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EVOLUTION OF THE BREADTH OF
BIOCHEMICAL ADAPTATION

M. Lynch
W. Gabriel

INTRODUCTION

The existence of variation at the gene level is now accepted to
be ubiquitous among species, although the extent of variation is known to
differ among species (Nei, 1975; Ayala, 1976; Nei & Koehn, 1983; Nei &
Graur, 1984). Much, but not all, of this variation can be explained by the
neutral theory of molecular evolution (Kimura, 1983) which assumes that the
dominant forces underlying the dynamics of gene frequency change are
mutation and the random drift resulting from finite population size. While the
neutral theory has been particularly successful in explaining the approximate
constancy of the long-term rate of gene substitution, there are many
short-term and localized properties of structural gene polymorphisms that can
only be explained by selection, and a consensus is gradually emerging that the
fit of the neutral theory to existing data is improved when the theory is
modified to incorporate a second kind of drift due to random variation in
selection intensity (Matsuda & Gojobori, 1979; Takahata & Kimura, 1979;
Takahata, 1981; Nei & Graur, 1984).

These recent developments are of interest since a very
substantial amount of mathematical theory on the maintenance of genetic
polymorphisms via spatial and temporal heterogeneity in the environment has
been formulated, largely as an alternative to the neutral theory (for
comprehensive reviews and syntheses see Karlin & Lieberman, 1974;
Christiansen & Feldman, 1975; Felsenstein, 1976; Hedrick et al., 1976;
Gillespie, 1978). The object of most of this theory has been to demonstrate
how environmental variation can serve as a form of balancing selection,
thereby preserving genetic polymorphisms. With the exception of the studies
of Takahata & Kimura (1979); Takahata (1981) and Tier (1981), most of this
theory either does not incorporate mutation or does so only in a very
restrictive manner (two alleles with reversible mutation), and therefore has
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very little to contribute to our understanding of the evolution of biochemical
adaptation. That is, while the theory may explain the degree of heterozygosity
maintained when alleles are exposed to different schedules and spatial
patterns of selection intensity, it does not consider the underlying
determinants of an allele's sensitivity to environmental fluctuations.

In addition to its potential role in promoting polymorphisms,
environmental heterogeneity may also select for genes whose biochemical
products can maintain their functional integrity in the face of such variation.
However, perhaps because environmental heterogeneity comes in many forms
(spatial and temporal variance, both within and between generations, and in
the genetic as well as the environmental background) and is generally
subjectively defined, little mathematical theory or empirical work has been
focused on the problem of breadth of biochemical adaptation. Only a verbal
argument presented by Ayala and Valentine (Ayala et al., 1975; Valentine,
1976; Ayala & Valentine, 1979) bears directly on the issue.

Drawing from the fitness set theory of Levins (1968) as well as
from considerable electrophoretic data that indicate a positive correlation
between the stability of trophic resources and the level of genetic variation
in pelagic and benthic marine invertebrates, the Ayala-Valentine hypothesis
states that functionally-broad alleles that encode for a highly generalised
phenotype are strongly favoured in temporally variable environments.
Narrowly-adapted alleles are purported to be strongly selected against under
these conditions, thereby resulting in a high degree of homozygosity. In more
temporally stable environments, the spatial component of heterogeneity is
thought to take precedence such that microhabitat specialization results in the
maintenance of a variety of narrowly-adapted alleles through balancing
selection. The Ayala-Valentine hypothesis is unique in its focus on both the
properties of loci (polymorphism and heterozygosity) and genes (functional
breadth), and it has subsequently been invoked in modified form to explain
patterns of genetic variation in marine decapods (Nelson & Hedgecock, 1980)
and marine fishes (Smith & Fujio, 1982).

The hypothesis can also be criticised on a number of grounds
(Soule, 1976; Nei & Graur, 1984). First, there are a number of species, such
as the cave fish Astyanax mexicanus (Avise & Selander, 1972) and fossorial

mammals (Nevo et al.,, 1974), which are thought to live in highly stable
environments but have exceptionally low levels of genetic variation. Any
criticism on these grounds is weak, since it can always be argued that a
small effective population size is responsible for the reduced amount of
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heterozygosity. A second and more serious problem is the subjective nature of
the hypothesis. Unless the level of environmental heterogeneity can be
objectively defined from the standpoint of the organism, there is little hope
for testing the hypothesis. Finally, it is not clear that the verbal reasoning
of Ayala & Valentine has led to the correct prediction. For example, it is not
clear why microhabitat specialization cannot be equally or more pronounced in
temporally variable environments than in stable ones. The existing theoretical
work on the relation of environmental heterogeneity to heterozygosity alone is
exceedingly complex, and with slight changes in assumptions, different
investigators have often reached radically different conclusions. Modification
of the existing theory to allow for the evolution of environmental sensitivity
at the gene level is likely to further complicate the theory for genetic
variability to an even greater degree.

Despite the shortage of attention that the problem of breadth of
biochemical adaptation has received from evolutionary biologists, there is no a
priori reason to expect it to be any less important as a means of genetic
adaptation to variable environments than the maintenance of heterozygosity.
Indeed, several empirical studies suggest that something other than the
promotion of polymorphisms must occur when populations are exposed to
increasing levels of environmental heterogeneity. While Powell (1971), Powell &
Wistrand (1978) and McDonald & Ayala (1974) all found strikingly higher levels
of genetic variance in laboratory populations of Drosophila exposed to spatial
and temporal heterogeneity compared to controls, more recent studies (Minawa
& Birley (1978); Mackay (1980), (1981); Haley & Birley (1983); Zirkle & Riddle
(1983) have obtained either mixed or contrary results. Moreover, Nei (1980)
has pointed out that, even in the presence of environmental heterogeneity,
heterozygosity in the populations of Powell (1971), Powell & Wistrand (1978),
and McDonald & Ayala (1974) was eroded more rapidly than could be
accounted by random sampling drift; i.e. even in the studies with results most
concordant with theoretical predictions, environmental heterogeneity enhanced
the rate of loss of genetic variance relative to expectations under selective
neutrality. Clearly, the problem of what environmental heterogeneity selects
for is far from resolved.

Although we recognize the importance of genetic variation in
heterogeneous environments, we will not concern ourselves with this issue
here, focusing instead on the development of a theory for the evolution of
the breadth of adaptation at the gene level. We therefore address the
Ayala-Valentine hypothesis only in part. Much of what follows will take on an
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adaptational tone since we are primarily concerned with identifying the
optimal level of functional flexibility of an allele in an effort to formalize
the argument of Ayala and Valentine. Elsewhere, we will examine the extent
to which the intensity of selection for alleles, and hence the likelihood of the
evolution of the optimum and of the maintenance of heterozygosity, is
modified by the level of environmental variation (Lynch & Gabriel, in prep.).
We will also present our mathematical derivations in detail elsewhere,
restricting our attention here only to the most fundamental definitions and

formulae.

THE GENIC FITNESS FUNCTION

In order to explore the consequences of environmental
heterogeneity for the evolution of gene properties, we require a theory that
explicitly links the fitness of an allele to its environment. In the following,
we define the genic fitness function, w(gl,g2|¢), as the expected fitness of
an allele over a continuous environmental gradient, ¢ . It is easiest to think
of ¢ as a density-independent parameter such as temperature, and the allele
as a gene encoding for an enzyme. Associated with any allele will be a mean
environmental optimum (gl) and a measure of functional flexibility (g2 ). A
precise definition of g, will follow below, but in effect it is a measure of
the equitability of the fitness of an allele over the environmental gradient. It
is important to note that 81 and g, are not in_vitro properties of an allele.
On the contrary, they are functions of the integrated phenotype, being defined
as the average environmental optimum and breadth of all individuals con-
taining the allele.

In the derivation of a fitness estimate for allele (g;,g 2) two
sources of variation must be taken into consideration. First, because of
mutation, recombination, segregation, and gene flow, any gene is likely to be
found in a multitude of genetic backgrounds. Moreover, variation in the
environment is likely to further magnify the diversity of phenotypes within
which a gene resides. The environment within which an individual develops
may have long-lasting effects on the phenotype (Falconer, 1981), and
short-term changes may be accomplished by physiological acclimation or
behavioral modification (Hochachka & Somero, 1973; Ricklefs, 1979). Thus,
while (g,,8,) is defined to be the expected phenotype of an individual with
the allele, the actual genic fitness function is determined by the conditional
phenotype distribution p(zl,z2 | gl,gz), as well as by the phenotypic fitness
function, w(zl,z2 |$) (Fig. 1), such that:
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w(g 1,g2|¢) = é L, wiz 1,zz|q;).p(zl,z2 |g1,g2 ).dz 1dz2 (1)

The second source of variation that influences the fitness of a
gene is the variance in the environmental parameter ¢ due to spatial
heterogeneity and temporal fluctuations. We will take this topic up in some
detail in the following section. First, however, we consider the fundamental
relationship of the fitness of a gene to the environment.

We assume that the environmental state, ¢ , is measured on a
scale such that the phenotypic fitness function is normalised,

wiz 2z |0 = @rz) ™M exploz,-0) Y22)) @

For an individual with phenotype (zl,zz), z, is the environmental state in
which fitness is maximized, and Z, the "variance" of the fitness function.
Note that z, and z, are measured on different scales, a small inconvenience
that can be eliminated by square root transformation of the latter.
Throughout this paper will refer to /22 as the environmental breadth of a
phenotype. Note also that a cost to being a generalist is implicit in equation
(2), since any increase in /zz results in a reduction of fitness in the optimal
environment while increasing fitness in more extreme environments. Such a
cost is implicit in the Ayala-Valentine hypothesis and throughout the
evolutionary ecological literature (MacArthur, 1972; Pianka, 1978), although as
emphasised by Futuyma et al., (1984) and Huey & Hertz (1984) empirical tests
of the idea are almost totally lacking.

We further assume that the genes that contribute to an
individual's environmental optimum and breadth have additive effects both
within and between loci (for supportive arguments for enzymatic loci, see
Gillespie & Langley, 1974 and Kacser & Burns, 1981) and that the conditional

phenotype distributions for z) and z; are independent so that
Pz 2, [8,8)) = Plz; |8))-Pz; |8y )

The  conditional phenotype  distribution for the environmental optimum,
p(zl|gl), is taken to be normal with mean g, and variance Vi,. Vg, includes
the variance in environmental effects that contribute to the optimum, Vg,
and all of the genetic variance for the trait conditional on one copy of the
gene being present at the locus. Thus,
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Fig. 1. Mean fitness function for a gene (solid line) and for
a few of the phenotypes within which it is found.
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where VGl is the total genetic variance for the optimum. Note that o1 takes
on a minimum value of 0.5 when no other loci encode for the environmental
optimum, since only a single gene is free to vary. This low value may also be
approached if the locus under consideration is in extreme linkage disequilibrium
with other loci encoding for the environmental optimum. However, if linkage
is not strong, pl-»-l as the number of loci increases.

Since a variance cannot be <0, the conditional distribution for
environmental breadth cannot be normal. Moreover, it does not seem
biologicallly reasonable for z, to ever equal zero exactly. In order to separate

genetic from environmental effects a distribution for which the variance is
independent of the mean is desirable. Three distributions that meet these
requirements are outlined in Fig. 2a. In each case the expectation of z; is
g, and the variance of z, is Vi, (defined in the same manner as V,l'.l). All
three distributions are very similar if the coefficient of variation
[(V,i,z)l’/g2]<o.5,and although they differ quantitatively for larger Vi, their
qualitative behaviour is the same (Fig. 2b). When (V1)) /z<<g2, p(zzlgz) is
approximately normal; but as V,}z increases, the conditional distribution
becomes increasingly asymmetrical with the mode approaching the origin. In
the following analyses we rely on the beta distribution of the second kind
for p(z2 |g2) as it is the only case for which we have been able to obtain an
analytical solution for the genic fitness function.

The solution to equation (1) for normally distributed p(zllgl) and
beta distributed p(z2 |g2) is somewhat involved and is presented elsewhere
(Lynch & Gabriel, in press). It is sufficient to note here that if the
scale is set such that V,l'.1 = 1, then provided g,>1 (an assumption that is
supported by analyses in the next section) and the coefficient of variation
[(Véz)%/gz_](l(a liberal upper limitfor most quantitative traits), the genic
fitness function is closely approximated by

, R . -1/ - 2.
W\gl,gzlcb) = (znvY) L 2exp|_-(g1-¢) f2V']} (5)
where

8,18, (gy*Vy) + Vp,)
+ L] T .
T1 o gy(ey*Vpy) + 2Vp, ©




Lynch & Gabriel: Biochemical Adaptation 74

Thus, the genic fitness function is approximately normal with maximum
fitness in environment ¢ = 8, and variance V'. In the following we will refer
to YV' as the realised environmental breadth for a gene. Note that for the
special case in which V! = 0, equation (5) reduces to the exact solution of

T2
equation (1) under those circumstances:

1/2

wig s8, 9 = [2m(g,+V2 ) 17" “expl - (g1-¢)2/2(gz+vqg1)] (7

and that at the upper limit of the applicability of the normal approximation,

[ (V{-Q)L“/82J =1. the genic fitness function is approximately

wig g, |0 = (27 28,73V 1V Pexp (g, 072 [ (2g,/3+V3, 1} (®

Thus, depending on the genetic and environmental background, an allele's
realised environmental breadth is expected to fall within the range of
[(232/3)+V+1] and [g2+V,'r1]

In summary, V! . and V'E‘Z have conflicting effects on the genic

'
fitness function. Variance f<'>rr1 the environmental optimum always results in a
flattening of the fitness function, thereby endowing an allele with functional
flexibility, whereas variance for environmental breadth has the opposite
effect. The latter effect is not unique to the beta distribution of the second

kind (Fig. 2c).

SPATIAL AND TEMPORAL HETEROGENEITY

Having defined the fundamental relationship between genic
fitness and ¢ , we now proceed to evaluate the realised fitness of an allele
with properties (g 18 2) in environments characterised by different degrees of
spatial and temporal variation. For a population growing in discrete
generations, we identify the mean environmental state over all microhabitats
in generation t as bpe If the environment is spatially heterogeneous relative to
the mobility of individuals, then it is likely that the actual mean
environmental state experienced by an individual will be somewhat different
from qbt . We will take the mean environmental state experienced by
individuals, ¢s, to be normally distributed with expectation cbt and variance
\ oS Note that V bs is a measure of spatial heterogeneity perceived by the
population. It is likely that V¢s will be higher for a sedentary species than
for a mobile species in the same environment. However, this need not always

be the case, since dominance hierarchies in behaviourally sophisticated
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organisms might actually inflate the variance in mean environmental states
experienced by different individuals.

The second source of environmental variation that we incorporate
is the temporal variance in ¢ experienced by individuals within a generation,
v btw We will assume that the level of temporal heterogeneity experienced
by individuals is independent of their mean environmental state, but make no
assumptions regarding the temporal distribution.of ¢. . . . . . . .

Before proceeding, - it is worth considering the relationship of
V¢)s and v¢tw to the concept of environmental grain (Levins, 1968) which is
frequently alluded to in the ecological genetic literature. An organism is said
to perceive its environment as fine-grained if it passes through many patches
in its life time. As individuals spend a greater proportion of their lives in a
single microhabitat, the environment is said to be more coarse-grained. While
the concept of grain is used in the context of spatial heterogeneity, it also
has an element of temporal heterogeneity embedded in it. In our terminology,
a fine-grained environment is one in which chs is relatively low but V¢tw is
relatively high. That is, ¢s = ¢t for most individuals since they all pass
through most patch types in their life times, but the movement between
patches with different environmental states increases V¢tw . In the most
fine-grained of environments, V bs will be essentially zero, but even in the
most coarse-grained of environments, while V btw will be reduced, it cannot be
less than the temporal variance of ¢ which occurs within a microhabitat.
Thus, the definition of environmental grain, which has heretofore been used
primarily from a heuristic standpoint, is formalized by the use of V¢s and
ptw’

A more general interpretation of V s and V btw is to consider
them to be the total variance in additive and multiplicative effects on fitness
resulting from environmental heterogeneity. While we have defined the spatial
component of environmental variation such that it has an additive influence
on genic fitness, temporal variance in ¢ within generations influences fitness
geometrically (as when daily probabilities of survival interact multiplicatively
to determine annual survivorship). Using techniques that we present elsewhere
(Lynch & Gabriel, in press), the fitness of allele (81’32) in generation t is
found to be

-1/2 1 [ Votw (g1‘¢t)2
wigy,g,y,t) = {21T(V'+V¢S)} .exp; - 2—[—‘/'— + W]s (9)
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Finally, in order to determine the relative long-term advantages
of different alleles, we incorporate the variance in o, between generations. In
extending our analysis across generations, we adopt the geometric mean
fitness of a gene as a measure of its relative success (Dempster, 1955). In
order for us to make any analytical progress, it is necessary to assume
constancy of the genetic background (pl, Py s VGl’ and VGZ) throughout the
period of selection. Approximate constancy of these parameters can be
expected to result from selection-mutation balance in an environment that

Fig. 3. The optimum g of a gene product as a function of the
spatial (Vg ), within-generation temporal (Vgty), and between-
generation’ temporal () variance. Solutions are for the case
in which g =t (i.e. the optimal environmental optimum has
been attained), V+ = 1, and V,i.z = 0.
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does not change between generations, but stochastic variation in ¢ ¢ must
promote variance in the genetic background. Provided the distribution of d)t is
stochastically stable, we anticipate that stochastically stable distributions
will also arise for Pyr Pys VGl , and ch’ thereby preventing (or retarding)
complete fixation or loss of alleles with different properties in effectively
infinite populations (Gillespie, 1978). We hope to address this complicated

frequency of an allele will be posmvely correlated with its geometric mean
fitness as defined below.

Setting the environmental scale so that the long-term mean
environmental state (average ¢ 1:) is zero, and letting the variance in ¢ t
between generations be v¢tb , the geometric mean fitness of an allele with
properties (gl,gz) is found using the techniques in Lynch & Gabriel (in press),

lim [ II w(g l,gz,t)l/T]
Tro  t=1

- 2
\ g, +V
tar s, 01 e ; %[ R ?};b]g (10)
S

As in the case of within-generation temporal variance, this derivation makes

wig,8))

n

no assumptions about the temporal distribution of q)t between generations.

We are now in a position to evaluate the influence of the
various forms of environmental variance on the optimal properties of an allele
(gl,gz ). It is immediately clear that the environmental optimum that
maximizes geometric mean fitness is §1 = 0, i.e., the long-term mean
environmental state. Estimation of the optimal environmental breadth, gz, is
less straight-forward because of the complexity of V'. However, the limits to
g, can be obtained quite readily by computer by noting from equations (7)
and (8) that [(2g2/3) + V.i,llg vV'< [gz + V,hl and that from the standpoint
of the individual, it is the realised environmental breadth (V') that must be
optimized. The minimum value for §,, which arises when Vi, is zero, is given

¢t{¢

assume to be approached as (V /g2 ~+ 1, is approximately 1.5 times the

in Fig. 3 as a function of V¢s, , and V btb * The maximum §2, which we
plotted values.

Several conclusions can be drawn from this analysis. First, in
accordance with Ayala & Valentine's expectation, temporal variance in the
environment always results in selection for more broadly adapted or
"functionally flexible" alleles. However, the scale of temporal variance

matters a great deal. In an extremely fine-grained environment (V ¢s = 0),
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v dtw and vcbtb have identical influences on §,, but as V¢ ¢ becomes large, the
influence of the between-generation variance becomes negligible. The
significance of temporal variation between generations is diminished in highly
spatially heterogeneous environments because a relatively even distribution of
environmental states is already present in different microhabitats, and a shift
in at between generations does little to change it.

Second, and in partial agreement with Ayala & Valentine, spatial
heterogeneity is not a sufficient condition for the evolution of broadly
adapted alleles. In temporally invariant environments, functionally narrow
alleles (those with the lowest possible g,) will have the highest expected
fitness. However, provided that the between-generation variance is not too
large, spatial heterogeneity in temporally unstable environments accentuates
selection for generalism in environments with higher V¢tw. This result is in
conflict with the implicit assumption of the Ayala-Valentine hypothesis that
spatial heterogeneity plays a diminishing role in molding adaptive genetic
properties in temporally variable environments.

Finally, we note that if the between-generation component of
temporal variance is much greater than the within-generation component, an
inverse relationship may actually arise between V¢S and §2. Such an effect is
not predicted by the verbal hypothesis of Ayala & Valentine. It appears to
result because a narrowly adapted allele in a spatially homogeneous
environment is highly sensitive to environmental changes between generations,
whereas the mean fitness of a more broadly adapted allele is relatively
constant from generation to generation. In a highly spatially heterogeneous
environment a specialist allele would nearly always be located in some
favorable microhabitats even in generations with extreme ¢.. For example, if
¢ were temperature, then in a year with an extremely high temperature, a
microhabitat that is on average excessively cool would have a temperature
close the long-term average.

DISCUSSION

The sensitivity of a biochemical pathway to environmental
fluctuations most likely evolves in response to two conflicting forces : the
necessity of a generalised strategy in a heterogeneous environment, and the
cost of evolving generalism (the "jack-of-all-trades is a master-of-none"
argument). At the level of biochemical adaptation, environmental
heterogeneity includes not only spatial and temporal variance external to the

individual (our Vgq, Vgry » and Vg, ), but also variation in the genetic
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environment resulting from a gene's residence in a number of genetic
backgrounds (our p; V g1 and o,V GZ) and variation in the developmental
background induced by the environment (our Vgp and VEz ). We may,
therefore, expect the evolution of biochemical/physiological strategies of
organisms to be as much constrained by population genetic phenomena (degree
of inbreeding, migration, linkage and chromosomal structure) as by extrinsic

from an evolutionary perspective is clearly in an early embryonic state.
Indeed, we know of no explicit attempts to test the Ayala-Valentine
hypothesis nor of any data sets to which our own theory may be applied. A
substantial amount of comparative work has been done on the response of
isozymic reactions to changes in the physical/chemical environment, but
virtually all of this work has either been done in vitro or in fixed genetic
backgrounds (Hochachka & Somero, 1973; Koehn et al., 1983; Watt, 1985). Any
attempt to measure gl and reconcile it with an adaptationist argument must
realise that the relevant measures of biochemical properties are those
obtained in_vivo rather than in vitro, a point recently emphasised by several
biochemical geneticists (Middleton & Kacser, 1983; Powell & Amato, 1984;
Watt, 1985), and that meaningful measures can only be obtained by examining
an allele's properties in a full complement of genetic backgrounds rather than
in a single artificially constructed background.

An important reason why an in vivo measure may provide an
inaccurate description of the in_vitro properties of an allele underlying a
polygenic trait was pointed out by Lande (1976). The only constraint on a
polygenic trait under stabilizing selection is that the aggregate effect of all
constituent loci results in a phenotype near the optimum. Subject to this
single constraint, the mean effects of constituent loci are free to change in
an infinite number of ways via the interaction of drift, mutation, and
selection.

In this first attempt at a formal theory for the breadth of
biochemical adaptation we have made a number of assumptions regarding
shapes of distributions, additivity of allelic effects, an effectively infinite
number of possible allelic types, a cost to specialization, and zero covariance
between the mean and variance of environmental states within microhabitats.
Such assumptions, some of which have been rationalised above, have been
necessary in order for us to make progress in the development of a theory
that is mechanistic and couched in terms that are measurable in natural
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populations. Regardless of these assumptions, however, it is clear that at
least seven types of variance in the genetic and environmental background
have an influence on the optimal environmental breadth of an allele. These
are summarised with their implications for the evolution of the breadth of
biochemical adaptation in Table 1.

Perhaps the most striking result of our analysis is the conclusion
that not all types of variation in the background of an allele encourage the
evolution of broad adaptation ("functional flexibility" or "generalism") for the
gene product. If the variance for the environmental optimum (V.i.l) is high,
either because of high V., or p V. , then some individuals containing the
allele are likely to be at their optimal environmental state in most
generations, and the cost of evolving generalism can be avoided. Moreover, as
discussed above, depending on the temporal stability of the environment,
spatial variance, caused by structural complexity of the environment and/or

Table 1. Components of variance in the background of an allele and the influence that
they have on the evolution of breadth of biochemical adaptation,

Factor Increased breadth of biochemical
adaptation, /92, is favoured if
the factor

plle' conditional genetic variance for decreases

anvironmenta! optimum

ET environmental variance for the decreases

environmental optimum

pZVGZ' conditional genetic variance for increases

environmental breadth

VEZ' environmental variance for increases

environmental breadth
spatial component of the variance depends on \ and V
Vos dtw ¢ tb
in environmental state as perceived
by individuals
v¢tvf within-generation component of increases
temporal variance in environmental
state as perceived by individuals
V¢tb’ between-generation component of increases

temporal variance in environmental
state as perceived by individuals
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immobility of individuals, can sometimes select for reduced environmental
breadth.

Although some of our conclusions may be quantitatively sensitive
to changes in the assumptions underlying our model, our results clearly
indicate that the complexity of the relationship between environmental
heterogeneity and the evolution of genetic adaptations should not be taken

hypothesns that temporal instability of the environment results in selection for

broadly adapted alleles, they appear to adopt V as their measure of

temporal heterogeneity. Our results indicate th.;btt ! the  relation between
V¢ tw and §2 in different species and/or populations will be highly dependent
on the degree to which spatial heterogeneity and between-generation variation
in ¢, are correlated with Votw

The most appropriate test of our theory for a specific locus
would involve the measurement of life-time fitness of many individuals known
to contain the allele of interest, but otherwise randomly taken from a natural
population. By performing such measures at various points along the
environmental gradient and subsequently curve-fitting, estimates of - and
VV' can be obtained for the allele. Thus, in the context of evolutionary
theory, the measurement of the breadth of biochemical adaptation need not
involve any biochemical analysis other than the electrophoresis needed to
identify the genotypes of individuals. It does, however, require the analysis of
many more individuals than an in_vitro biochemical investigation.

Although the further partitioning of the realised environmental
breadth, V', into its components (32’ P1V612P2 Vg2 ' Vg1 » and \%2) would be of
interest, it would also require extensive quantitative genetic analysis and for
many purposes may be unnecessary. Simple estimates of /V' are relevant to
our theory. For while we have focused on the optimization of 8, in this
paper, the evolution of g, is actually determined by the more fundamental
constraint that /V' be optimized. Since we have scaled our parameters in this
paper such that V,'rl = 1, the optimal values for V' are obtainable from Fig.
3 (for the case Vip = 0) by simply adding 1 to g,-
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