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signalling’, ‘negative regulation of growth’, ‘odontogenesis’, ‘cartilage development’ and ‘gliogenesis and neuron 
fate commitment’.

Discussion
In this study of peripheral blood from 374 European pre-school children with highly accurate measures of body 
composition, we identi�ed 212 di�erentially methylated probes (DMPs) associated with BMI, 230 DMPs with 
FM, 120 DMPs with FFM, 24 DMPs with FMI and 15 DMPs with FFMI. �ese probes measure DNAm in CpG 
sites that generally reside in protein-coding genes and non-coding RNAs previously linked with in�ammation, 
glucose and lipid metabolism, browning of white fat, obesity and diabetes. �us, many of the associations poten-
tially make sense from a biological perspective; though only limited information is currently available in several 
instances (see below). Our �nding that some DMPs are speci�cally associated with only one of the body size or 
composition measures BMI, FM, FMI, FFM, and FFMI whereas others are common to some or all measures 
e.g. FM and FFM, may be worthwhile investigating in more depth in future longitudinal studies to gain further 
insights into the process of body composition and obesity development and the role such potential epigenetic 
markers may play.

In the following paragraphs we provide some information on the 13 genes in which DNAm variants signi�-
cantly associated a�er Bonferroni correction are located or are close by to add to the biological meaning and plau-
sibility of our �ndings. �ese genes are SNED1(IRE-BP1), KLHL6, WDR51A(POC1A), CYTH4-ELFN2, CFLAR, 
PRDM14, SOS1, ZNF643(ZFP69B), ST6GAL1, C3orf70, MLLT4, CILP2 and the ncRNA LOC101929268.

SNED1 (Sushi, nidogen and EGF like domains), also known as IRE-BP1 (insulin-responsive sequence 
DNA-binding protein 1), activates insulin responsive genes IGF-I, IGFBP-1 and IGFBP-335. In is expressed in 
insulin-responsive tissues such as fat and muscle35 and in hypothalamic regions involved in control of appe-
tite and energy balance36. In animal models, overexpression of SNED1 reduces37, but in some instances also 
increases38, hyperglycaemia and diabetes associated phenotypes. In our study, DMP cg13850887 at SNED1 was 
inversely associated with BMI, FM and FMI a�er Bonferroni correction.
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Figure 5. Manhattan plot of all HM450K probe P-values for the association of FFM (kg) and methylation sites 
in preschool children. Top 10 sites are annotated. Red line indicates Bonferroni genome-wide signi�cance and 
the blue line FDR signi�cance. Chromosomal location of all HM450K probes is listed on the x-axis.

Figure 6. Manhattan plot of all HM450K probe P-values for the association of FFMI (kg/m2) and methylation 
sites in preschool children. Top 10 sites are annotated. Red line indicates Bonferroni genome-wide signi�cance 
and the blue line FDR signi�cance. Chromosomal location of all HM450K probes is listed on the x-axis.
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Functional characterization of differentially methylated CpGs. The identified CpG sites were 
annotated according to Illumina (www.illumina.com, HumanMethylation450_15017482_v1.csv) or manually 
using the UCSC genome browser, GRCh37/h19 assembly for non-annotated CpGs (https://genome.ucsc.edu). 
Ontology analyses were conducted using a �xed set gene enrichment analysis approach performed with g:Pro�ler 
(http://biit.cs.ut.ee/gpro�ler/index.cgi)83. Pathway analysis included Gene Ontology (Biological Process, Cellular 
Component and Molecular Function), KEGG and Reactome gene-set databases. �e analysis was performed 
on ranked gene lists (ranked according to P-value from EWAS regression analysis) with advanced options ‘Size 
of functional category’: 3 (min) to 500 (max) and ‘Size of Q&T’: min of 2 using the gSCS threshold that is more 
stringent than FDR.

Data availability. Results are extensively documented in the supplement. To protect patient con�dentiality, 
data is available upon request. Future interested researchers can make requests to Prof Dr Berthold Koletzko, 
email: o�ce.koletzko@med.lmu.de
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