
Rahmen bleibt. Damit erweisen sich die grundlegenden Modellvorstellungen
und Modellvorhersagen als experimentell testbar.

1. Introduction

The assumptions underlying many mathematical models in biology are such
simplifications of reality that the models cannot be tested by empirical

data. Nevertheless, such models do clearify ideas and enable precise
definitions, as well as promoting a qualitative understanding necessary

for the development of new concepts. Realistic models in biology, however,
require a set of testable predictions. Crucial experiments or observations
should be able to falsify a model or to suggest useful modifications. For
that purpose a biological interpretation of all model parameters is required.
If these parameters are not directly measurable, a description of a realistic
experimental set-up and of a statistical procedure to extract the parameters

from data are necessary to achieve creditibility with experimenters.
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Here we present an example of a model concept for which it was uncertain,
whether the parameters could be estimated from experimental data. In
almost all genetic models (e.g. Lande 1982, Lynch and Gabriel 1983) the
individual fitness function (or equivalently the individual niche width) is
fixed and, therefore, independent of evolution. Using concepts from quan-
titative genetics, we redefine fitness as a tolerance curve which itself
changes during the evolutionary process. Adaptation is driven in the
direction of maximal fitness. Therefore, the relative fitness contribution

of any quantitative trait is calculable by its difference from the possible
optimal value and by the shape of the fitness function. However, in
temporally and spatially variable environments natural selection changes
the breadth of adaptation in relation to expected variations of the optimum.
Thus, both the optimum value and the whole shape of a tolerance curve or
fitness function are evolving. By incorporating this into a model concept
under quite general conditions, the optimal breadth of adaptation can be
predicted (most simple in clonal populations) as a function of the variability
of the environment (Lynch and Gabriel 1986a,b). Thereby, according to
our model, spatial heterogeneity, temporal variation within a generation,
and temporal variation between generations act independently. The pro-
duced variances represent, in general terms, contributions to the fitness

with multiplicative and additive effects.

2. Model Concept

We start by taking the simplest possible assumptions and the minimum num-
ber of parameters. Let us assume that the tolerance curve of an individual
over an environmental gradient can be represented by two quantitative
genetic characters: 94 describes the optimum and 9, the variance of the
tolerance curve. Each of these characters may be the expression of a
large number of genes and is measured on an environmental scale. However,
this description is valid only for the average of a clonal population because
of the inevitable variation due to development. Therefore, the fitness of

an individual is determined rather by its phenotypic values z, and z,,

1
than by the corresponding genotypic values 9, and 9,- We suppose that
in most cases with a proper scale transformation the fitness function can

be approximated by a normal distribution:
- -1/2 o 42
w(z,,z,,¢)=(21 2,) exp(-(z;-¢)"/2z,) . (M
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The actual environment (the model is most applicable to physical or chem-
ical gradients like temperature or pH) is measured by ¢ . The variance of
phenotypes with identical genotypes growing up under the same conditions
is called developmental noise VE (according to the traditional nomenclature).
Quantitative genetics usually puts a normal distribution for the relationship

between phenotypes and genotypes

-1/

2
plz,|g,) = (2nV,) zexp(—(z1-g1) 12Ve) . (2)

but as z, is a variance it always has to be greater than zero. For the dis-

2
tribution of z, around g, we use a beta distribution of the second kind
(Kendall and Stuart 1977)

p(x) = x*7! (10x) 7@ B rarg) 1 (r (dr (8))
For mathematical reasons it is helpful to set x = 22/VF1. By this substitu-
tion VEl acts as a scaling factor. The zz—distribution, however, remains
independent of VE1‘ From the constraints E(zz) =9, and Var(zz) =V

it follows that

E2’

_ a-1 -(a-B) )
plzy]g,) = (2,/Ve ) (142, Ve )T P rtars) (Ve r(a)T(8)  (3)
with
@ = (9y(g,*VEg )V, +1)9,/ Ve,
g = 92(92+VE1)/VE2 +2 .

The four variables 91+ 9y \% and VE2 are essential for the understand-

ing of the evolutionary procefs] in question. Yet, as shown by the basic
equations they have opposing influences on the effective fitness of a popu-
lation. Therefore, as a first step it is necessary to demonstrate that each
of these parameters can be measured under realistic conditions. In order
to do this without appropriate experimental data, we simulated experiments
with the expected range of variables. The parameter estimation is done by
the following rather computer time consuming but effective maximum likeli-

hood procedure.

3. Parameter ldentification by the Maximum Likelihood Method

In the following we assume that measures of fitness w; at environmental

states ¢, are available for n individuals of a single genotype. The 9 need
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not all be unique, but - according to the experience of several simulations -
a minimum of 3-4 environmental settings are recommended in a range where
the fitness changes at least one order of magnitude. Each fitness value is

a function of the corresponding ¢, as well as of the unknown parameters
91+ 9y VE]’ and VEZ‘ We wish to estimate these four unknowns by maxi-
mizing the joint (a posteriori) probabilities of all observations, the product
of all n P; (or the sum of n Iog(pi)), where P the conditional probability
of observing (Wi'q’i)' is a function of 91- 9y VE1’ and VEZ'

We will focus on the simple case in which individuals are exposed to con-

stant ¢ throughout their lives as would be approximated in a controlled

laboratory or greenhouse setting. A specific measure of individual i in en-
vironment ¢’i can result from many different combinations of z, and Z,, but
equation (1) implies the constraint
_ _ 1/2,,1/2
Z, =6, ¢ ( 222|n(wi(2n22] )) . (4)

The a posteriori probability of the observation (Wi'¢i) can now be ex-
pressed by weighted integration over all possible combinations of Z, and

Z,- For each z, the probability of obtaining the z. that results in the

1
observation (wi,¢i) can be calculated by substituting equation (4) into (2):

172 2
Mz, wi0;) = 27V ) 2 (expl-(x-g,) 212V,

+ expl-(y-97)%12Vg)) )

where x = LI =¢i—c and
¢ = (-2z,In(w,(2nz,) )2

The (a-posteriori) probability P; of the measurement (Wi’ ¢i) is then given

with (3) and (5)

P, = fp(zz‘gz)H(zz,wi,q>i)dz2 .

The boundaries of this integration are z, = 0 and z, = 1/(2nw?).

Above this limit it is impossible to measure a fitness of the value Wi
Unfortunately, there is no analytical solution available for this integral.
Another complication arises from the fact that the expectation value of the
geometric mean fitness (fi] varies slightly with ¢. For combining measure-
ments of different environmental settings, the contributions of distinct ¢
values to the joint probability have to be weighted by the expectation

values fi in order to avoid systematical errors. Given the above equations
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the maximum likelihood estimates of the four parameters 91, 9y \% and

VEZ are obtainable using well-known Monte-Carlo-techniques for fi|,51nume—
rical integration for P; and optimization procedures to maximize the joint
probability. At the end of the maximization, estimates of the second deri-
vatives at the maximum may also be computed to obtain (from the inverse
of the Hessian matrix) estimates of the (sampling) variances and co-

variances of the four parameters.

This same analysis could be applied in situations in which ¢ is not con-
stant within the lifetime of measured individuals but has for all ¢ settings
the same variance V . In this case, using equations derived in Lynch and
Gabriel (1986b), the equation (4) becomes

1/2

2, = ¢, % (22 00w, (2n2)) )=, ) (6)

1 ¢

With appropriate sample size, use of (6) in the definition of P; would en-
able the investigator to derive an estimate of V¢ as well as 97 95 \%
and V

E1’
E2°

4. Results

The dotted line in the figure represents the expected fitness distribution
at five environmental values (¢ = 0, 2.23, 5.53, 8.3, and 11.07) for a
given parameter set (g]=0, gz=10, VE1=1, and VE2=3). The scale of the
environmental variable ¢ is chosen so that the fitness function of an
average animal has its maximum at ¢ =0. Besides the different numerical
range the form of the distribution of fitness values changes with ¢ and
shows distinct asymmetries. It can be shown that these distributions and
especially the asymmetries depend characteristically on the parameters
91 9y VE1’ and VEZ‘ Therefore, it is necessary to have the measure-
ments of single individuals; the usually published mean values and stand-

ard deviations of fitness are not sufficient.

The figure also contains simulated measurements. These data are presented
as histograms in order to faciliate graphical presentation and comparisons
with expected values. For each of the five ¢-values we have simulated 40
measurements. The procedure described above was then applied to the
joint distribution of all 200 data points. The results on the presented set
of simulated data are 91=0.51, 92=8.85, VE1=1'M' and VE2=3.30. The
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expected fitness distribution according to this maximum likelihood result
are given by the unbroken line in the figure. Our shown results are
atypical in that they appear to fit the data only poorly. However, this
may arise from the use of too few statistics of simulated events, even with
respect to the dotted line (the goodness of fit is still sufficient; a table
with results of other simulations is given in Lynch and Gabriel, 19860).
Our aim is to demonstrate that with a manageable effort of 200 measure-
ments over an environmental scale where the fitness changes by two orders
of magnitude, the basic parameters for a new fitness concept can be esti-
mated by experimental data. Thereby it is demonstrated that concepts and
predictions of this model as given by Lynch and Gebriel (1986c,b) are
testable.

Acknowledgements

We thank G. Carvalho and W.R. DeMott for improving the manuscrip:.

References

Kendall, M. and Stuart, A. (1977): The advanced theory of statistics,
Vol. 1, 4th Ed., Charles Griffin, London.

Lande, R. (1982): A quantitative genetic theory of life history evolution.
Ecology 63: 607-615.

Lynch, M. and Gabriel, W. (1983): Phenotypic evolution and partheno-
genesis. Am.Nat. Vol. 122: 745-764.

Lynch, M. and Gabriel, W. (1986a): Evolution of the Breadth of Bio-
chemical Adaptation. - In: P. Calow (Ed.): Adaptational Aspects
of Physiological Processes. Cambridge University Press, Cambridge.

Lynch, M. and Gabriel, W. (1986b): Environmental Tolerance.

(submitted to Am.Nat.)}

88



