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Abstract

The key of success of extraintestinal pathogenic Escherichia coli (ExPEC) to colonize

niches outside the intestinal tract and to establish infection is the coordinated action of

numerous virulence and fitness factors. The so-called high-pathogenicity island (HPI),

responsible for synthesis, secretion and uptake of the siderophore yersiniabactin, proved to

be an important virulence determinant. In this study we investigated the interaction of the fla-

gellum-mediated motility and the HPI. The impairment of yersiniabactin production by dele-

tion of irp2 or ybtA affected significantly motility. The gain of yersiniabactin production

improved motility in both pathogenic and non-pathogenic E. coli strains. The loss of flagella

expression had no adverse effect on the HPI. Strikingly, external iron abundance was not

able to suppress activation of the HPI during motility. The HPI activity of swarming bacteria

was comparable to iron deplete conditions, and could even be maximized by supplementing

excessive iron. This fact is the first description of a regulatory mechanism, which does not

follow the known hierarchical regulation of siderophore systems. Transcriptional reporter

fusions of the ybtA promoter demonstrated that the entire promoter region with all YbtA bind-

ing sites is necessary for complete induction in both HPI-positive and HPI-negative strains.

Altogether, these results suggest that the HPI is part of a complex regulatory network, which

orchestrates various virulence mechanisms to optimize the overall fitness of ExPEC.

Introduction

Over the last decades the growing body of evidence was helpful to elucidate the pathogenic

potential of extraintestinal pathogenic E. coli (ExPEC) [1–3]. The orchestrated action of a

plethora of virulence and fitness factors enables ExPEC to colonize and to establish infections

outside the intestinal tract resulting in diseases like urinary tract infection (UTI), neonatal

meningitis, sepsis, intraabdominal infection, pneumonia, osteomyelitis, cellulitis and wound

infection. Transcriptomic and proteomic approaches were performed to identify determinants

essential to the pathogenesis of UTI [4–6]. It is striking to note that iron acquisition systems

always proved to be key players. To face the iron scarcity of the urinary tract, ExPEC has
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evolved a multi-factorial strategy to scavenge efficiently for this nutrient [7]. The so-called

high pathogenicity island (HPI), responsible for synthesis, secretion and uptake of the sidero-

phore yersiniabactin, represents one of these fundamental iron uptake systems. This pathoge-

nicity island was firstly described in Yersinia spp. and spread in a big bang-like moment over a

variety of Enterobacteriaceae, where it plays a major role in virulence [8–10]. As a pathogenic-

ity island it displays typical features [11–14]: (i) a gene cluster large in size (�35kb); (ii) loca-

tion next to a tRNA encoding gene; (iii) a G+C content higher than the host chromosome; (iv)

it carries a gene coding for an integrase; (v) the final product contributes to virulence. The

genetic organization and regulation of the HPI have been subject of intense research [15]. The

mixed-type siderophore yersiniabactin is synthesized by a mixed nonribosomal peptide syn-

thetase (NRPS) / polyketide synthase (PKS) process [16]. YbtA, a transcriptional regulator of

the AraC-like family, and the iron master regulator Fur control the transcriptional regulation

of the four operons located within the HPI, (i) ybtA, (ii) fyuA, (iii) irp2- irp5, (iv) irp6-irp9 [17–

19]. The promoters of irp2, fyuA, and the divergent overlapping promoter region between irp6
and ybtA contain specific binding sites termed repeated sequences (RSs). YbtA is proposed to

bind to these sites as a homodimeric complex with yersiniabactin. Full expression of Irp2,

FyuA and Irp6 depend on the action of YbtA. Here the transcriptional regulator works as an

activator. Regarding its own transcription, YbtA shows auto-repression.

Interestingly, the supply of ferric iron to the microbial cell is considered to be the main

function, but recent studies indicate the implication of the HPI in various processes apart from

just iron acquisition. So Paauw et al. reported that the high binding affinity of yersiniabactin

for ferric iron not only promotes bacterial growth by supplying additional iron but also

reduces the production of reactive oxygen species by activated immune cells [20]. Further-

more, elements expressed by the HPI for the uptake of ferric yersiniabactin display additional

functions. So, the outer membrane receptor FyuA contributes to efficient biofilm formation in

human urine and deletion of fyuA additionally led to morphological changes of bacteria during

biofilm maturation [21]. With FyuA being pathogen-specific, antigenic, surface exposed and

in vivo expressed it fulfils all essential criteria of a potential vaccine candidate [22]. A multiepi-

tope vaccine containing immunodominant epitopes of iron uptake receptors including FyuA

was developed and conveyed protection against ExPEC in a murine model of peritonitis [23;

24]. Another study investigating the primary metabolome of uropathogenic E. coli (UPEC)

strain UTI89 during growth in minimal medium revealed metabolic changes when genes of

the HPI were mutated [25]. An extraordinary observation regarding the HPI function has

been reported in UPEC strain CFT073 [26]. This isolate is unable to produce yersiniabactin

due to mutations of biosynthetic genes [27; 28]. The fact gives reason to believe, that the dele-

tion of the entire genomic island harbouring the HPI would have no impact on the pathoge-

nicity in a murine model of ascending UTI. Most strikingly, in a co-challenge infection with

the wild type strain, the deletion mutant demonstrated a log–scale reduction in colonization of

the kidneys.

The versatility of the HPI clearly shows how this acquired iron uptake system became part

of a complex network that coordinates various virulence and fitness properties. This multi-

functional aspect prompted us to investigate whether additional virulence mechanisms may

utilize the HPI. The hostile environment of the urinary tract forces ExPEC to get access to

more favourable sites to scavenge for nutrients like iron, as well as to escape the host immune

response. In this regard, flagellum-mediated motility has been demonstrated to be of great

importance [29–31]. Only a few studies tried to relate the role of siderophore mediated iron

uptake to motility. For example, the loss of pyoverdine synthesis in Pseudomonas putida abol-

ished completely bacterial surface movement [32]. A functional genomic approach with

swarming Salmonella typhimurium revealed a strong induction of iron uptake systems during

The high-pathogenicity island promotes motility in Escherichia coli
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motility [33]. In the case of Vibrio parahaemolyticus, it is known that iron depletion is an

essential signal for swarmer cell differentiation [34]. A relevant role of iron homeostasis for

motility has also been reported in UPEC [35]. The iron master regulator Fur represses iron

uptake systems by binding to specific Fur binding-sites, so called Fur boxes, in complex with

ferrous iron under iron abundance. Whenever iron is limited, Fur is inactivated and Fur-regu-

lated genes are de-repressed. Fur boxes were also identified upstream of the activator of flagel-

lar expression flhD. Both deletion of fur and iron scarcity had a strong impact on motility.

Altogether, these examples point towards an important contribution of iron acquisition sys-

tems to flagellum-mediated motility. In this work, the main objective is to examine the interac-

tion of the HPI and motility in ExPEC. We present data showing the strong induction of the

HPI in motile bacteria and the impact of iron on this interaction.

Material and methods

Bacterial strains and media

Bacterial strains and plasmids used in the present work are listed in Table 1. The prototypic

UPEC strain NU14 was isolated from a patient suffering from cystitis [36]. Bacteria were cul-

tured in Luria-Bertani (LB) medium and nutrient broth (NB) [containing per liter: 8 g nutrient

broth (Difco), 5 g NaCl] at 37˚C with aeration. NB medium was supplemented with 200 μM α,

α’-dipyridyl (Sigma) resulting in NBD medium in order to create iron deplete conditions. Use

of antibiotics was provided as necessary (chloramphenicol 20 μg/ml, kanamycin 25 μg/ml,

ampicillin 100 μg/ml, tetracycline 12 μg/ml).

Motility assays

Swimming motility was assessed by using 0.3% LB soft agar plates. A late logarithmic phase

culture (OD600 = 1.0) was stabbed into the middle of a soft agar plate and incubated at 37˚C.

Four hours after inoculation motility was quantified every hour by measuring the diameter of

swimming bacteria. In order to address the influence of iron excess on motility in a rich

medium like LB, soft agar plates were supplemented with different concentrations of addi-

tional Fe(III)Cl3 (Fluka AG) as indicated. Samples for β-galactosidase assays, western blotting

and quantitative real-time PCR were prepared by scraping bacteria off the edge of a motility

ring of strains swarming on a 0.5% LB swarm plate. All experiments were performed in dupli-

cates and repeated at least three times. For statistical analysis a paired t-test or the Mann-Whit-

ney U test were performed and results were considered statistically significant if the p-value

was lower than 0.05.

Construction of isogenic mutants

Deletion mutants of target genes were generated using the lambda red recombinase approach

published by Datsenko and Wanner [37]. Briefly, primers with 40-nt homology extensions to

the 5’ and 3’ regions of the gene of interest and 20-nt priming sequences for the template plas-

mids pKD3 or pKD4 carrying resistance cassettes flanked by FRT recognition target sites were

designed (Table 2). The resulting PCR product was then transformed into strains harbouring

the helper plasmid pKD46 with lambda red recombinase under an arabinose-inducible pro-

moter. In case of successful replacement of the specific gene, KmR or CmR transformants were

selected. Correct integration of the resistance cassette was confirmed by PCR.

The high-pathogenicity island promotes motility in Escherichia coli
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Cloning and recombinant DNA techniques

Standard genetic methods were performed mainly as described by Sambrook and Russell [38].

Enzymes were purchased from Fermentas and used according to the manufacturer’s recom-

mendations. Primers and plasmids used in this study are listed in Table 2. Plasmids for com-

plementation of the deleted genes were constructed by PCR amplification of the wild type

alleles under the control of their own promoter. The PCR products were purified using a QIA-

quick PCR purification kit (Qiagen), digested with KpnI and PstI and cloned into low-copy

plasmid pWKS30 [39]. In order to generate transcriptional reporter gene fusions different

fragments of the ybtA promoter were PCR amplified, digested with KpnI and PstI and fused

with a promoterless lacZ gene in plasmid pMP220 [40]. The iron independent YbtA expres-

sion was achieved by cloning ybtA into plasmid pWKS30 under the control of a lac promoter

using KpnI and PstI as restriction enzymes. YbtA under the control of a lac promoter from

plasmid pWKS30-ybtA was PCR amplified, digested with BamHI and SalI and cloned into the

Table 1. Bacterial strains and plasmids.

Strains and plasmids Relevant characteristics Reference

NU14 wt O18: K1: H7; cystitis isolate [36]

NU14 ΔybtA ybtA deletion mutant This study

NU14 Δirp2 irp2 deletion mutant This study

NU14 ΔybtA rec complemented mutant, pWKS30-PybtA; Ap This study

NU14 Δirp2 rec complemented mutant, pWKS30-Pirp2; Ap This study

NU14 hpi::Kn entire hpi deleted; Kn This study

CFT073 wt O6: K2: H1; urosepsis isolate; Ybt negative [41]

CFT073 Ybt+ Ybt+, Cm This study

NU14 3RS wild type, pMP220-3RS; Tet This study

NU14 2RS+ wild type, pMP220-2RS+FBS; Tet This study

NU14 2RS wild type, pMP220-2RS; Tet This study

NU14 1RS wild type, pMP220-1RS; Tet This study

DH5α fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17 Stratagene

DH5α Ybt+ Ybt+, Cm This study

DH5α 3RS wild type, pMP220-3RS; Tet This study

DH5α 2RS+ wild type, pMP220-2RS+FBS; Tet This study

DH5α 2RS wild type, pMP220-2RS; Tet This study

DH5α 1RS wild type, pMP220-1RS; Tet This study

Plasmids

pKD3 chloramphenicol template plasmid [37]

pKD4 kanamycin template plasmid [37]

pKD46 lambda red recombinase helper plasmid [37]

pCP20 FLP recombinase helper plasmid [37]

pWKS30 low-copy plasmid, Ap [39]

pWKS30-PybtA expressing YbtA under the control of the native promoter, Ap This study

pWKS30-Pirp2 expressing Irp2 under the control of the native promoter, Ap This study

pCP1 carrying irp1-9, fyuA, ybtA genes and 400 nucleotides of intB,

R6K ori; Cm

[42]

pMP220 contains promoterless lacZ for transcriptional reporter fusions, Tet [40]

p3RS pMP220 carrying entire ybtA promoter, Tet This study

p2RS+ pMP220 carrying two repeated sequences (RS1, RS2) plus Fur binding site, Tet This study

p2RS pMP220 carrying two repeated sequences (RS1, RS2) without Fur binding site, Tet This study

p1RS pMP220 carrying one repeated sequence (RS2), Tet This study

https://doi.org/10.1371/journal.pone.0183950.t001
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Table 2. Oligonucleotides.

Primers for gene disruption

genes primers sequences (5’-3’)

irp2 irp2.KO.for CAGCAGTTACATGAAGAGAGCAACCTGATCCAGGCCGGCCTGGAGTGTAGGCTGGAGCTGCTTC

irp2 irp2.KO.rev GTTTGAGTTCACGGAGTAATTCGACGCCGGACCAGTGGCGATGCTCATATGAATATCCTCCTTA

ybtA ybtA.KO.for ATGATGGAGTCACCGCAAACGCAATCTGAAATCTCTATTCACCAGTTGGTGGTCGGTGTAGGCTGGAGCTGCTTC

ybtA ybtA.KO.rev CATCCCGCGTTTAAAGGTCGAAGGAGTTACGCCAAACTGTTTCTGGAAGGCGGCACATATGAATATCCTCCTTA

irp2 irp2.KO.for CAGCAGTTACATGAAGAGAGCAACCTGATCCAGGCCGGCCTGGAGTGTAGGCTGGAGCTGCTTC

irp2 irp2.KO.rev GTTTGAGTTCACGGAGTAATTCGACGCCGGACCAGTGGCGATGCTCATATGAATATCCTCCTTA

fliI fliI.KO.for AGTGTCGCCACTCGCTGGCAAGAACTCTGCCGTCTGGCAGCACCAGGAGTGGTGTAGTGTAGGCTGGAGCTGCTTC

fliI fliI.KO.rev GATCTTTCAGGGTCGCCAGCGCACCATGTTCTGCCATCTGCCGTTATCTCCTGGGCATATGAATATCCTCCTTA

Primers and probes for TaqMan-PCR

genes primers and probes sequences (5’-3’)

16SrRNA 16SrRNA.for TTGACGTTACCCGCAGAAGAA

16SrRNA 16SrRNA.rev GCTTGCACCCTCCGTATTACC

16SrRNA 16SrRNA.probe FAM-CGGCTAACTCCGTGCCAGCAGC-TAMRA

fyuA fyuA.for ACACCCGCGAGAAGTTAAATTC

fyuA fyuA.rev AGCGGTGGTATAGCCGGTACT

fyuA fyuA.probe FAM-CCTACGACATGCCGACAATGCCTTATTTAA-TAMRA

ybtA ybtA.for GTTGCCTCTCCTGCCACTTC

ybtA ybtA.rev ATCAGCCAGCAGCAGATCCT

ybtA ybtA.probe FAM-ACCCGATGGAACGCCAGAAACTG-TAMRA

Irp2 Irp2.for TGGGTGCCGGGTGAATTA

Irp2 Irp2.rev CGTCCGGGAGCGTCAA

Irp2 Irp2.probe FAM-ATTTCAACGATCCCCTGCGTAGC-TAMRA

fliC fliC.for CAGGCGATTGCTAACCGTTT

fliC fliC.rev ATACCATCGTTGGCGTTACGT

fliC fliC.probe FAM-TTCTAACATTAAAGGCCTGACTCAGGC-TAMRA

fliD fliD.for GCGTAAGCGCAAGCATCATT

fliD fliD.rev GCCGGTGTCATTTGATGTGA

fliD fliD.probe FAM-ACGTGGGTAACGGTGAATATCGTCT-TAMRA

flgK flgK.for GGGAATAAAACCGCGACGTT

flgK flgK.rev GGAAAGCTGCGTCACCACAT

flgK flgK.probe FAM-AAAACCAGTAGCGCCACGCAAGGT-TAMRA

Primers for cloning

genes primers sequences (5’-3’)

ybtA PybtA.KpnI.for TAGCAGggtaccCTGAATTTCCTGATGAATTT

ybtA ybtA.PstI.rev TGCATCctgcagGGCCTCTGTCAGGGAGGAGT

Irp2 Pirp2.KpnI.for TAGCACggtaccCCGGGGTCGCGCCCCCCTAA

Irp2 Irp2.PstI.rev TCACTActgcagCTATATCCGCCGCTGACGAC

3RS PybtA.KpnI.for TAGCAGggtaccCTGAATTTCCTGATGAATTT

3RS PybtA.PstI.rev TCAGCActgcagGACCTGGTTATCTCCCTGTG

2RS+ PybtA.2RS+.KpnI.for TAGCAGggtaccTGGCGTTCTGAGAATTAATG

2RS+ PybtA.PstI.rev TCAGCActgcagGACCTGGTTATCTCCCTGTG

2RS PybtA.2RS.KpnI.for TAGCAGggtaccAACTCATCTACCCCATTCGG

2RS PybtA.PstI.rev TCAGCActgcagGACCTGGTTATCTCCCTGTG

1RS PybtA.1RS.KpnI.for TAGCAGggtaccTATACCCGCATTGGTCTAAG

1RS PybtA.PstI.rev TCAGCActgcagGACCTGGTTATCTCCCTGTG

https://doi.org/10.1371/journal.pone.0183950.t002
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tetracycline cassette of plasmid pACYC184. A yersiniabactin complemented derivative of the

wild type strain CFT073 [41] was constructed by integrating the functional hpi core region of

Y. enterocolitica using plasmid pCP1 [42]. All genetic constructs established in this study were

validated by screening PCRs before they were used in experiments.

β-galactosidase assays

β-galactosidase activities of reporter gene fusions were quantified mainly according to stan-

dard procedures [43] and expressed as miller units. In order to focus specifically on the regula-

tory effect of YbtA on its own promoter, a second plasmid pWKS30-ybtA expressing YbtA

under the control of a lac promoter was introduced. All experiments were performed in dupli-

cates and repeated at least three times. For statistical analysis a paired t-test or the Mann-Whit-

ney U test were performed and results were considered statistically significant if the p-value

was lower than 0.05.

Western blotting

For the detection of flagellar expression bacteria swarming on 0.5% LB swarm plates were

scraped off carefully, resuspended in PBS and finally adjusted to an OD600 = 1.0. Bacteria from

this standardized culture were pelleted by centrifugation and subjected to sodium dodecyl sul-

fate-polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently transferred to a Pro-

tran1 nitrocellulose transfer membrane (Whatman). Rabbit polyclonal antiserum to H7

flagellin (kind gift of B. Westerlund-Wikström) was used as primary antibody. For the detec-

tion of high pathogenicity island proteins bacterial cultures grown in LB medium or NBD

medium were collected, adjusted to an OD600 = 1.0 and finally analysed using rabbit polyclonal

antiserum to YbtA (kind gift of A. Rakin) and FyuA [44]. The respective samples were loaded

on a SDS-PAGE and stained with Coomassie-Brilliant-Blue, which served as loading control.

RNA extraction and quantitative real-time PCR (TaqMan)

Different RNA samples were prepared as described above. RNA extraction was performed

using the Trizol (Invitrogen) method [45]. Total RNA was first treated with DNase I (Fermen-

tas) to remove contaminating genomic DNA. Then, first-strand cDNA was synthesized using

random hexamers and RevertAid H Minus M-MuLV Reverse Transcriptase (Fermentas)

according to the manufacturer’s recommendation. TaqMan PCR was run on a 7500 Fast Real-

Time PCR System (Applied Biosystems). Primers were designed using the Primer Express soft-

ware (Version 3.0, Applied Biosystems) and probes were labelled with FAM at the 5’-terminus

and TAMRA at the 3’-terminus (Table 2). TaqMan PCR reactions were carried out in a final

volume of 25 μl containing TaqMan Gene Expression Master Mix (Applied Biosystems), prim-

ers, probe and 30ng of cDNA. Transcript levels were normalized to 16 S rRNA. Data were ana-

lyzed by the 2-ΔΔ method as described by Livak and Schmittgen [46].

Results

The influence of yersiniabactin synthesis on flagellar motility in UPEC

In a first attempt to determine the role of the HPI in flagellum-mediated motility, defined

mutations affecting genes involved in the biosynthesis of yersiniabactin were generated in the

prototypic UPEC strain NU14. Irp2, coding for HMWP2 (high molecular weight protein 2)

[47], and ybtA, encoding a transcriptional regulator of the AraC-like family [19], were deleted

according to the protocol described by Datsenko and Wanner [37]. The functional impact of

these deletions on yersiniabactin production was verified in a yersiniabactin detection luc

The high-pathogenicity island promotes motility in Escherichia coli
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reporter assay (data not shown). Motility was first assessed performing swimming assays on

LB soft agar plates (Fig 1A). Although LB is considered to be a rich medium with excess of

iron available, measuring of the diameter of swimming bacteria revealed a reduction of motil-

ity compared to the wild type strain. After 7 hours of incubation the average motility diameters

of the irp2mutant (60.25 mm ± 5.93 mm; p<0.001) and the ybtAmutant (66.58 mm ± 4.21

mm; p<0.05) were both significantly decreased compared to the wild type strain (77.50

mm ± 3.55 mm), with the deletion of irp2 resulting in a stronger impairment than the ybtA
mutant (p<0.01). The complementation of both irp2 and ybtA in trans restored the motility to

wild type levels, thus confirming that the phenotype was due to the deletion of irp2 and ybtA.

In order to investigate this decrease in motility, we performed qPCR to determine whether the

phenotype is regulated at the transcriptional level. FliC, fliD and flgK genes coding for flagellin,

a filament-capping protein and a hook-filament junction protein, respectively, are class III fla-

gellar genes, which were selected to study gene expression [48]. Performing motility assays, fla-

gellar genes displayed a strong induction relative to the wild type strain cultivated in LB

medium at 37˚C (Fig 1B). FliC was the most upregulated gene with a 1700-fold increase in

gene expression. The amounts of fliD and flgK transcripts were increased 245-fold and

235-fold, respectively. This result confirmed the strong induction of flagellar genes at the tran-

scriptional level. Next, we tested different HPI mutants and compared their gene expression

with the wild type strain (Fig 1C). We observed a downregulation of the studied flagellar genes

in all HPI mutants. NU14 Δirp2 demonstrated the strongest decrease in transcription of fliC,

fliD and flgK, down 8.7-fold, 6.8-fold and 7.5-fold, respectively, relative to the wild type strain.

Transcriptional analysis indicated that the abolishment of yersiniabactin production, as repre-

sented by the irp2mutant, resulted in decreased flagellin expression. Therefore, we investi-

gated the production of flagella in different HPI mutants using H7 flagellin antiserum (Fig

1D). The reduced gene expression of fliC in the irp2mutant correlated with a decrease in fla-

gellin expression. These data clearly demonstrated that the ability to produce yersiniabactin

promotes flagella expression and motility in ExPEC. This finding prompted us to investigate

whether the gain of yersiniabactin biosynthesis in a yersiniabactin deficient strain would also

affect motility. UPEC strain CFT073 was isolated from a patient with acute pyelonephritis [41]

and represents a natural yersiniabactin-deficient strain due to mutations within essential bio-

synthetic genes. We restored yersiniabactin synthesis in CFT073 by integrating the functional

HPI core region of Y. enterocolitica [42] creating strain CFT073 Ybt+. Functionality was con-

firmed in a yersiniabactin detection reporter assay (data not shown). We performed motility

assays with both CFT073 wild type and CFT073 Ybt+ and we observed a significant increase in

the motility of the yersiniabactin producing derivative CFT073 Ybt+ (Fig 1E). After 9 hours of

incubation on a LB soft agar plate the diameter of CFT073 Ybt+ was 42.5 mm (± 3.5 mm) com-

pared to 16 mm (± 2 mm) (p<0.01). Even the equipment of K12 E. coli strain DH5α, which is

an HPI-negative strain, with a functional HPI promotes motility (Fig 1E). After 12 hours of

incubation the motility diameter of DH5α increased from 26 mm (± 1 mm) to 43 mm (± 0.87

mm) due to additional production of yersiniabactin (p<0.001). These results support the con-

tribution of yersiniabactin production to motility.

The loss of flagellin expression does not affect the functionality of the

HPI

Since the loss of yersiniabactin production resulted in reduced motility, we further addressed

the question whether the disruption of flagellar biosynthesis, leading to a non-motile pheno-

type, would also affect the ability to synthesize yersiniabactin. We created a flagellar mutant by

deleting fliI, a class II gene, which codes for an ATPase involved in type III flagellar export

The high-pathogenicity island promotes motility in Escherichia coli
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Fig 1. In vitro characterizations of the contribution of the HPI to motility in UPEC strain NU14. (A) Deletions of both irp2 and ybtA resulted in the

reduction of the motility diameter on LB soft agar plates (0.3%). Motility was restored in complemented strains. qPCR for flagellar genes during motility

in wild type strain NU14 (B) and in HPI mutants (C). Data were normalized to 16S rRNA. Bacteria rotating in LB at 37˚C were used as the calibrator for

(B) and wild type strain NU14 during motility served as the calibrator for (C). (D) Detection of flagellin expression using H7 antiserum. Lane 1, NU14

wild type; lane 2, NU14 Δirp2; lane 3, NU14 ΔybtA. (E) The impact of yersiniabactin production on motility in yersiniabactin-negative strains. CFT073

ybt+ and DH5α ybt+ displayed increased motility compared to the respective wild type strains. All experiments were performed in triplicates and

repeated at least three times. Error bars represent standard deviations. *p<0.05, **p<0.01, ***p<0.001.

https://doi.org/10.1371/journal.pone.0183950.g001
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[48]. This mutant showed neither induction of flagellar gene expression (Fig 2A) nor detect-

able expression of flagellin (Fig 2B), and consequently, the mutant was non-motile on LB soft

agar plates (Fig 2C). The cultivation of the flagellar mutant under iron deplete conditions (Fig

2D) had no adverse effect on the transcript levels of the HPI genes ybtA, irp2 and fyuA
(p>0.05). Also the detection of FyuA expression by western blot analysis of the fliImutant

under iron limited cultivation in NBD medium showed no difference compared to the wild

type strain (Fig 2E). Therefore, these data demonstrated that the impairment of the flagellar

system does not influence the function of the HPI.

Stimulation of the HPI with additional iron under iron abundance

promotes motility

Iron uptake systems are essential to the overall fitness of pathogens and they are supposed to

be activated only by scarcity of iron [49]. Strikingly, the HPI contributes to motility under iron

rich conditions. Our first step to investigate this phenomenon was to perform transcriptional

analysis of the UPEC strain NU14 cultivated in iron deplete medium (NBD medium) and

swarming on a LB soft agar plate (Fig 3A). In NBD medium the gene expression of ybtA, irp2
and fyuAwas strongly induced. Surprisingly, the transcription rate of swarming NU14 showed

no significant difference (p>0.05), indicating the strong activation of the HPI during motility.

This strong induction of transcription prompted us to study whether additional iron may sup-

press this activation during motility or stimulate even stronger. For that purpose, we supple-

mented LB soft agar plates with different concentrations of Fe(III)Cl3. We applied 10 μM,

100 μM and 1 mM of ferric iron. Motility assays indicated a significant increase only for 10 μM

Fe(III)Cl3 compared to standard LB soft agar plates without any additional iron (p<0.05) (Fig

3B). Higher concentrations appeared to mediate no relevant benefit for motility. Real-time PCR

was further carried out to analyse the gene expression of both the HPI and the flagellar system

(Fig 3C). In the case of supplementation with 10 μM of ferric iron we observed a stronger induc-

tion of genes of the HPI. YbtA increased from 25-fold to 84-fold induction (p<0.05), irp2 showed

a rise from 1800-fold to 2800-fold (p<0.05), and fyuAwas upregulated from 28-fold to 70-fold

(p<0.001). Using higher concentrations of iron we observed a suppression of transcript levels,

which finally resulted in the inactivation of the HPI at 1 mM of FeCl3. The transcription of fliC
could be stimulated with additional iron, but displayed no difference for the various concentra-

tions of iron used. Corresponding results could be obtained by western blotting (Fig 3D). The

expression of both YbtA and FyuA increased when 10 μM of ferric iron were added, and dimin-

ished at higher concentrations until no expression was detectable. The investigation of flagellin

production revealed a rise in expression with additional iron, but according to the qPCR data we

could not observe significant changes for different concentrations of FeCl3. At this point, our

data clearly prove that the HPI is active during motility under iron rich conditions, and the HPI

is even stronger activated when 10 μM of ferric iron is added, instead of being repressed by this

excess of iron.

Activation of the ybtA promoter during motility

The YbtA-mediated transcriptional regulation of genes like irp2, irp6 and fyuA has been eluci-

dated in previous studies [17; 18], which clearly highlighted the essential role of YbtA. The

absence of this transcriptional regulator results in a negligible activity of the HPI. But data

acquired so far still left a few questions unanswered. With the induction of ybtA transcription,

representing the starting point for activation of the HPI, our first step was to construct several

transcriptional lacZ reporter fusions with different fragments of the ybtA promoter region (Fig

4A). We fused the entire promoter including all three YbtA binding sites, termed repeated
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sequences (RS), and the Fur box to the lacZ gene to confirm the published data concerning ybtA
regulation. YbtA is supposed to activate the transcription of irp2, irp6 and fyuA and represses its

own transcription [17–19]. In order to verify the auto-repression of ybtAwe introduced both

plasmid p3RS and plasmid pWKS30-ybtA into UPEC strain NU14. PWKS30-ybtA contains

ybtA under the control of a lac promoter, so iron independent expression of YbtA is achieved.

As depicted in Fig 4B, NU14 with additional YbtA expression showed a reduced reporter activ-

ity of 330 miller units compared to 540 miller units (p<0.01) in the strain carrying the empty

Fig 2. The loss of flagellar expression does not influence the activity of the HPI under iron deplete condition. (A)

qPCR for flagellar genes during motility in strains NU14 wild type and flagellar mutant NU14 ΔfliI. Deletion of fliI resulted in

the loss of flagellar gene expression of fliC, fliD and flgK. Data were normalized to 16S rRNA. Bacteria shaken in LB at 37˚C

were used as the calibrator. (B) Detection of flagellin expression using H7 antiserum. Flagellar mutant NU14 ΔfliI showed

no expression of flagellin. (C) Mutant strain NU14 ΔfliI was non-motile on LB soft agar plates. (D) qPCR for HPI genes of

NU14 wild type and NU14 ΔfliI under iron deplete condition. Transcription rates for ybtA, irp2 and fyuA of the flagellar

mutant NU14 ΔfliI displayed no difference relative to the wild type strain NU14 under iron restriction. (E) Detection of FyuA

expression in NBD medium. No difference in FyuA expression could be detected between the wild type strain and the

flagellar mutant. NU14 ΔfliI showed no expression of FyuA under iron rich conditions in LB medium.

https://doi.org/10.1371/journal.pone.0183950.g002
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vector control. We wanted to know whether this expected phenotype could be reproduced in an

HPI-negative background, like in K12 E. coli DH5α. This setup actually allows the exclusive

analysis of the interaction of YbtA with its own promoter, because the influence of all known

and still unknown cis regulatory elements on the HPI can be excluded. Interestingly, in DH5α
the additional expression of YbtA led to an increase in reporter activity of 41% relative to the

strain without YbtA expression (p<0.001). This surprising observation prompted us to study

this effect in the UPEC strain NU14 Δhpi, where the entire HPI has been deleted. Measuring of

miller units in the mutant NU14 Δhpi revealed that the extra expression of YbtA indeed induced

the reporter activity. We observed an almost 40% increase of miller units when additional YbtA

was expressed (p<0.001). After all, these promoter studies suggest that YbtA itself activates its

own transcription, at least in an HPI-negative genomic background.

We kept on investigating the role of the ybtA promoter region in flagellum-mediated motil-

ity. The activation of the HPI starts always with the induction of ybtA transcription. So we

Fig 3. The abundance of iron stimulates the HPI during motility. (A) qPCR for the HPI genes ybtA, irp2 and fyuA in NU14 wild type strain

showed equal transcription rates for both iron depletion in NBD and during motility on LB soft agar plates. (B) The supplementation of 0.3% LB

soft agar plates with 10 μm Fe(III)Cl3 resulted in increased motility (*p<0.05). The addition of 100 μM or 1 mM Fe(III)Cl3 did not affect motility

diameters significantly. (C) qPCR of swarming NU14 on LB soft agar plates supplemented with different concentrations of Fe(III)Cl3. Only

addition of 10 μm Fe(III)Cl3 led to the increased gene expression of the HPI genes ybtA, irp2 and fyuA. The transcription of fliC was stronger

upregulated during motility with the addition of iron, but displayed no difference for various concentration of Fe(III)Cl3. (D) Western blot analysis

of the expression of YbtA, FyuA and flagellin on LB soft agar plates supplemented with different concentrations of iron. YbtA and FyuA

expression was only increased for 10 μM Fe(III)Cl3. The addition of 1 mM ferric iron repressed almost completely expression of YbtA and FyuA.

Rising concentrations of iron led to an overall enhanced expression of flagellin with no difference for various concentrations.

https://doi.org/10.1371/journal.pone.0183950.g003
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Fig 4. Analysis of the ybtA promoter activity under iron depletion and during motility. (A) Construction of transcriptional lacZ reporter

fusions with different fragments of the ybtA promoter region. (B) Influence of the YbtA expression on the ybtA promoter activity under iron depletion.

The additional expression of YbtA showed a decrease in miller units compared to the empty vector control in NU14 wild type (***p<0.001), but

increased significantly the reporter signal in the HPI-negative strains DH5α and NU14 Δhpi, respectively (***p<0.001). (C) The reporter activity of

NU14 wild type strain carrying p3RS cultivated in NBD medium, LB medium and during motility on LB soft agar plates. Elevated miller units could be

detected only under iron scarcity and during motility (***p<0.001). The reporter activity for different fragments of the ybtA promoter region under

iron restriction and during motility in UPEC strain NU14 (D) and K12 E. coli DH5α (E). In both backgrounds the highest promoter activity was only

detected with construct p3RS for both growth in NBD medium and during motility on LB soft agar plates.

https://doi.org/10.1371/journal.pone.0183950.g004
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fused different parts of the ybtA promoter region to the lacZ gene and analyzed the reporter

activities of motile bacteria (Fig 4A). The constructs comprised a selection of reporter fusions

including the whole promoter region (p3RS), two YbtA binding sites plus the Fur box (p2RS

+), two YbtA binding sites without the Fur box (p2RS), only one YbtA binding site (p1RS) and

finally a short fragment of the promoter region without any known binding site. Initially, we

compared promoter activities in UPEC strain NU14 using reporter plasmid p3RS under differ-

ent conditions, i.e. cultivation in NBD medium, cultivation in LB medium and swarming

NU14 (Fig 4C). As expected, iron depletion activated the ybtA promoter compared to the cul-

tivation under iron excess. Consistent with the data presented above, the reporter activity was

highly elevated during swarming. Approximately 420 miller units (± 20.1) for bacteria in NBD

medium and 530 miller units (± 70.2) for swarming bacteria confirmed, that the HPI is almost

equally activated. To determine the role of single promoter fragments containing different reg-

ulatory elements, we introduced various reporter constructs into the NU14 wild type strain

and compared the reporter signals of bacteria grown under iron starvation with motile bacteria

(Fig 4D). The resulting data demonstrated that the entire promoter region with all three YbtA

binding sites is necessary to fully activate the ybtA promoter. Only the reporter plasmid p3RS

displayed a strong signal of 417 miller units (± 20.9). When the swarming UPEC NU14 was

examined, we were able to observe the same pattern. Only the wild type strain carrying the

reporter construct p3RS including the entire promoter region showed an elevated reporter

activity of 528 miller units (± 73.5). To investigate if the observed pattern in UPEC strain

NU14 also accounted for a HPI negative strain, reporter activities were detected in K12 E. coli
strain DH5α carrying also the same reporter constructs (Fig 4E). The cultivation in NBD

medium resulted in a strong signal of 490 miller units (± 3.3) for reporter plasmid p3RS. Inter-

estingly, we observed a slight reporter activity for constructs p2RS+ and p2RS, with both con-

taining two YbtA binding sites. Once again, the pattern of reporter activity was identical to the

results acquired under iron depletion. Plasmid p3RS displayed the highest rate with 918 miller

units (± 100.6), whereas p2RS+ and p2RS produced weak signals. Overall, the promoter studies

clearly show that the entire promoter region including all YbtA binding sites is mandatory for

complete promoter activity. Furthermore, the lacZ reporter activity patterns during motility

were similar in the HPI-positive strain NU14 and the HPI-negative strain DH5α suggesting a

common mechanism of induction for the HPI, which is independent of YbtA and yersiniabac-

tin production.

Discussion

Numerous studies have been published over the last decades highlighting the fundamental role

of iron uptake systems for the overall fitness of pathogenic bacteria [10; 50–53]. The efficient

colonization of the urinary tract by UPEC requires the coordination of a plethora of different

iron acquisition strategies in order to satisfy the increased need for iron in this hostile environ-

ment. Especially the HPI turned out to be essential for the virulence potential of many different

pathogens [8–10]. The objective of this present work was to investigate a possible connection

between iron acquisition as accomplished by the HPI and motility in UPEC strain NU14. The

first results clearly demonstrated that mutations of ybtA and irp2 resulting in the impairment

of yersiniabactin production affected flagellar motility. The most interesting aspect of this

observation is that motility assays were performed on LB soft agar plates, with LB representing

an iron rich condition. External iron excess is supposed to repress transcription of genes

involved in iron acquisition through the action of the ferric uptake regulator Fur [49]. How-

ever, transcriptional and translational data of HPI mutants motile on LB soft agar plates pro-

vided evidence that the reduction of motility is due to a decrease in both transcript levels of
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flagellar genes and production of flagellin. The gain of the ability to synthesize yersiniabactin

improved the motility in pathogenic and non-pathogenic E. coli strains. These results prove

that a functional HPI promotes flagellum-mediated motility. We investigated whether this

interaction between HPI and flagellar system is mutual. The disruption of flagella expression

had no effect on the activity of the HPI under iron deplete cultivation. It appears that induction

of flagellum-mediated motility constitutes a stimulus that activates the HPI regardless of the

external content of iron. This unexpected phenomenon prompted us to investigate how differ-

ent concentrations of iron might affect this interaction. Most strikingly, during motility addi-

tional iron induced even more both motility and the HPI. Beside the activation of the HPI

under iron excess, the further stimulation of a siderophore system with higher amounts of iron

under iron excess is quite astonishing. To our knowledge, this is the first report of a higher reg-

ulatory mechanism of iron homeostasis that extends beyond the regulation by Fur and external

iron content. The cultivation in an iron rich medium like LB shows no induction of iron

uptake systems due to the binding of Fur to Fur boxes upstream of iron regulated genes [49].

But as soon as the motility is assessed on LB soft agar plates, UPEC strain NU14 showed a

strong activation of the HPI that can even be maximized. With regard to Fur, it could be possi-

ble that the ferric uptake regulator itself might be affected or an additional factor prevents

binding of Fur to the Fur binding site. Using lacZ transcriptional reporter fusions we analysed

the ybtA promoter activity under different conditions to identify elements of the promoter

region necessary for targeting the HPI during motility. We confirm previously published data

[17] that all 3 YbtA binding sites are required for full promoter activity under iron scarcity.

This also accounts for motility. One surprising finding concerning ybtA regulation was the

unexpected stimulation of the ybtA promoter by YbtA itself. Published reports provided evi-

dence for auto-repression [17; 19], but the HPI background of tested strains was always pres-

ent in the respective studies. The effect of self-inhibition was confirmed in our experiments

when we performed reporter assays in a HPI-positive strain, even in strains with different HPI

mutations (data not shown). The exclusive investigation of the influence of YbtA on its own

promoter requires the complete deletion of the HPI. In that way, unknown putative cis-regula-

tory elements located on the HPI can be excluded. In an HPI-free background we were able to

detect activation of the ybtA promoter lacZ fusion with the additional expression of YbtA for

both pathogenic and non-pathogenic strains. This is not the only interesting observation. It is

important to stress, that the binding of YbtA to its promoter can occur in the absence of yersi-

niabactin. The results for K12 E. coli DH5α carrying the YbtA expressing plasmid demon-

strated the yersiniabactin-independent interaction of YbtA with its promoter. These new

insights complement the current understanding of YbtA-mediated regulation of the HPI. The

initial induction of the HPI starts with transcription and translation of YbtA. Small amounts

of this regulator will stimulate stronger the expression of YbtA, so that all the other YbtA-

dependent operons can be transcribed. This will start the production of yersiniabactin until

the HPI is fully activated. At this point, further expression of YbtA may be damped. The

molecular mechanism of this inhibition cannot be explained with our experimental set up. But

DNA bending mechanisms stabilized through YbtA with or without yersiniabactin, as it is

known for the AraC-mediated regulation, may be possible [54]. Further experiments are

needed to address this interesting regulatory aspect. As far as the newly discovered HPI-flagella

interaction is concerned, the selection of various ybtA promoter fragments fused to the lacZ
reporter gene allowed to examine whether the promoter activity of ybtA under iron deplete

conditions was comparable to the process of motility. Strikingly, maximum promoter activity

was only detected for the entire promoter region of the reporter construct p3RS. This was the

case for both UPEC strain NU14 and laboratory strain DH5α. The full activity under iron

restriction might be explained by the inactivation of Fur, but the results of motility assays
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under iron rich conditions point towards a different mechanism. Fur is supposed to inhibit

transcription because of iron abundance. However, a strong signal was measured in both

strains. Reporter constructs p2RS+ and p2RS, with a Fur box only included in p2RS+, indi-

cated that Fur might not be the missing link of the flagella-HPI interaction since there is no

difference in promoter activity between both reporter plasmids. It is remarkable for the labora-

tory strain DH5α that neither YbtA nor yersiniabactin can be involved in ybtA promoter activ-

ity, but there is still a strong signal detectable. Due to the presence of a Fur box in p3RS and

p2RS+, the role of Fur for this phenomenon seems to be negligible, otherwise plasmid p2RS

+ is supposed to display the same activity. The possibility of an unknown factor, maybe

another regulator of the AraC-like family, binding to all YbtA binding sites in YbtA-like fash-

ion may be a theory to explain this observation. This hypothesis might also account for the

induction of YbtA expression during motility. In both strains NU14 and DH5α, an unknown

factor acting alone or in complex with additional elements seems to occupy the entire pro-

moter region in order to activate YbtA expression. It is unclear, whether this missing link is

encoded by the E. coli core genome, so the same factor is responsible, or whether the mediating

factors differ in the strains NU14 and DH5α.

Overall, the data presented in this study clearly showed how the flagellar system activates

the HPI by addressing the ybtA promoter region. The evasion of important regulatory mecha-

nisms of iron homeostasis seems to be counterbalanced to optimize motility. This work high-

lights the multi-functional role of the HPI and promotes the concept of a complex but

orchestrated network of virulence and fitness factors supporting ExPEC to develop into this

successful pathogen.
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References
1. Johnson JR. Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev 1991 Jan; 4

(1):80–128. PMID: 1672263

2. Johnson JR, Russo TA. Extraintestinal pathogenic Escherichia coli: "the other bad E coli". J Lab Clin

Med 2002 Mar; 139(3):155–62. PMID: 11944026

3. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol 2004 Feb; 2(2):123–

40. https://doi.org/10.1038/nrmicro818 PMID: 15040260

4. Reigstad CS, Hultgren SJ, Gordon JI. Functional genomic studies of uropathogenic Escherichia coli

and host urothelial cells when intracellular bacterial communities are assembled. J Biol Chem 2007 Jul

20; 282(29):21259–67. https://doi.org/10.1074/jbc.M611502200 PMID: 17504765

5. Hagan EC, Lloyd AL, Rasko DA, Faerber GJ, Mobley HL. Escherichia coli global gene expression in

urine from women with urinary tract infection. PLoS Pathog 2010; 6(11):e1001187. https://doi.org/10.

1371/journal.ppat.1001187 PMID: 21085611

6. Alteri CJ, Mobley HL. Quantitative profile of the uropathogenic Escherichia coli outer membrane prote-

ome during growth in human urine. Infect Immun 2007 Jun; 75(6):2679–88. https://doi.org/10.1128/IAI.

00076-07 PMID: 17513849

7. Garenaux A, Caza M, Dozois CM. The Ins and Outs of siderophore mediated iron uptake by extra-intes-

tinal pathogenic Escherichia coli. Vet Microbiol 2011 Nov 21; 153(1–2):89–98. https://doi.org/10.1016/j.

vetmic.2011.05.023 PMID: 21680117

The high-pathogenicity island promotes motility in Escherichia coli

PLOS ONE | https://doi.org/10.1371/journal.pone.0183950 October 10, 2017 15 / 18

http://www.ncbi.nlm.nih.gov/pubmed/1672263
http://www.ncbi.nlm.nih.gov/pubmed/11944026
https://doi.org/10.1038/nrmicro818
http://www.ncbi.nlm.nih.gov/pubmed/15040260
https://doi.org/10.1074/jbc.M611502200
http://www.ncbi.nlm.nih.gov/pubmed/17504765
https://doi.org/10.1371/journal.ppat.1001187
https://doi.org/10.1371/journal.ppat.1001187
http://www.ncbi.nlm.nih.gov/pubmed/21085611
https://doi.org/10.1128/IAI.00076-07
https://doi.org/10.1128/IAI.00076-07
http://www.ncbi.nlm.nih.gov/pubmed/17513849
https://doi.org/10.1016/j.vetmic.2011.05.023
https://doi.org/10.1016/j.vetmic.2011.05.023
http://www.ncbi.nlm.nih.gov/pubmed/21680117
https://doi.org/10.1371/journal.pone.0183950


8. Heesemann J, Hantke K, Vocke T, Saken E, Rakin A, Stojiljkovic I, et al. Virulence of Yersinia enteroco-

litica is closely associated with siderophore production, expression of an iron-repressible outer mem-

brane polypeptide of 65,000 Da and pesticin sensitivity. Mol Microbiol 1993 Apr; 8(2):397–408. PMID:

8316088

9. Lawlor MS, O’connor C, Miller VL. Yersiniabactin is a virulence factor for Klebsiella pneumoniae during

pulmonary infection. Infect Immun 2007 Mar; 75(3):1463–72. https://doi.org/10.1128/IAI.00372-06

PMID: 17220312

10. Schubert S, Picard B, Gouriou S, Heesemann J, Denamur E. Yersinia high-pathogenicity island contrib-

utes to virulence in Escherichia coli causing extraintestinal infections. Infect Immun 2002 Sep; 70

(9):5335–7. https://doi.org/10.1128/IAI.70.9.5335-5337.2002 PMID: 12183596

11. Hacker J, Blum-Oehler G, Muhldorfer I, Tschape H. Pathogenicity islands of virulent bacteria: structure,

function and impact on microbial evolution. Mol Microbiol 1997 Mar; 23(6):1089–97. PMID: 9106201

12. Hacker J, Kaper JB. Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 2000;

54:641–79. https://doi.org/10.1146/annurev.micro.54.1.641 PMID: 11018140

13. Schubert S, Sorsa JL, Cuenca S, Fischer D, Jacobi CA, Heesemann J. HPI of high-virulent Yersinia is

found in E. coli strains causing urinary tract infection. Structural, functional aspects, and distribution.

Adv Exp Med Biol 2000; 485:69–73. https://doi.org/10.1007/0-306-46840-9_9 PMID: 11109089

14. Schubert S, Rakin A, Heesemann J. The Yersinia high-pathogenicity island (HPI): evolutionary and

functional aspects. Int J Med Microbiol 2004 Sep; 294(2–3):83–94. https://doi.org/10.1016/j.ijmm.2004.

06.026 PMID: 15493818

15. Perry RD, Fetherston JD. Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogen-

esis. Microbes Infect 2011 Sep; 13(10):808–17. https://doi.org/10.1016/j.micinf.2011.04.008 PMID:

21609780

16. Miller DA, Luo L, Hillson N, Keating TA, Walsh CT. Yersiniabactin synthetase: a four-protein assembly

line producing the nonribosomal peptide/polyketide hybrid siderophore of Yersinia pestis. Chem Biol

2002 Mar; 9(3):333–44. PMID: 11927258

17. Anisimov R, Brem D, Heesemann J, Rakin A. Molecular mechanism of YbtA-mediated transcriptional

regulation of divergent overlapping promoters ybtA and irp6 of Yersinia enterocolitica. FEMS Microbiol

Lett 2005 Sep 1; 250(1):27–32. https://doi.org/10.1016/j.femsle.2005.06.040 PMID: 16019159

18. Anisimov R, Brem D, Heesemann J, Rakin A. Transcriptional regulation of high pathogenicity island iron

uptake genes by YbtA. Int J Med Microbiol 2005 Apr; 295(1):19–28. https://doi.org/10.1016/j.ijmm.

2004.11.007 PMID: 15861813

19. Fetherston JD, Bearden SW, Perry RD. YbtA, an AraC-type regulator of the Yersinia pestis pesticin/yer-

siniabactin receptor. Mol Microbiol 1996 Oct; 22(2):315–25. PMID: 8930916

20. Paauw A, Leverstein-van Hall MA, van Kessel KP, Verhoef J, Fluit AC. Yersiniabactin reduces the respi-

ratory oxidative stress response of innate immune cells. PLoS One 2009; 4(12):e8240. https://doi.org/

10.1371/journal.pone.0008240 PMID: 20041108

21. Hancock V, Ferrieres L, Klemm P. The ferric yersiniabactin uptake receptor FyuA is required for efficient

biofilm formation by urinary tract infectious Escherichia coli in human urine. Microbiology 2008 Jan; 154

(Pt 1):167–75. https://doi.org/10.1099/mic.0.2007/011981-0 PMID: 18174135

22. Sivick KE, Mobley HL. An "omics" approach to uropathogenic Escherichia coli vaccinology. Trends

Microbiol 2009 Oct; 17(10):431–2. https://doi.org/10.1016/j.tim.2009.07.003 PMID: 19758805

23. Wieser A, Romann E, Magistro G, Hoffmann C, Norenberg D, Weinert K, et al. A multiepitope subunit

vaccine conveys protection against extraintestinal pathogenic Escherichia coli in mice. Infect Immun

2010 Aug; 78(8):3432–42. https://doi.org/10.1128/IAI.00174-10 PMID: 20498257

24. Wieser A, Magistro G, Norenberg D, Hoffmann C, Schubert S. First multi-epitope subunit vaccine

against extraintestinal pathogenic Escherichia coli delivered by a bacterial type-3 secretion system

(T3SS). Int J Med Microbiol 2012 Jan; 302(1):10–8. https://doi.org/10.1016/j.ijmm.2011.09.012 PMID:

22000741

25. Lv H, Henderson JP. Yersinia high pathogenicity island genes modify the Escherichia coli primary meta-

bolome independently of siderophore production. J Proteome Res 2011 Dec 2; 10(12):5547–54. https://

doi.org/10.1021/pr200756n PMID: 22035238

26. Lloyd AL, Henderson TA, Vigil PD, Mobley HL. Genomic islands of uropathogenic Escherichia coli con-

tribute to virulence. J Bacteriol 2009 Jun; 191(11):3469–81. https://doi.org/10.1128/JB.01717-08 PMID:

19329634

27. Welch RA, Burland V, Plunkett G, III, Redford P, Roesch P, Rasko D, et al. Extensive mosaic structure

revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S

A 2002 Dec 24; 99(26):17020–4. https://doi.org/10.1073/pnas.252529799 PMID: 12471157

The high-pathogenicity island promotes motility in Escherichia coli

PLOS ONE | https://doi.org/10.1371/journal.pone.0183950 October 10, 2017 16 / 18

http://www.ncbi.nlm.nih.gov/pubmed/8316088
https://doi.org/10.1128/IAI.00372-06
http://www.ncbi.nlm.nih.gov/pubmed/17220312
https://doi.org/10.1128/IAI.70.9.5335-5337.2002
http://www.ncbi.nlm.nih.gov/pubmed/12183596
http://www.ncbi.nlm.nih.gov/pubmed/9106201
https://doi.org/10.1146/annurev.micro.54.1.641
http://www.ncbi.nlm.nih.gov/pubmed/11018140
https://doi.org/10.1007/0-306-46840-9_9
http://www.ncbi.nlm.nih.gov/pubmed/11109089
https://doi.org/10.1016/j.ijmm.2004.06.026
https://doi.org/10.1016/j.ijmm.2004.06.026
http://www.ncbi.nlm.nih.gov/pubmed/15493818
https://doi.org/10.1016/j.micinf.2011.04.008
http://www.ncbi.nlm.nih.gov/pubmed/21609780
http://www.ncbi.nlm.nih.gov/pubmed/11927258
https://doi.org/10.1016/j.femsle.2005.06.040
http://www.ncbi.nlm.nih.gov/pubmed/16019159
https://doi.org/10.1016/j.ijmm.2004.11.007
https://doi.org/10.1016/j.ijmm.2004.11.007
http://www.ncbi.nlm.nih.gov/pubmed/15861813
http://www.ncbi.nlm.nih.gov/pubmed/8930916
https://doi.org/10.1371/journal.pone.0008240
https://doi.org/10.1371/journal.pone.0008240
http://www.ncbi.nlm.nih.gov/pubmed/20041108
https://doi.org/10.1099/mic.0.2007/011981-0
http://www.ncbi.nlm.nih.gov/pubmed/18174135
https://doi.org/10.1016/j.tim.2009.07.003
http://www.ncbi.nlm.nih.gov/pubmed/19758805
https://doi.org/10.1128/IAI.00174-10
http://www.ncbi.nlm.nih.gov/pubmed/20498257
https://doi.org/10.1016/j.ijmm.2011.09.012
http://www.ncbi.nlm.nih.gov/pubmed/22000741
https://doi.org/10.1021/pr200756n
https://doi.org/10.1021/pr200756n
http://www.ncbi.nlm.nih.gov/pubmed/22035238
https://doi.org/10.1128/JB.01717-08
http://www.ncbi.nlm.nih.gov/pubmed/19329634
https://doi.org/10.1073/pnas.252529799
http://www.ncbi.nlm.nih.gov/pubmed/12471157
https://doi.org/10.1371/journal.pone.0183950


28. Henderson JP, Crowley JR, Pinkner JS, Walker JN, Tsukayama P, Stamm WE, et al. Quantitative

metabolomics reveals an epigenetic blueprint for iron acquisition in uropathogenic Escherichia coli.

PLoS Pathog 2009 Feb; 5(2):e1000305. https://doi.org/10.1371/journal.ppat.1000305 PMID: 19229321

29. Wright KJ, Seed PC, Hultgren SJ. Uropathogenic Escherichia coli flagella aid in efficient urinary tract

colonization. Infect Immun 2005 Nov; 73(11):7657–68. https://doi.org/10.1128/IAI.73.11.7657-7668.

2005 PMID: 16239570

30. Lane MC, Lockatell V, Monterosso G, Lamphier D, Weinert J, Hebel JR, et al. Role of motility in the colo-

nization of uropathogenic Escherichia coli in the urinary tract. Infect Immun 2005 Nov; 73(11):7644–56.

https://doi.org/10.1128/IAI.73.11.7644-7656.2005 PMID: 16239569

31. Lane MC, Alteri CJ, Smith SN, Mobley HL. Expression of flagella is coincident with uropathogenic

Escherichia coli ascension to the upper urinary tract. Proc Natl Acad Sci U S A 2007 Oct 16; 104

(42):16669–74. https://doi.org/10.1073/pnas.0607898104 PMID: 17925449

32. Matilla MA, Ramos JL, Duque E, de Dios AJ, Espinosa-Urgel M, Ramos-Gonzalez MI. Temperature

and pyoverdine-mediated iron acquisition control surface motility of Pseudomonas putida. Environ

Microbiol 2007 Jul; 9(7):1842–50. https://doi.org/10.1111/j.1462-2920.2007.01286.x PMID: 17564617

33. Wang Q, Frye JG, McClelland M, Harshey RM. Gene expression patterns during swarming in Salmo-

nella typhimurium: genes specific to surface growth and putative new motility and pathogenicity genes.

Mol Microbiol 2004 Apr; 52(1):169–87. https://doi.org/10.1111/j.1365-2958.2003.03977.x PMID:

15049819

34. McCarter L, Silverman M. Iron regulation of swarmer cell differentiation of Vibrio parahaemolyticus. J

Bacteriol 1989 Feb; 171(2):731–6. PMID: 2914871

35. Kurabayashi K, Agata T, Asano H, Tomita H, Hirakawa H. Fur Represses Adhesion to, Invasion of, and

Intracellular Bacterial Community Formation within Bladder Epithelial Cells and Motility in Uropatho-

genic Escherichia coli. Infect Immun. 2016; 84(11):3220–31. https://doi.org/10.1128/IAI.00369-16

PMID: 27572332

36. Hultgren SJ, Schwan WR, Schaeffer AJ, Duncan JL. Regulation of production of type 1 pili among uri-

nary tract isolates of Escherichia coli. Infect Immun 1986 Dec; 54(3):613–20. PMID: 2877947

37. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using

PCR products. Proc Natl Acad Sci U S A 2000 Jun 6; 97(12):6640–5. https://doi.org/10.1073/pnas.

120163297 PMID: 10829079

38. Sambrook J, Russel DW. Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor

Laboratory Press. 2001

39. Wang RF, Kushner SR. Construction of versatile low-copy-number vectors for cloning, sequencing and

gene expression in Escherichia coli. Gene 1991 Apr; 100:195–9. PMID: 2055470

40. Herman P.Spaink, et al. Promoters in the nodulation region of the Rhizobium leguminosarum Sym plas-

mid pRL1JI. Plant Molecular Biology 1987; 9(1):27–39. https://doi.org/10.1007/BF00017984 PMID:

24276795

41. Mobley HL, Green DM, Trifillis AL, Johnson DE, Chippendale GR, Lockatell CV, et al. Pyelonephrito-

genic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemo-

lysin in some strains. Infect Immun 1990 May; 58(5):1281–9. PMID: 2182540

42. Pelludat C, Hogardt M, Heesemann J. Transfer of the core region genes of the Yersinia enterocolitica

WA-C serotype O:8 high-pathogenicity island to Y. enterocolitica MRS40, a strain with low levels of

pathogenicity, confers a yersiniabactin biosynthesis phenotype and enhanced mouse virulence. Infect

Immun 2002 Apr; 70(4):1832–41. https://doi.org/10.1128/IAI.70.4.1832-1841.2002 PMID: 11895945

43. Miller JH. A short course in bacteria genetics. Cold Spring Harbor Laboratory Press, Cold Spring Har-

bor, NY. 1992.

44. Feldmann F, Sorsa LJ, Hildinger K, Schubert S. The salmochelin siderophore receptor IroN contributes

to invasion of urothelial cells by extraintestinal pathogenic Escherichia coli in vitro. Infect Immun 2007

Jun; 75(6):3183–7. https://doi.org/10.1128/IAI.00656-06 PMID: 17353289

45. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phe-

nol-chloroform extraction. Anal Biochem 1987 Apr; 162(1):156–9. https://doi.org/10.1006/abio.1987.

9999 PMID: 2440339

46. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR

and the 2(-Delta Delta C(T)) Method. Methods 2001 Dec; 25(4):402–8. https://doi.org/10.1006/meth.

2001.1262 PMID: 11846609

47. Gehring AM, Mori I, I, Perry RD, Walsh CT. The nonribosomal peptide synthetase HMWP2 forms a thia-

zoline ring during biogenesis of yersiniabactin, an iron-chelating virulence factor of yersinia pestis. Bio-

chemistry 1998 Dec 1; 37(48):17104. https://doi.org/10.1021/bi9850524 PMID: 9836605

The high-pathogenicity island promotes motility in Escherichia coli

PLOS ONE | https://doi.org/10.1371/journal.pone.0183950 October 10, 2017 17 / 18

https://doi.org/10.1371/journal.ppat.1000305
http://www.ncbi.nlm.nih.gov/pubmed/19229321
https://doi.org/10.1128/IAI.73.11.7657-7668.2005
https://doi.org/10.1128/IAI.73.11.7657-7668.2005
http://www.ncbi.nlm.nih.gov/pubmed/16239570
https://doi.org/10.1128/IAI.73.11.7644-7656.2005
http://www.ncbi.nlm.nih.gov/pubmed/16239569
https://doi.org/10.1073/pnas.0607898104
http://www.ncbi.nlm.nih.gov/pubmed/17925449
https://doi.org/10.1111/j.1462-2920.2007.01286.x
http://www.ncbi.nlm.nih.gov/pubmed/17564617
https://doi.org/10.1111/j.1365-2958.2003.03977.x
http://www.ncbi.nlm.nih.gov/pubmed/15049819
http://www.ncbi.nlm.nih.gov/pubmed/2914871
https://doi.org/10.1128/IAI.00369-16
http://www.ncbi.nlm.nih.gov/pubmed/27572332
http://www.ncbi.nlm.nih.gov/pubmed/2877947
https://doi.org/10.1073/pnas.120163297
https://doi.org/10.1073/pnas.120163297
http://www.ncbi.nlm.nih.gov/pubmed/10829079
http://www.ncbi.nlm.nih.gov/pubmed/2055470
https://doi.org/10.1007/BF00017984
http://www.ncbi.nlm.nih.gov/pubmed/24276795
http://www.ncbi.nlm.nih.gov/pubmed/2182540
https://doi.org/10.1128/IAI.70.4.1832-1841.2002
http://www.ncbi.nlm.nih.gov/pubmed/11895945
https://doi.org/10.1128/IAI.00656-06
http://www.ncbi.nlm.nih.gov/pubmed/17353289
https://doi.org/10.1006/abio.1987.9999
https://doi.org/10.1006/abio.1987.9999
http://www.ncbi.nlm.nih.gov/pubmed/2440339
https://doi.org/10.1006/meth.2001.1262
https://doi.org/10.1006/meth.2001.1262
http://www.ncbi.nlm.nih.gov/pubmed/11846609
https://doi.org/10.1021/bi9850524
http://www.ncbi.nlm.nih.gov/pubmed/9836605
https://doi.org/10.1371/journal.pone.0183950


48. Macnab RM. How bacteria assemble flagella. Annu Rev Microbiol 2003; 57:77–100. https://doi.org/10.

1146/annurev.micro.57.030502.090832 PMID: 12730325

49. Andrews SC, Robinson AK, Rodriguez-Quinones F. Bacterial iron homeostasis. FEMS Microbiol Rev

2003 Jun; 27(2–3):215–37. PMID: 12829269

50. Garcia EC, Brumbaugh AR, Mobley HL. Redundancy and specificity of Escherichia coli iron acquisition

systems during urinary tract infection. Infect Immun 2011 Mar; 79(3):1225–35. https://doi.org/10.1128/

IAI.01222-10 PMID: 21220482

51. Torres AG, Redford P, Welch RA, Payne SM. TonB-dependent systems of uropathogenic Escherichia

coli: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun

2001 Oct; 69(10):6179–85. https://doi.org/10.1128/IAI.69.10.6179-6185.2001 PMID: 11553558

52. Watts RE, Totsika M, Challinor VL, Mabbett AN, Ulett GC, De Voss JJ, et al. Contribution of siderophore

systems to growth and urinary tract colonization of asymptomatic bacteriuria Escherichia coli. Infect

Immun 2012 Jan; 80(1):333–44. https://doi.org/10.1128/IAI.05594-11 PMID: 21930757

53. Gao Q, Wang X, Xu H, Xu Y, Ling J, Zhang D, et al. Roles of iron acquisition systems in virulence of

extraintestinal pathogenic Escherichia coli: salmochelin and aerobactin contribute more to virulence

than heme in a chicken infection model. BMC Microbiol 2012 Jul 20; 12(1):143.

54. Gallegos MT, Schleif R, Bairoch A, Hofmann K, Ramos JL. Arac/XylS family of transcriptional regula-

tors. Microbiol Mol Biol Rev 1997 Dec; 61(4):393–410. PMID: 9409145

The high-pathogenicity island promotes motility in Escherichia coli

PLOS ONE | https://doi.org/10.1371/journal.pone.0183950 October 10, 2017 18 / 18

https://doi.org/10.1146/annurev.micro.57.030502.090832
https://doi.org/10.1146/annurev.micro.57.030502.090832
http://www.ncbi.nlm.nih.gov/pubmed/12730325
http://www.ncbi.nlm.nih.gov/pubmed/12829269
https://doi.org/10.1128/IAI.01222-10
https://doi.org/10.1128/IAI.01222-10
http://www.ncbi.nlm.nih.gov/pubmed/21220482
https://doi.org/10.1128/IAI.69.10.6179-6185.2001
http://www.ncbi.nlm.nih.gov/pubmed/11553558
https://doi.org/10.1128/IAI.05594-11
http://www.ncbi.nlm.nih.gov/pubmed/21930757
http://www.ncbi.nlm.nih.gov/pubmed/9409145
https://doi.org/10.1371/journal.pone.0183950

