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Abstract

MicroRNAs have established their role as potent regulators of the epigenome.

Interestingly, most miRNAs are located within protein-coding genes with functional con-

sequences that have yet to be fully investigated. MiRIAD is a database with an interactive

and user-friendly online interface that has been facilitating research on intragenic

miRNAs. In this article, we present a major update. First, data for five additional species

(chimpanzee, rat, dog, cow and frog) were added to support the exploration of evolution-

ary aspects of the relationship between host genes and intragenic miRNAs. Moreover,

we integrated data from two different sources to generate a comprehensive alternative

polyadenylation dataset. The miRIAD interface was therefore redesigned and provides a

completely new gene model representation, including an interactive visualization of the

30 untranslated region (UTR) with alternative polyadenylation sites, corresponding sig-

nals and potential miRNA binding sites. Furthermore, we expanded on functional host

gene network analysis. Although the previous version solely reported protein inter-

actions, the update features a separate network analysis view that can either be accessed
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through the submission of a list of genes of interest or directly from a gene’s list of pro-

tein interactions. In addition to statistical properties of the submitted gene set, the inter-

action network graph is presented and miRNAs with seed site over- and underrepresen-

tation are identified. In summary, the update of miRIAD provides novel datasets and

bioinformatics resources with a significant increase in functionality to facilitate intragenic

miRNA research in a user-friendly and interactive way.

Database URL: http://www.miriad-database.org

Introduction

MiRNAs are well-known as small molecules that are

involved in controlling regulatory networks of the gene ex-

pression (1). Interestingly, most (e.g. 61.5% for human

and 66.2% for mouse) miRNA genes are positioned within

protein-coding genes in vertebrates (2, 3). These miRNAs

are called intragenic miRNAs and their enclosing genes

‘host genes’. Accumulating evidence suggests that this spe-

cial relationship of genomic colocalization between an

intragenic miRNA and its host gene is of biological rele-

vance. Negative feedback loops of intragenic miRNAs reg-

ulating their host genes have recently been described,

ranging from first-order (i.e. direct) negative feedback (4–

6) to indirect feedback loops (2, 7, 8).

Using a myriad of data from different sources and

databases focused on the analysis of intragenic miRNAs

(3, 9–13), we and others have found further functional impli-

cations of intragenic miRNAs and their host genes. Recent

research suggests evolutionary implications of intragenic

miRNA development (14, 15), yielding that novel miRNAs

seem to benefit from intragenic colocalization by utilizing

existing regulatory circuitries of their host genes (14).

Furthermore, increasing evidence highlights the importance

of the role of alternative polyadenylation (APA) to character-

ize the relationship between intragenic miRNAs and their

host genes (5, 6). These novel discoveries prompted us to de-

velop a major update of the miRIAD database and interface

to account for these new aspects of intragenic miRNA–host

gene relationship.

In this article, we provide a detailed description of the

updated version of miRIAD. In its first version, miRIAD

integrated genomic data for five species to classify

miRNAs into intergenic, intronic and exonic, allowing

easy identification of intragenic miRNAs and host genes

(3). In the updated version, miRIAD contains five add-

itional species (chimpanzee, rat, dog, cow and frog).

Among other changes, it was redesigned to include APA in-

formation from two different sources (16, 17) for 8 of 10

included species (human, rhesus, chimpanzee, mouse, rat,

dog, opossum and chicken). To maximize utility of these

new data, the gene model visualization was completely

redesigned to implement interactive vector graphics.

Interaction network analysis functionality was added to

allow evaluation of a set of genes (e.g. gene signatures)

with respect to host gene over- or underrepresentation,

visualization of protein interactions with respect to intra-

genic miRNA targeting and identification of over- or

underrepresented miRNA target sites in a network. We

also show, how to use the new functionality to derive

hypotheses about the relationship between a host gene

(AKT2) and its intragenic miRNA (hsa-miR-641). To the

best of our knowledge, miRIAD is the first public resource

to allow these analyses to investigate the role of intragenic

miRNAs.

Materials and methods

MiRIAD construction and integration of additional

species

Selection of species to be integrated in miRIAD was based

on several factors. First, we required the availability of

high quality genome assemblies and a good RefSeq cover-

age. Second, we searched for available polyadenylation,

gene and miRNA expression data. Construction of the

miRIAD database was performed with the newest genome

assemblies (human: hg38/GRCh38, rhesus: rheMac8,

chimp: panTro5, frog: xenTro7, cow: bosTau8, opossum:

monDom5, rat: rn6, chicken: galGal5, dog: canFam3 and

mouse: mm10; Figure 1A) and mirBase version 21 (12),

as described in (3). Coding gene and miRNA expression

was calculated from RNA-Seq data from Brawand et al.

(17), Gene Expression Omnibus (GSE30352). RNA-Seq

data processing was carried out as previously

described (3).

APA information for eight species

We combined APA data from a previously published data-

set from (16) (human, rhesus, dog, mouse and rat) with

APA information that we derived from processing the

dataset obtained by Brawand et al. (17). Poly(A) coordin-

ates from Derti et al. were mapped to the respective current
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genome assemblies using the liftOver tool provided by the

Genome Browser from the University of California Santa

Cruz (UCSC) (18). Identification of APA sites from RNA-

Seq data from Brawand et al. was carried out as follows.

After data preprocessing [for details see (3)], reads were fil-

tered for those starting or ending with at least four untem-

plated ‘A’s or ‘T’s. Reads with an extremely high A/T/N-

content were ignored (cut off ratio was set to 0.8).

Potential APA sites were considered, if they (i) mapped to a

untranslated region (UTR)-annotated region based on

RefSeq and (ii) were supported by at least two independent

reads. APA sites within 40 nucleotides were considered to

be a single APA site. For benchmarking, expressed se-

quence tags based alternative poly(A) site information

from APADB (19) were downloaded for human and

mouse. For human, APA site information was converted to

hg38 using the liftOver tool (18). Only APA sites mapping

to RefSeq UTR models were considered.

Target predictions and protein interaction network

The protein interaction network feature visualizes relation-

ships between gene products as an interactive scalable

vector graphics (SVG) image. Using an enrichment–calcula-

tion-based target prediction network score, it may also help

to identify miRNAs relevant for regulation of this network,

which yet lacks experimental support. Target predictions

are based on canonical seed matching used by Targetscan

on the 30-UTR sequences of protein-coding RefSeq tran-

scripts (10). In brief, 30-UTRs are scanned for base comple-

mentarity to Bases 2–7 of the mature miRNA sequences

(seed region). Hybridization energy between miRNA and

UTR sequence was calculated using the Vienna RNA library

(20). The impact of a miRNA on a set of genes is quantified

as follows: First, the probability of random occurrence of a

given seed sequence is calculated by PðSÞ ¼
Qn

i¼1 PðNijDÞ,
where S¼ seed sequence, n¼ length(S), Ni¼ ith nucleotide

of S, D¼ nucleotide distribution.

The probability that this sequence occurs at least r times

in a random sequence of length N (UTR sequences for each

gene in the network) is given by:

P xtð Þ ¼ 1�
Xr�1

i¼0

Lx

i

� �
� P Sð Þi � 1� P Sð Þð ÞLx�i

� � !
;

where Lx¼ (length of 30-UTR of element xt) � (length of

seed sequence n)þ 1, r¼ desired minimum number of oc-

currences, miRIAD is using r¼ 1.

The expected number of genes containing seed-

matching sites E(Xt) in the network X can then be esti-

mated by the sum of probabilities for each gene x.

E Xtð Þ ¼
X
xt2X

P xtð Þ

This number of expected random target genes in the net-

work can be compared with the observed number of genes

with seed matches. Statistical evaluation is possible using

Fisher’s exact test. The score reported in miRIAD equals

the log-odds ratio, given by:

Score X j Sð Þ ¼ log

E Xtð ÞþO Xtð Þ
E Xtð Þ � E Xnð ÞþO Xnð Þ

E Xnð Þ
jXj

E nð Þ

0
@

1
A:

Results

Database statistics

The current version of miRIAD contains 10 species, with a

total of 284 374 protein-coding genes and 7369 miRNAs.

Figure 1. Summary of species in the miRIAD and host genes expres-

sion. (A) Species present in the miRIAD. (B) Host genes expression in

six tissues.
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In total, 61.5% of human and 66.2% of mouse miRNAs

are intragenic. Expression data for miRNAs as well as for

mRNAs are available for six organs (brain, cerebellum,

heart, kidney, liver and testis) from human, mouse, rhesus,

opossum and chicken (Figure 1A). Investigating the distri-

bution across tissues in human, we found that host genes

of intragenic miRNAs are predominantly expressed in

neuronal tissue and testis across all organisms (Figure 1B).

We were able to extract APA information for 8 of 10 spe-

cies in miRIAD (Figure 1A). According to our database,

94.6% of human host genes have annotated APA sites,

which is more than expected compared with 83% of all

human genes (P value¼ 4.6e-38, Fisher exact test).

Similarly, 92.3% of murine host genes and have annotated

APA sites (72% of all murine genes). This relationship is

true with varying degrees for chicken (18% of host

genes, expected 11%, P value¼ 3.5e-4), rat (78 vs 59%,

P value¼5e-06), rhesus (80 vs 65%, P value¼ 2e-06) and

chimpanzee (45 vs 28%, P value¼ 3e-09). We did not find

significant differences in dog (71 vs 69%, P value¼ 0.68)

and opossum (11 vs 8%, P value¼ 0.26). Summarized stat-

istics are available in Table 1. We used the previously pub-

lished database APADB to benchmark APA sites for mouse

and human included in miRIAD (19). APA site informa-

tion for a total of 14 143 human and 13 472 murine genes

was compared. miRIAD includes 29 349 of the 34 753

events registered in APADB mappable to our UTR models

(84.5%). Similarly, 82% of murine APA sites were covered

by miRIAD (20 826 of 25 323).

Interactive structural representation of UTR,

miRNA and host gene relationship

The representation of structural properties of a host gene

and its intragenic miRNA is of great importance when inves-

tigating their relationship (2, 14). In the new miRIAD-

version, we developed a representation based on interactive

SVG to visualize the gene structure, highlighting exonic, in-

tronic and UTRs (Figure 2A). It contains a summarized rep-

resentation, in which region information is merged, followed

by individual RefSeq transcripts of the gene of interest. The

positions of intragenic miRNAs are shown in the summar-

ized transcript and relative to individual transcripts. This

allows the researcher to check for transcripts devoid of the

intronic miRNA, proximity to upstream exons as an indica-

tor of cotranscription or organization of miRNA genes in

mirtrons. Figure 2A shows the gene model representation of

SREBF1 with its intronic miRNAs miR-6777 and miR-33b.

The latter is highlighted in blue to indicate that the host gene

has at least one seed-matching site within its 30-UTR.

In addition to structural properties of the gene, the or-

ganization of the 30-UTR further characterizes theT
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relationship between an intragenic miRNA and its host

gene. We therefore included a novel representation of 30-

UTR variants based on published and self-constructed

APA information. Segmentation of the UTR by APA sites

is symbolized by alternating shades of green. If the user

moves the mouse cursor over an intragenic miRNA high-

lighted in blue, the position of the seed within the UTR

will show up. In the case of SREBF1 and hsa-miR-33b, the

seed site is located on the 30 extremity of the transcript

with at least one isoform without this seed-matching site.

A click on the button ‘show poly(A) signals’ reveals canon-

ical polyadenylation signals, in this case indicating that

there might actually be another APA site that has not yet

been described. To support investigation of differential

miRNA targeting, APA site utilization across tissues can be

visualized where available. A click on a gray circle in the

30-UTR will open utilization information for this site.

Additionally, the ‘show seeds’ option allows the identi-

fication of seed-matching sites for any miRNA. If no seed

matches are found, the user can choose ‘miRNA align-

ment’ to search for regions of high similarity to the mature

miRNA sequence, helping to identify non-canonical

miRNA binding sites. Clicking on a potential miRNA

binding site in the UTR (either yellow for seed sites or gray

for non-canonical sites) will show the sequence of the

miRNA and the sequence of the region of interest in the

30-UTR (Figure 2A).

Each of the 30-UTR model representation displays a but-

ton on the right top corner that will open the UCSC

Genome Browser (18, 21) for the specific UTR region or the

full gene model. In this way, a plethora of additional infor-

mation can be gained, such as evolutionary conservation,

without sacrificing simplicity of miRIAD interface usage.

The interactive, visual representation of the gene model

is followed by expression information of the gene across the

tissues cerebellum, brain, heart, liver, kidney and testis, as

well as a figure correlating the expression of the intragenic

miRNA with the host gene across these tissues,

providing Spearman’s rank correlation coefficient and a

P value. These figures help to rapidly identify tissue specifi-

city, as well as coregulation (indicated by high correlation of

expression). An interesting example is that of MAP2K4 and

intragenic miRNA ‘hsa-miR-744’, in which both miRNA

transcripts (hsa-miR-744-3p and hsa-miR-744-5p) correlate

extremely well with their host gene’s expression. Similar to

the gene view, the miRNA view yields the structural repre-

sentation of the miRNA gene, expression across tissues and

correlation graphics with their host genes.

Figure 2. miRIAD representation for a host gene, its intragenic miRNAs, protein–protein interaction (PPI) data and an intragenic miRNA target.

(A) Genomic representation (including polyadenylation information) for a host gene (SREBF1) and its intragenic miRNAs (hsa-mir-6777 and hsa-

mir-33b). (B) PPI network for AKT2; (C) gene targets for hsa-miR-641, which is an intragenic miRNA for AKT2.
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Filtering of targeting miRNAs and protein

interactions

Although some decades ago, research was focusing on the

exploration of single genes only, evaluation of protein

interactions and regulation through miRNAs has become

increasingly important. Although both protein interaction

and target prediction information were already available in

the first version of miRIAD, it now includes more data and

supports filtering of these. Targeting miRNAs for example

can be filtered by score or by name, in case the user wants

to check a specific location for a miRNA target interaction

or just wants to find miRNAs with a high binding prob-

ability. Differential miRNA targeting can be assessed by

identifying miRNAs that bind only to a specific APA iso-

form through filtering for a specific poly(A) index. A click

on the miRNA symbol will highlight the seed match(es)

within the UTR of the gene (Figure 2A). Also, the list of

miRNAs can be significantly reduced by filtering for the

tissue of maximum expression. This is especially useful,

when looking for potential regulators of a gene that shows

strong tissue specificity.

Similarly, genes whose products interact with the gene

of interest can be filtered by gene name, score and type of

interaction (for STRING), evidence of binding (e.g. two

hybrid system or direct interaction for BIND) and by data

source [Bind (22), STRING (23), HPRD (24) and

BioGRID (25)].

If the gene of interest contains intragenic miRNAs, in-

formation on interacting proteins that are potentially tar-

geted by this miRNA will appear. This allows the user to

estimate the impact of the intragenic miRNA on the host

gene better. The filtered selection of interacting genes can

then be submitted to the newly introduced network ana-

lysis view for extended evaluation.

Network view: analysis of complex interactions

It is known that intragenic miRNAs have a special impact

on their host genes’ surrounding network (2, 14). We

therefore implemented an algorithm that helps identify

miRNAs relevant for networks of genes. If a researcher

identifies a set of interesting genes, e.g. a cancer gene signa-

ture, it might be of great interest, whether host genes are

over- or underrepresented in this gene signature, how these

genes interact with one another and if there are miRNAs

relevant to this gene signature as a whole. A miRIAD query

with a preceding colon followed by the gene symbols of the

signature (separated by spaces) will load the network view

to help answer these biologically relevant questions. First,

statistics on the number of host genes in the submitted

gene list (including an estimative of the significance of

over-/underrepresentation), their intragenic miRNAs (if

any) and the most relevant properties of each relationship

(same strand, seed site within host UTR) are shown. The

most central part is the network representation (Figure 2B

and C), which visualizes regular genes (blue), host genes

(red) and protein interactions between them. Network

nodes can be rearranged by the user for better visualiza-

tion, and mouseover will highlight all nodes with direct

interactions, which makes it easy to identify hubs in large

networks. Interactions can be filtered by score or data ori-

gin. Also, if the network contains host genes, interaction

arrows can be replaced by predicted target interactions of

the intragenic miRNA(s) (Figure 2C).

Exploring the relationship between AKT2 and its

intronic miRNA miR-641

AKT2 hosts intragenic miRNA hsa-miR-641 but the rela-

tionship between these two being largely unknown. The

gene structure representation shows that miR-641 is located

on the same strand as its host gene, and that it is positioned

in the first intron. Although this fact per se might suggest

coregulation, there are four (predicted) RefSeq transcripts

that don’t include miR-641. Correlation between miRNA

and host gene cannot be well-characterized, since miR-641

seems to be only expressed in neuronal tissue. Filtering

AKT2’s interaction partners for STRING-reported inter-

actions with a minimum score of 900 reveals the network in

Figure 2B. MiRNA hsa-miR-637 ranks high in the list of

miRNAs that potentially impact the network (score 1.34;

targeted genes are dark-blue/dark-red). It is known to con-

trol the AKT-pathway (26). Interestingly, targets are very

similar to hsa-miR-641 (Figure 2C), indicating a similar

function for these two miRNAs. Moreover, miR-641 is only

also found in chimp in our dataset, suggesting a relatively

new evolutionary role. This example shows how miRIAD

can be used to derive hypotheses about the relationship be-

tween a miRNA and its host gene.

Discussion

Nowadays, in the era of large scale data generation in gen-

omics and transcriptomics, it is essential to have powerful

and user-friendly tools to mine the right information, to pro-

pose and to test hypotheses regarding the studied model. The

special genomic colocalization of most vertebrate miRNAs

intragenically is of great relevance and current studies have

been revealing that the functional implications of this cou-

pling extend beyond simple feedback regulatory mechanisms

but seems to support miRNA evolution (2, 5, 14). This reve-

lation expands the focus of research requiring tools to study

intragenic miRNAs and genes in an evolutionary context.
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The new version of miRIAD was therefore extended to a

total of 10 species, covering major phylogenetic branches.

Statistics on APA show that significantly more host genes

contain APA sites than would be expected. This is even

true for chicken, the most distant specie investigated.

Interestingly, dog and opossum, both being closer to human,

don’t display this phenomenon. This discovery might be

biased by the fact that genome annotation of dog and opos-

sum is not as complete as other genomes but it may also be a

starting point for the investigation of a potentially underlying

biological principle.

These analyses are complemented by newly imple-

mented data and functionality to accommodate complex

data investigation, such as miRNA-host gene centered net-

work analysis and visualization of APA with respect to

miRNA binding sites. MiRIAD can now be used to derive

interesting hypotheses about the relationship between a

miRNA and its host gene. As it was illustrated for AKT2

and its intragenic miRNA miR-641, e.g. miRIAD allowed

us to generate the hypothesis that miR-641 might control

the AKT pathway in neuronal tissue in human and chimp.

It also allows rapid identification of miRNAs that may

bind to specific UTR regions or target only specific alterna-

tively polyadenylated isoforms.

At this point, complete gene and miRNA expression

and APA information is available only for 8 of 10 species.

This is owed to fact that currently only Brawand et al. (17)

provide a dataset that contains RNA sequencing informa-

tion on miRNAs and mRNAs from the same individuals,

across multiple species and tissues. However, we expect to

be able to include additional datasets in future versions.

We hope to provide additional poly(A) site information for

frog and cow, as well as miRNA and mRNA expression

data. Furthermore, miRIAD currently implements target

predictions only through seed site matching, ignoring non-

canonical sites. This strategy is necessary for the implemen-

tation of our model that quantifies the probability of a

miRNA-network effect. However, miRIAD is an ongoing

project and we are planning to present an extended model

that includes non-canonical sites, tissue specificity and

APA information in upcoming releases.

In summary, the new version of miRIAD adds import-

ant new data and functionality to enhance the exploration

of the role of intragenic miRNAs through providing

APA information and network analysis in the light of

phylogeny.
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