Old and New Concepts in the Molecular Pathogenesis of Primary Aldosteronism

Elke Tatjana Aristizabal Prada¹, Jacopo Burrello², Martin Reincke¹, Tracy Ann Williams¹,²*

¹Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany

²Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy

*To whom correspondence should be addressed at:
Medizinische Klinik und Poliklinik IV
Klinikum der Universität München
Ziemssenstr. 1
D-80336 München
Germany
Tel: +49 89 4400 52941
Fax: +49 89 4400 54467
Email: Tracy.Williams@med.uni-muenchen.de

No. Tables: 1
No. Figures: 1 (colour) + 1 online supplemental table S1
Word count: 5,212 (including table)

Running title: Molecular pathogenesis of primary aldosteronism

Key words: Primary aldosteronism; aldosterone-producing adenoma; CYP11B2; Familial hyperaldosteronism; KCNJ5; Conn’s syndrome
Primary aldosteronism (PA) was first reported by Jerome Conn from the University of Michigan1 and is characterized by hypertension with excessive, autonomous production of aldosterone relative to suppressed renin levels.2 Once thought to be a rare condition, it is now known to be the most common form of endocrine hypertension. The overall prevalence in the general hypertensive population was recently demonstrated to be 5.9% increasing with the severity of hypertension (3.9-11.8%, grade I-III hypertension)3 to as much as 20% in patients with resistant hypertension.4 An early diagnosis followed by correct treatment has an important impact on clinical outcome because it can reverse the increased risk of cardiovascular and cerebrovascular complications associated with PA.5,6

PA can be familial caused by either of the 4 currently recognized subtypes (Familial Hyperaldosteronism types I-IV) or arise sporadically in which the aldosterone excess is unilateral [usually caused by an aldosterone-producing adenoma (APA)] or bilateral [usually caused by bilateral adrenal hyperplasia (BAH)]. The unilateral and bilateral forms of PA should be differentiated because a patient with unilateral APA is most appropriately treated by adrenalectomy,2 which normalizes or improves blood pressure in 84% of cases,7 and a patient with BAH is treated in almost all cases with a mineralocorticoid antagonist.2 Details for the diagnosis of PA and recommendations for the protocol and interpretation of adrenal venous sampling are described in detail elsewhere.8-10

Until 2011, the genetic basis of PA was largely unknown when in an unprecedented development germline mutations causing new familial forms of PA and somatic mutations driving aldosterone excess in the majority of sporadic unilateral APAs were uncovered. The development of specific monoclonal antibodies to the highly homologous human CYP11B2 and CYP11B1 enzymes identified novel histological structures and evolved our understanding of the pathophysiology of aldosterone overproduction. Herein we
comprehensively cover what is old and what is new in the rapidly developing field of the pathogenesis of PA and focus on discoveries from genetics to histopathology of the last 3 years.

Familial forms of hyperaldosteronism

Familial hyperaldosteronism is estimated to account for less than 6% of all referred cases of PA.11 Familial hyperaldosteronism type I (FH type I, previously referred to as glucocorticoid-remediable aldosteronism) was the first genetically-defined form of human hypertension.12 The molecular basis of FH type II is unknown whereas the genetic determinants of FH types III and IV were identified with the advent of next-generation sequencing methods. The genetic basis and clinical phenotype of each of the known familial forms of PA are summarized in table 1.

Familial hyperaldosteronism type I

Familial hyperaldosteronism type I (FH type I) accounts for less than 1% of diagnosed cases of PA.11 This disorder displays a high degree of inter- and intra-familial phenotypic variability but is usually an early-onset form of hypertension associated with a high incidence of stroke. FH type I is caused by a chimaeric gene that comprises the promoter of the 11\(\beta\)-hydroxylase gene (\textit{CYP11B1}) fused to the coding region of the aldosterone synthase gene (\textit{CYP11B2}).12 Gene expression of the \textit{CYP11B1/CYP11B2} chimera is therefore regulated by adrenocorticotropic hormone, as for \textit{CYP11B1}, and not by angiotensin II like \textit{CYP11B2}. Unlike wild-type \textit{CYP11B2}, the expression of aldosterone synthase from the chimaeric gene is suppressed by glucocorticoids, such as dexamethasone, because they suppress adrenocorticotropic hormone. \textit{CYP11B2} expression is normally restricted to the \textit{zona glomerulosa} (zG) whereas patients with FH type I express the chimaeric gene, and the coding
region of aldosterone synthase in the zona fasciculata (ZF). Aldosterone synthase activity is thus co-localized with cortisol that can be metabolized further by the 18-hydroxylase and 18-oxidase activities of aldosterone synthase to overproduce the hybrid steroids 18-hydroxycortisol and 18-oxocortisol as is characteristic of this condition.

Familial hyperaldosteronism type II

The clinical and biochemical phenotype of FH type II is indistinguishable from sporadic PA and is not suppressible by glucocorticoids. FH type II is diagnosed when at least two family members present with PA who are negative for the chimeric gene which causes FH type I, and for FH type III and FH type IV germline mutations (described in more detail later). The prevalence of FH type II is difficult to evaluate considering the high prevalence of hypertension in the adult population and the prevalence of PA in the general population with hypertension and therefore the chance finding of 2 or more adult family members with a diagnosis of PA should be considered. Nonetheless, an estimated prevalence has been reported as 3.2-5.5% of all cases of PA. Although an association of FH type II with a genetic locus on chromosomal region 7p22 has been reported for some affected families, no mutations in candidate genes have been identified to date despite direct Sanger sequencing of multiple candidate genes and next generation sequencing of the linked locus and therefore the genetic basis of FH type II remains unknown.

Familial hyperaldosteronism type III associated with KCNJ5 mutations

Familial hyperaldosteronism type III (FH type III) was first described by Geller et al. in 3 family members, the male index case and his 2 daughters, who presented with hyperaldosteronism and severe hypertension from childhood with hypokalemia and high levels of the hybrid steroids 18-oxocortisol and 18-hydroxycortisol. The index case
originally came to medical attention as a 5 year old some 50 years previously; treatment required bilateral adrenalectomy at 9 years of age which normalized blood pressure and the serum K+ concentration within 1 week of surgery.19,20 The daughters were treated similarly: the resected adrenals from all 3 patients were greatly enlarged and showed extensive hyperplasia of the zF.

The arrival of next-generation sequencing technology later revealed the presence of a germline heterozygous mutation in the \textit{KCNJ5} gene (encoding the G protein-activated inward rectifier potassium channel 4, GIRK4) that associated with the disorder in both father and daughters.21 The mutated K+ channel GIRK4 p.Thr158Ala) displayed a loss of selectivity for K+ and an increase in Na+ conductance that depolarizes the cell membrane.21 In zG cells, membrane depolarization causes the opening of voltage-dependent Ca2+ channels and Ca2+ influx which activates Ca2+ signaling pathways and leads to an increase in aldosterone production.22,23 Since this original case, other families with FH type III and patients with germline \textit{KCNJ5} mutations have been described with a clinical phenotype ranging from mild to severe (Table 1; Figure 1).

\textbf{Familial hyperaldosteronism type IV associated with \textit{CACNA1H} mutations}

A new familial form of early-onset hyperaldosteronism has been described recently (Familial hyperaldosteronism type IV, FH type IV) and is caused by a germline mutation in the \textit{CACNA1H} gene that encodes the T-type (low voltage activated) Ca2+ channel Ca\textsubscript{v}.3.2 (Ca\textsubscript{v}.3.2 p.Met1549Val).24 Gain-of-function mutations in \textit{CACNA1H} have previously been associated with epilepsy, seizures and autism.25,26 Scholl et al. reported 5 unrelated individuals with early-onset PA with identical Met1549Val mutations.24 Genetic analyses of the patients’ families showed that 1 mutation occurred \textit{de novo} and 4 occurred in the germline. In some kindreds, the Ca\textsubscript{v}.3.2 p.Met1549Val variant segregated with the
presentation of early-onset PA with severe hypertension; in another, the phenotype displayed an incomplete penetrance with an intra-familial clinical presentation that varied from asymptomatic adults to the early-onset phenotype. This apparent incongruence with the autosomal dominant pattern of inheritance is presumably due to differences in age or to other genetic and environmental factors.

The physiology of the Ca\textsubscript{v}3.2 p.Met1549Val channel was studied by patch clamp recordings of whole human embryonic kidney 293T cells expressing either the mutated channel or the wild-type Ca\textsubscript{v}3.2 channel. Ca\textsubscript{v}3.2 p.Met1549Val displayed a markedly slower channel inactivation and a shift of activation to less depolarizing potentials. The Met1549Val mutated form of Ca\textsubscript{v}3.2 thus permits an increased Ca2+ influx that in the steroidogenic cell lines NCI H295R and HAC 15, as for mutated GIRK4 channels that likewise cause an influx of Ca2+, result in an increased expression of the \textit{CYP11B2} gene and aldosterone production.

\textit{A de novo} mutation affecting the same residue, Ca\textsubscript{v}3.2 p.Met1549Ile, was identified shortly after in a study that reported 4 different germline \textit{CACNA1H} mutations. The Met1549Ile substitution was associated with early onset PA and multiplex developmental disorder (Table 1). The same study also reported Ca\textsubscript{v}3.2 p.Ser196Leu and p.Pro2083Leu mutations associated with familial hyperaldosteronism and found a germline Ca\textsubscript{v}3.2 p.Val1951Glu mutation in a patient with sporadic APA who was successfully treated by unilateral adrenalectomy.
Germline \textit{CACNA1D} mutations associated with primary aldosteronism with seizures and neurologic abnormalities (PASNA)

In an attempt to identify new germline mutations associated with PA, candidate genes with recurring somatic APA mutations were sequenced in 100 patients with early-onset PA.30 This approach identified 2 patients with \textit{de novo} mutations in \textit{CACNA1D} that encodes Ca\textsubscript{v}1.3, a subunit of an L-type (high-voltage activated) Ca2+ channel.30 The two different mutations- Ca\textsubscript{v}1.3 p.Gly403Asp and p.Ile770Met- affect amino acid residues of Ca\textsubscript{v}1.3 that are also substituted in sporadic APA (described later) with the latter identical to a somatic APA mutation. Unlike the somatic variants, the germline mutations cause an extreme phenotype, with early onset severe hypertension and hyperaldosteronism and a diagnosis in both patients of neurologic abnormalities that include cerebral palsy and seizures referred to as PASNA.27,30

Missense \textit{de novo} mutations in Ca\textsubscript{v}1.3 p.Ala749Gly, p.Gly407Arg and p.Val401Leu have also been identified in patients with autism spectrum disorder. These patients additionally presented with epilepsy and had a clinical phenotype resembling that of patients with PASNA.31,32 Characterization of the electrophysiological effects incurred by the mutations was demonstrated by patch clamp recordings \textit{in vitro}. All 3 mutations confer a gain-of-function phenotype with a predicted increase in Ca2+ inward currents31,32 which would be expected to result in elevated plasma aldosterone concentrations in these patients but regrettably, these data are unavailable.

Germline \textit{KCNJ5} mutations associated with sporadic primary aldosteronism

Germline \textit{KCNJ5} mutations were identified in 3 of 251 patients with a florid form of sporadic BAH.33 The mutations (p.Arg52His, p.Glu246Lys and p.Gly247Arg) were located at some
distance from the selectivity filter of the GIRK4 K⁺ channel. Despite this, the Arg52His and Glu246Lys mutations caused cell depolarization and increased aldosterone production \textit{in vitro} in contrast to the Gly247Arg mutation that had no functional effect. A rare nonsynonymous single-nucleotide polymorphism rs7102584 was also identified in 12 of 251 white Australasian patients (5%) with PA compared with 22 of 1075 individuals (2%) in the international 1000 genomes cohort. In the 12 patients with PA carrying the rs7102584 (p.Glu282Gln) polymorphism, 9 were diagnosed with BAH and 3 with APA.33

\textbf{Sporadic forms of hyperaldosteronism caused by somatic mutations}

Over half of APAs carry somatic gain-of-function mutations in genes encoding ion channels or transporters (\textit{KCNJ5, CACNA1D, ATP1A1, ATP2B3}) that can account for excessive production of aldosterone. Somatic mutations have also been described in APA that are found in cortisol-producing adrenomas (\textit{CTNNB1, PRKACA} and \textit{GNAS}) although \textit{PRKACA} and \textit{GNAS} mutations are rare in APA. The somatic APA mutations reported to date are listed in Table S1.

\textbf{Somatic \textit{KCNJ5} mutations in APA}

The original somatic APA mutations described by Choi21 in the \textit{KCNJ5} gene cause GIRK4 p.Gly151Arg and p.Leu168Arg substitutions in or near the pore of the channel, respectively. Both mutations, as for others described subsequently, disturb the selectivity properties of the channel as for the p.Thr158Ala mutation associated with FH type III described above. At least 17 somatic APA \textit{KCNJ5} mutations have been described to date (Fig. 1, Table S1), but the p.Gly151Arg and p.Leu168Arg substitutions predominate accounting for all 34\% of APA with GIRK4 mutations of 380 APA recruited through the European Network for the Study of Adrenal Tumours34 (ENS@T, \url{http://www.ensat.org}) and 47\% of APA in an
international series of 351 APA. Somatic KCNJ5 mutations in APA are more frequent in women than in men and compared to non-carriers, are associated with a more pronounced hyperaldosteronism, a younger age and larger tumor size.

The overall prevalence of APA with KCNJ5 mutations was determined in a meta-analysis of 1636 patients as 43% (range 12-80%) with a higher reported frequency in Japan and China compared to European countries. Because patients with APA carrying a KCNJ5 mutation have higher concentrations of the aforementioned hybrid steroid 18-oxocortisol in peripheral blood, the reported predominance of APA with a KCNJ5 mutation in patients from Japan explains the utility of using 18-oxocortisol in peripheral plasma as a potential biomarker to differentiate patients with APA from those with BAH whereas this is not useful in patients from Europe. However, the measurement of a panel of 7 steroids, that includes the hybrid steroids 18-oxocortisol and 18-hydroxycortisol, in peripheral plasma by liquid chromatography-tandem mass spectrometry correctly classified 92% of 79 patients with APA according to genotype with a correct call for 26 of 27 patients with APA with a KCNJ5 mutation.

In a recent development, macrolide antibiotics were identified as selective inhibitors of GIRK4 p.Gly151Arg and p.Leu168Arg compared with the wild-type GIRK4 channel and the macrolide compound roxithromycin ablated CYP11B2 gene expression and inhibited aldosterone production induced by the expression of either GIRK4 p.Gly151Arg or p.Leu168Arg in steroidogenic cell lines. Macrolides have a potential use in the diagnosis of patients with an APA carrying a mutated GIRK4 channel by measuring drug-induced decreases in aldosterone concentrations- possibly in tandem with peripheral venous steroid profiling- and in their treatment.
Somatic **ATP1A1** and **ATP2B3** mutations in APA

Shortly following the discovery of **KCNJ5** mutations, somatic APA mutations were described in the **ATP1A1** and **ATP2B3** genes, encoding Na⁺/K⁺-ATPase 1 and Ca²⁺-ATPase 3, respectively,⁴¹,⁴² that combined account for 7% of APA in patients of European ancestry and can result in an increase in **CYP11B2** gene expression and aldosterone production⁴³,⁴⁴ (Table S1 lists the **ATP1A1**/**ATP2B3** mutations described to date). APA mutations in ion transporters and channels were thought to share a common mechanism of activation of Ca²⁺ signaling, but two mutations in the Na⁺/K⁺-ATPase, p.Leu104Arg and p.Val332Gly, reportedly result in intracellular acidification, with no detectable increase in intracellular Ca²⁺ concentration, that causes the overproduction of aldosterone.⁴⁵ Germline mutations in ATPases have not been described to date presumably because they are incompatible with life.

Somatic **CACNA1D** mutations in APA

Somatic APA mutations in **CACNA1D** that cause substitutions at conserved sites of Caᵥ1.3 were first described in two reports.⁴⁰,⁴¹ The mutations determine an impairment of the ion channel gating mechanism such that both activation and inactivation of the channel are affected and an increase in Ca²⁺ influx results.⁴⁰,⁴¹ The number of different somatic APA mutations in **CACNA1D** are numerous with at least 31 substitution mutations of 25 different amino acid residues reported (Table S1). Somatic **CACNA1D** mutations are associated with APA of a smaller size⁴¹,⁴⁴ and, with a reported prevalence of 9.3%, comprise the second largest group of APA after those with a **KCNJ5** mutation.⁴⁴ A highly selective antagonist of Caᵥ1.3, 1-(3-chlorophenethyl)-3-cyclopentylpyrimidine-2,4,6-(1H,3H,5H)-trione has been developed as a potential novel therapeutic approach for Parkinson’s disease, displaying 600-times selectivity over Caᵥ1.2⁴⁶ and selective antagonism of Caᵥ1.3 may be a target for the treatment of aldosterone overproduction in patients with PA.⁴⁷
Somatic CTNNB1 mutations in APA

The canonical Wnt (Wnt/β-catenin) pathway controls key developmental gene expression programs and constitutive activation of this pathway is involved in the pathogenesis of many human cancers. In the absence of extracellular Wnt ligands, glycogen synthase kinase 3β, as part of the multi-protein Axin complex, phosphorylates specific serine and threonine residues in the N-terminal region of β-catenin which is then degraded via the ubiquitin-proteosome pathway. Binding to the Frizzled/LRP (lipoprotein receptor-related protein) receptor inhibits the Axin complex and β-catenin is stabilized, accumulates and translocates to the nucleus to activate LEF/TCF (T-cell factor/lymphoid enhancer factor) transcription factors thereby activating Wnt target gene expression programs.

Activating somatic mutations in the CTNNB1 gene, that encodes β-catenin, have been reported at a similar prevalence in both adrenocortical adenomas (27% of 26 tumors, with a higher proportion in non-functioning adenomas compared with cortisol-producing adenomas) and adrenocortical carcinomas (31% of 13 tumors). Most mutations affected a phosphorylation site (Ser45) for glycogen synthase kinase 3β.

A high proportion of APAs (70%) display constitutive activation of Wnt/β-catenin signaling that is caused, at least partly, by a decrease in the expression of SFRP2 (Secreted Frizzled Related Protein 2) an endogenous inhibitor of Wnt/β-catenin signaling. Somatic mutations in the CTNNB1 gene have been identified in 2-5% of APA. All mutations target exon 3 and almost all affect serine and threonine residues at the β-catenin N-terminus resulting in an accumulation of β-catenin. Therefore, β-catenin mutations are present in APA as in other adrenocortical tumors where they play a role in adrenocortical tumorigenesis.

Somatic APA CTNNB1 mutations have also been described in 2 pregnant women and a woman post-menopause with highly up-regulated adrenal expression of luteinizing
hormone/choriogonadotropin receptor and gonadotropin releasing hormone receptor
leading to the suggestion that pregnancy could trigger the overexpression of these
gonadotropin receptors via a mechanism mediated by constitutive activation of β-catenin.53

\textbf{Histopathology of aldosterone production}

The development of specific monoclonal antibodies against the key steroidogenesis enzymes CYP11B2 and CYP11B154 has transformed the interpretation of the histopathology of PA and identified a new histological structure called the aldosterone-producing cell cluster (APCC).55-58 APCCs are distinct clusters of zG cells identified by strong CYP11B2 immunostaining and an absence of CYP17 staining and are located in the subcapsular portion of the adrenal cortex that penetrates into the cortisol-producing cells of the zF.54,59 At least 1 APCC was identified in 69\% of an autopsy series of 127 normal adrenals59 and 50\% of 22 adrenals had an APCC in the tissue adjacent to an APA.60 The physiology of aldosterone production changes with age with a transition from continuous expression of CYP11B2 in the zG in the young to a discontinuous expression with an increased expression of APCCs in older subjects.59 The adrenals of children aged below 12 years show a conventional zonation of the adrenal cortex without APCCs61 with the earliest documented case of an APCC occurring in a 12 year old male.59 Transcriptome analysis of APCC and the 3 zones of the adrenal cortex demonstrated the highest expression of \textit{CYP11B2} in APCCs and the similarity of the APCC and the zG transcriptomes.62

A high proportion of APCCs in the normal adrenal glands from kidney donors carry mutations in genes that are mutated in APAs (35\% of 23 APCCs have mutations in \textit{CACNA1D} or \textit{ATP1A1}) leading to the proposal that APCCs are precursors of APAs.62 Although APCC with \textit{KCNJ5} mutations, the most frequently recurring mutation in APAs, were not identified, a histological structure with a transitional phenotype from APCC (subcapsular region) to
microAPA (outer region), called APCC-to-APA transitional lesions, have been described in which \textit{KCNJ5} mutations were identified in the microAPA portion of the larger lesions (>3mm). This supports the hypothesis of the APCC to microAPA transition and suggests that \textit{KCNJ5} mutations could occur as a second genetic hit.61,63 The number of the reported transitional lesions are however few with 6 known cases to date.

If present adjacent to an APA, the production of aldosterone from APCCs is presumably biochemically autonomous given the suppressed renin-angiotensin-system, but their contribution to aldosterone excess is likely to be negligible, since the APA is probably the main source of aldosterone production. However, in the normal adrenal cortex of elderly persons APCCs may be a driver of hypertension and contribute substantially to age-related cardiovascular risk.59

APA display different patterns of CYP11B2 and CYP11B1 immunostaining that can be homogeneous and dominant for CYP11B2, heterogeneous for CYP11B2 and interspersed with patches of CYP11B1, or CYP11B2-negative.56,60 CYP11B2 immunoreactivity is significantly higher in microadenomas than in macroadenomas and patients with the smaller tumors display disproportionately higher levels of aldosterone production64 and CYP11B1 immunostaining is associated with glucocorticoid overproduction in some APA.65

The adrenal tissue adjacent to an APA can display micronodules or macronodules that can carry a somatic mutation of a different genotype to the APA.58,66,67 In some infrequent cases, a secondary nodule is the source of the excess aldosterone production and in these circumstances the adenoma is usually CYP11B2-negative.56,68

\textbf{Conclusion}

Advances in sequencing technologies and immunohistochemistry have advanced our understanding of the pathogenesis of PA and shown that the pathological production of
aldosterone in this most common form of endocrine hypertension is not as straightforward as classically contended.

Sources of Funding

This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No [694913] to MR) and by the Deutsche Forschungsgemeinschaft (DFG) (within the CRC/Transregio 205/1 “The Adrenal: Central Relay in Health and Disease” to MR and TAW; and grant RE 752/20-1 to MR) and the Else Kröner-Fresenius Stiftung in support of the German Conns Registry-Else-Kröner Hyperaldosteronism Registry (2013_A182 and 2015_A171 to MR).

Disclosures

The authors having nothing to disclose

References

Primary Aldosteronism Encountered in Primary Care Practice. *J Am Coll Cardiol.*
2017;69:1811-1820.

Aldosterone-Producing Adenomas Carrying Mutations of the Na(+)/K(+)-ATPase.

Endocrinology. 2015;156:4582-4591.

67) Fernandes-Rosa FL, Giscos-Douriez I, Amar L, Gomez-Sanchez CE, Meatchi T, Boulkroun

<table>
<thead>
<tr>
<th>PA subtype</th>
<th>Genetic variant</th>
<th>Affected protein</th>
<th>Amino acid substitution</th>
<th>Clinical phenotype</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>FH type I</td>
<td>CYP11B1/B2 chimaeric gene<sup>12</sup></td>
<td>CYP11B2</td>
<td>-</td>
<td>PA of variable severity, early onset; high frequency of stroke; overproduction of hybrid steroids*</td>
<td>DEX</td>
</tr>
<tr>
<td>FH type II</td>
<td>Genetic linkage with chromosome 7p22<sup>10</sup></td>
<td>Unknown</td>
<td>Unknown</td>
<td>Indistinguishable from sporadic PA</td>
<td>Unilateral ADX MRA</td>
</tr>
<tr>
<td>FH type III</td>
<td>KCNJ5 mutations</td>
<td>GIRK4</td>
<td>Thr158Ala<sup>21</sup> Gly151Glu<sup>69</sup> Gly151Arg<sup>70</sup></td>
<td>PA of variable severity, usually early onset</td>
<td>Bilateral ADX MRA</td>
</tr>
<tr>
<td>FH type IV</td>
<td>CACNA1H mutations</td>
<td>Ca<sub>3.2</sub></td>
<td>†Met1549Val<sup>24</sup> Ser196Leu<sup>29</sup> Pro2083Leu<sup>29</sup></td>
<td>PA of variable severity, early onset with incomplete penetrance for Met1549Val variant</td>
<td>Unilateral ADX MRA</td>
</tr>
<tr>
<td>Sporadic PA</td>
<td>KCNJ5 mutations</td>
<td>GIRK4</td>
<td>Arg52His<sup>33</sup> Glu246Lys<sup>33</sup> Gly247Arg<sup>33</sup> #Glu282Gln<sup>33</sup></td>
<td>Indistinguishable from sporadic BAH/APA</td>
<td>MRA</td>
</tr>
<tr>
<td>Sporadic APA PA</td>
<td>CACNA1H mutation</td>
<td>Ca<sub>3.2</sub></td>
<td>Val1951Glu<sup>29</sup></td>
<td>Indistinguishable from sporadic APA</td>
<td>Unilateral ADX</td>
</tr>
<tr>
<td>PA and multiplex developmental disorder</td>
<td>CACNA1H mutation</td>
<td>Ca<sub>3.2</sub></td>
<td>†Met1549Ile<sup>29</sup></td>
<td>Early onset PA with mild mental retardation, social skills alterations and learning disabilities</td>
<td>MRA</td>
</tr>
<tr>
<td>PASNA</td>
<td>CACNA1D mutations</td>
<td>Ca<sub>1.3</sub></td>
<td>†Gly403Asp<sup>30</sup> †Ile770Met<sup>30</sup></td>
<td>Early onset PA with neuromuscular abnormalities</td>
<td>CCB MRA</td>
</tr>
</tbody>
</table>

Table 1. Germline mutations associated with primary aldosteronism

FH, Familial hyperaldosteronism; PA, primary aldosteronism; APA, aldosterone-producing adenoma; BAH, bilateral adrenal hyperplasia;

PASNA, PA with seizures and neurologic abnormalities; CYP11B1, gene encoding 11β-hydroxylase; CYP11B2, gene encoding aldosterone synthase; ACTH, adrenocorticotropic hormone; zF, zona fasciculata; GIRK4, G protein coupled inwardly rectifying potassium channel 4;
Cav3.2, Ca2+ channel, voltage-dependent, T type, α \textbf{1H} subunit; Cav1.3, Ca2+ channel, voltage-dependent, L type, α \textbf{1D} subunit; DEX, dexamethasone; ADX, adrenalectomy; MRA, mineralocorticoid receptor antagonist; CCB, Ca2+ channel blocker. *The hybrid steroids are 18-hydroxycortisol and 18-oxocortisol; †\textit{de novo} mutation also identified, ‡\textit{de novo} mutation; #rare nonsynonymous single-nucleotide polymorphism rs7102584 present in 12 of 251 patients (5%) with PA compared with 22 of 1075 individuals (2%) in the international 1000 genomes cohort. In the 12 patients with PA carrying the rs7102584 (Glu282Gln) polymorphism, 9 were diagnosed with BAH and 3 with APA.33
Figure 1. Germline and somatic mutations in GIRK4 associated with different forms of primary aldosteronism

Different somatic and germline mutations are indicated in GIRK4 encoded by the KCNJ5 gene.
ONLINE SUPPLEMENT

Old and New Concepts in the Molecular Pathogenesis of Primary Aldosteronism

Elke Tatjana Aristizabal Prada1, Jacopo Burrello2, Martin Reincke1, Tracy Ann Williams1,2*

1Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany

2Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy

\textbf{RUNNING TITLE:} Molecular Pathogenesis of Primary Aldosteronism
References

<table>
<thead>
<tr>
<th>Gene</th>
<th>Protein</th>
<th>Mutations *</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCNJ5</td>
<td>GIRK4</td>
<td>Arg115Trp2 Trp126Arg2 Ala139_Phe142dup2 Ile144_Glu145InsAlaIle6 Glu145Gln3 Thr148_Thr149Ser6 Ile148_Thr149InsArg7 Thr149Ins8 Ile150_Gly151InsMet6 *Gly151Arg7 Gly153_Gly164dup10 Phe154Cys48</td>
</tr>
<tr>
<td>ATP2B3</td>
<td>Ca2+ ATPase 3</td>
<td>Tyr410Asp17 Thr423_Leu425del14 Val424_Leu425del18 Val424_Val426del16 Leu425_Val426del13 Val748Ile10 Ile750Met19 Ile750Phe18 Val752Gly20 Phe767Val8 Ile770Met21 Va1979Asp19 Val981As14 Arg990His16 Arg993Ser20</td>
</tr>
<tr>
<td>CACNA1D</td>
<td>Cav1.3</td>
<td>Val259Asp16 Val401Ieu14 Gly403Arg16 Gly403Arg4 Glu412Asp20 Ser652Leu18 Leu655Pro18 Tyr741Cys18 Phe747Leu18 Phe747Val10 Phe747Cys21 Val748Ile10 Ile750Met19 Ile750Phe18 Val752Gly20 Phe767Val8 Ile770Met21 Va1979Asp19 Val981As14 Arg990His16 Arg993Ser20</td>
</tr>
<tr>
<td>CTNNB1</td>
<td>β-catenin</td>
<td>Ser33Cys24 Gly34Arg14 Ala39GluI5*34 Thr41Ala25 Ser45Phe24 Ser45Pro25</td>
</tr>
<tr>
<td>PRKACA</td>
<td>cAMP dependent protein kinase α</td>
<td>Leu206Arg5 His88Asp26 Arg201Cys27</td>
</tr>
<tr>
<td>GNAS</td>
<td>Guanine Nucleotide Binding Protein α</td>
<td>Ser33Cys24 Gly34Arg14 Ala39GluI5*34 Thr41Ala25 Ser45Phe24 Ser45Pro25</td>
</tr>
</tbody>
</table>

Table S1. Somatic mutations associated with aldosterone-producing adenomas

GIRK4, G protein coupled inwardly rectifying potassium channel 4; Cav1.3, Ca2+ channel, voltage-dependent, L type, α1D subunit; Cav3.2, Ca2+ channel, voltage-dependent, T type, α1H subunit

*To our knowledge, the above table shows all somatic mutations in aldosterone-producing adenomas reported to date.

†Most frequently occurring mutations in aldosterone-producing adenomas
‡Mutations also present in adenomas co-secreting cortisol