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We estimate the mean time to extinction of small populations in an environment 
with constant carrying capacity but under stochastic demography. In particular, we 
investigate the interaction of stochastic variation in fecundity and sex ratio under 
several different schemes of density dependent population growth regimes. The 
methods used include Markov chain theory. Monte Carlo simulations, and numerical 
simulations based on Markov chain theory. We find a strongly enhanced extinction 
risk if stochasticity in sex ratio and fluctuating population size act simultaneously 
as compared to the case where each mechanism acts alone. The distribution of 
extinction times deviates slightly from a geometric one. in particular for short 
extinction times. We also find that whether maximization of intrinsic growth rat% 
decreases the risk of extinction or not depends strongly on the population regula- 
tion mechanism. If the population growth regime reduces populations above the 
carrying capacity to a size below the carrying capacity for large r (overshooting) 
then the extinction risk increases if the growth rate deviates from an optimal 
r-value. i’ 1992 Acadermc Press. Inc. 

1. INTRODUCTION 

A detailed understanding of the processes leading to population extinc- 
tion is helpful for many questions in population biology, such as life history 
evolution, success of colonizing species, or management problems of 
endangered species and zoo populations. One can try to separate the 
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reasons for extinction into (i) demographic processes, such as random fluc- 
tuations in birth and death rates and sex ratio, (ii) seasonal and other 
changes of the environment including predation and competition, (iii) 
catastrophes such as disease outbreaks, and (iv) genetic problems, such as 
accumulation of deleterious mutations or loss of adaptive variation. To 
judge the relative importance of these processes, one has to study not only 
each process separately but also their possible interactions. 

An early mathematical theory of extinction was developed by Feller 
(1939) who treated population growth by stochastic birth and death 
processes. His basic model has been used, analyzed, and extended by 
MacArthur and Wilson (1967), Richter-Dyn and Goel (1972). Leigh 
(1981). Wright and Hubbell (1983), Goodman (1987) and others. This 
approach has been very fruitful for studies of the relative influence of a 
variable environment compared with stochastic demography. Its advan- 
tages and shortcomings for applications to real populations have been dis- 
cussed in detail by Goodman (1987). Despite considerable mathematical 
effort, analytical approximations of extinction times are available only for 
very special population regulation mechanisms and for a restricted range of 
parameters. Especially for very small populations, the estimates are not 
reliable. Other approaches to the influence of environmental fluctuations 
(e.g. Strebel, 1985, or Mode and Jacobson, 1987a. b) have not been more 
successesful in providing analytical estimates of extinction times in small 
populations. 

To treat populations with age structure is even more complicated. Lande 
and Orzack (1988) handled extinction dynamics in a fluctuating environ- 
ment for density independent population growth by applying diffusion 
approximations to results of age structured population models of Cohen 
( 1977 ) and Tuljapurkar ( 1982). 

Astonishingly, there has not been any attempt to study in detail the 
influence of random fluctuations in sex ratio-probably because it is 
thought to be important only in very small populations. Even in com- 
prehensive overview articles (e.g., Tuljapurkar, 1989) the sex ratio problem 
is neglected. Because the motivation for the present study was to have a 
good reference point to estimate the risk coming from genetic influences, 
especially from slightly deleterious mutations (see Gabriel et al., 1991, and 
Lynch and Gabriel, 1990), we were led to include sex ratio fluctuations. 

In this study we consider the extinction of small populations under dif- 
ferent levels of demographic stochasticity and for various kinds of com- 
monly used density dependent population growth regimes, but we do not 
extend the analysis to more complicated forms like “hump with tail maps,” 
as in Milton and Belair (1990). We restrict the analysis to constant 
environments, but we include random fluctuations in the sex ratio and their 
interaction with stochastic fecundity and survival. 
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2. MODELS 

Ail models investigated in this paper assume a finite population with dis- 
crete generations, one or two sexes. no age structure, and no genetics. They 
are purely demographic and include density dependent population growth, 
stochasticity of actual population size, and stochastic variation of the sex 
ratio. 

The basic density dependent relation is of the form 

N(t+ l)=F(N(r)), (1) 

where N(f) is the population size at time 1, I =0, 1, 2, . . . . We consider the 
following explicit expressions for F(N): 

F(N)=e”N(l f0N))“. (la) 

F(N) = N exp( r( 1 - y/K) ), (lb) 

Ml +dl -N/K)), if Nb K(p + 1)/p 
otherwise 

(lc) 

(compare May and Oster, 1976, or May, 1981). 
In Eqs. (la) to (Ic) the “multiplicative growth factor” for N + 0 is given 

by the relation 

F(N)/N= I +p=e’, (2) 

where r corresponds to the “intrinsic growth rate”. For Eq. (la) K= 
(e r’B - 1 )/a is the “carrying capacity,” which satisfies F(K) = K. If r = 0 (or 
p = 0) then Eqs. (la) to (lc) reduce to F(N) = N, i.e., no population regula- 
tion occurs. In the following we always assume j? > 0, r > 0, and p > 0. 

In this paper we consider a scale of five kinds of density dependent 
population growth regimes, labelled as PG-regimes 1 to 5, according to the 
following convention: 

PG-regime 1: F given by Eq. (la) with p = 0.5; 

PG-regime 2: F given by Eq. (la) with p= 1 (this is the classical 
Verhulst model); 

PG-regime 3: F given by Eq. (la) with /I = 2; 

PG-regime 4: F given by Eq. (1 b); 

PG-regime 5: F given by Eq. ( Ic ). 

The deterministic dynamics of these population growth regimes is quite 
different, in particular for large growth rates r and p. Under PG-regimes 1 
and 2 population size always converges monotonically to K, whereas for 
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PG-regime 3 damped oscillations may occur for large r. In PG-regimes 4 
and 5 “overshooting” of population size is larger than in PG-regime 3 and 
damped oscillations periodic orbits. chaos, and extinction occur for r and 
p increasing from two upwards. Indeed, the above PG-regimes lie on a 
scale with increasing strength of population regulation, because for fixed I’, 
K. and N we have 

lim e’N(l +aN))/’ 
/I - -x 

/I 
= Ne’ lim 

/I - T 
1 +;(A 1) 

=Ne’ lim 
p- % 

Thus the density dependent relation (la) converges to (1 b) as fl-+ ‘x8. In 
the limit ,& -+O we receive a model without population regulation, i.e., 
F(N) = N. For basic properties of these deterministic models the reader is 
referred to May and Oster (1976) or May (1981). 

We now describe a sequence of stochastic models that includes various 
combinations of the effects of stochasticity of population regulation and sex 
ratio. The underlying population regulation mechanism may be one of the 
five regimes introduced above. 

2.1. Pure Sex-Ratio Variation ( PS-Model) 

The simplest model including variation in sex ratio is obtained by 
assuming that the population dies out only because there are either no 
females or no males. Otherwise, the population size is assumed to be 
constant and equal to K. This means that one male and one female are 
sufficient to regenerate a full population of K individuals. Thus 

0, if in generation t there are either 

N(t+ l)= no females or no males (3) 

K otherwise. 

The probability that either no females or no males are produced is assumed 
to be 2 x (i)” (binomial distribution). This leads to a Markov chain model 
with three states, say 0 (no females and no males), 1 (no females or 
(exclusive) no males) and 2 (at least one female and one male). Transition 
probabilities are given by poo = p10 = 1, pO, = poz = p,, = plZ = pzO = 0, 
pZ, = (f)“- ’ and p12 = 1 - ($)“- ‘. We will call this the PS-model in the 
sequel. 
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2.2. No Sex but Stochastic Population Regulation (NS-Model) 

The first step to introduce stochasticity into the deterministic population 
regulation model is to assume that the expected value of the population 
size of the next generation is given by Eq. (1) but the actual population 
size varies according to some probability distribution. This may be inter- 
preted, for example, as stochastic variation of fecundity. To be definite, we 
assume that population size N( t + 1) follows a Poisson distribution (see 
Discussion) with expected value 

A(t+ l)=F(N(t)), (4) 

where N(t) denotes the actual population size in generation t and F is given 
by (la), (1 b), or (1~). Mathematically, this leads to a (time-homogeneous) 
Markov chain model with N = 0, 1, 2, . . . as possible states. It is a branching 
process if and only if there is no population regulation, i.e., if F(N) = N. 
Throughout, this model will be labelled as the NS-model. 

This, as well as all other models, was analysed using two different 
methods. The first method was to simulate the resulting stochastic process 
directly on a computer (Monte Carlo simulation, cf. Section 3). The second 
method was to consider the corresponding Markov chain model. For basic 
properties of Markov chain models the reader is referred to Ewens (1979) 
and Kemeny et al. (1976). The transition matrix P= [pik],lkCO for the 
NS-model is given by 

p,=Prob[N(t+l)=k) N(t)=i]=epLis, (5) 

where E., = 0, and li = F(i) for i >, 1. It should be noted that, due to the 
conventions 0’ = 1 and O! = 1, poo = 1 and pOk = 0 for k 2 1. This model has 
one absorbing state i= 0, which corresponds to population extinction. It 
can be shown mathematically that extinction occurs with probability one 
for all three choices (la)-( lc) of F (see Appendix AH). 

From the transition matrix it is possible to derive a system of linear 
equations for the mean extinction times and in principle the whole distribu- 
tion of extinction times may be computed (cf. Ewens, 1979). In cases (la) 
and (lb) this sytem of linear equations is infinite, whereas in case (lc) it 
can be reduced to a finite one. These systems can be solved numerically 
and, for certain limiting cases, analytic estimates can be derived. More 
details are given in Section 3 and in the Appendix. 

The NS-model may also be viewed as a good approximation to a model 
with even sex ratio. The only difference in such a model would be that one 
would have to choose the even non-negative integers as the state space and 
not all non-negative integers. 
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2.3. Stochastic Sex Ratio and Stochastic Population Regulation (SS-Model) 

To combine the pure sex-ratio model and the NS-model, the population 
size N and the number of females N,- have to be traced. We assume that 
population size N(r + 1) depends on the number of females Nr(f) in 
generation t and on the population size N(t) in generation t according to 

k 

Prob[N(t+ l)=k) N(t)=i, N,(t)=jl,r’n$. (6) 

Here, iii is the expected value of the population size N( t + 1 ), given N(t) = i 
and N,(t) =j, and again it is supposed that the actual population size 
follows a Poisson distribution. ,Ili is assumed to be of the form 

i. i, = cp ( i, .i ) F( i 1, for O<j<i, (7) 

where F(i) describes population regulation and cp(i, j) is a factor describing 
productivity of females as a function of population size and sex ratio j/i. In 
the present paper we assume that q(i, j) is given by 

cp(i. j) = 
0, if j=Oor j=i 
2jli. otherwise. (8) 

that is, I.,(i;2, = F(i) if the sex ratio is even and i, +O as the fraction of 
females j/i tends to zero. The sex ratio is assumed to follow a binomial 
distribution with both sexes having equal probability, i.e., 

k 
Prob[Nf(t+ 1)=11 N(t+ l)=k]= I 2m~k, 

0 
O<l<k. (9) 

Equations (6) to (9) lead to a well defined model which is a bivariate 
Markov chain with state space {(i,j): i=O, 1, 2, . . . and O<j<ij. Here i is 
the population size and j the number of females. The transition matrix is 
given by 

p+/=Prob[N(t+l)=k,Nf(t+l)=/IN(t)=i,N/(t)=j] 

Rk k 
=e -;., ./ , 2-k. 

0 
(10) 

This model is labelled the SS-model. Note that pli.w = 1 if j = 0 or j = i and 
P~,~, = 0 if k B 1 and j= 0 or j= i. An interesting special case is the 
following. 
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2.4. Female Independent Stochastic Population Regulation (F&Model) 

Suppose, as in the pure sex-ratio model, that one female and one male 
are sufficient to generate a full population but with size determined as in 
the NS-model. If there are either no males or no females then extinction 
occurs in the next generation. This amounts to using (7) and (10) but to 
choosing 

vo(i. .i) = 1, if ldj<i. (11) 

It follows that E.,j = I., = F(i) for 1 d j < i. Thus, the population size is inde- 
pendent of the number of females N,., except for N,=O or N,-= N, and the 
transition probabilities are given by 

Pi;.00 = l, j=Oorj=i 

PI,. kl = O, k>l and j=Oorj=i. 

(12) 

Thus, the FI-model is somewhat intermediate between the NS- and the 
SS-model. 

3. RESULTS 

The main purposes of this paper are to investigate the mean times to 
extinction and the distributions of extinction times for the stochastic 
models in combination with the various population growth regimes and to 
study the relative importance of the stochastic processes for the extinction 
of small populations. 

We used Monte Carlo simulations and numerical methods based on 
Markov chain theory to calculate extinction times. Both methods are inde- 
pendent of each other so that we could check the results and ensure that 
the computer programs functioned correctly. The numerical methods are 
described in the Appendix. The Monte Carlo simulation is straightforward. 
Taking the SS-model as an example, the population size and the number 
of females are known in any generation so that the expected number of off- 
spring can be calculated according to the chosen population regulation. 
The actual offspring number, which equals the population size of the next 
generation, is drawn from a Poisson distribution. Then sex determination 
of offspring is performed with equal probability for males and females. 
Population extinction occurs if the number of offspring is zero either 
because (randomly) no offspring survive or because in the previous genera- 
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tion only males or only females have been produced. Technically, the 
limiting factor for our Monte Carlo simulations is CPU-time if the mean 
extinction time becomes large; with the numerical methods the available 
memory can become too small to guarantee numerical convergence. The 
programs are written in FORTRAN using routines from the NAG- and 
IMSL-libraries. They are available on request. 

In the following we present the data concerning the extinction times and 
their distribution for various combinations of the density-dependent 
population growth regimes 1 to 5 with the stochastic models PS, NS, FI, 
and SS, as introduced in Section 2. 

3.1. The Verhulst Model for Vurious Levels of Stochasticit> 

Figure 1 gives the mean time to extinction depending on the growth rate 
r and the carrying capacity K for PG-regime 2 in combination with the 
stochastic models PS, NS, FL and SS. The populations are assumed to 
consist of K individuals, initially. The initial sex ratio is one, although this 
is of importance only for the SS-model. The line always indicates the mean 
time to extinction without density-dependent population regulation due to 
pure sex-ratio variation (PS-model). Trivially, this line is the same in all 
four figures because there is no dependence on r. It follows from the 
transition matrix (see Section 2.1) that the expected extinction time for the 
PS-model is ?“-I + 1 (see also Eq. (19) below). 

The other symbols in Fig. 1 represent the mean extinction times for the 
other stochastic models. The risk of extinction increases with the level of 
stochasticity: the NS-model always gives the largest mean extinction time, 
the SS-model the smallest and the FI-model is intermediate. For very small 
growth rates (r = 0.1 ) these three extinction times are close, which implies 
that the mean extinction time is mainly determined by the risk of having 
no offspring and that the additional risk due to sex-ratio variation is 
relatively small. This is already indicated by the much larger extinction 
times for the pure sex-ratio model. These relations change drastically with 
increasing growth rate r. For r = 1 the risk of extinction for the NS-model 
(with no sex-ratio variation but stochastic population regulation) is 
already slightly lower than that for the PS-model. Moreover, under 
stochastic density-dependent population growth, the addition of sex-ratio 
fluctuations (SS-model) increases the extinction risk by several orders of 
magnitude relative to the NS-model. For r = 2 the risk of producing no off- 
spring becomes negligible compared to the risk due to sex-ratio variation, 
even for very small carrying capacities. 

The dependence on r levels off very rapidly for larger r-values, so that 
the difference between r = 2 and the limit as r goes to infinity is not 
visible. As may be seen from Fig. 1. the mean extinction time increases 
approximately exponentially with K for large r. In fact, it is easy to 
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FIG. 1. Extinction under various levels of stochasticity. Mean times to extinction (in 
number of generations) are calculated depending on carrying capacity for population growth 
regime 2 (the classical Verhulst model). The lines and the symbols refer to the stochastic 
models; PS = pure sex ratio; NS = asexual but stochastic population regulation; FI = female 
independent population regulation; SS = stochastic sex ratio and stochastic population regula- 
tion (for details see Section 2). The panels diNer in the intrinsic growth rate r (measured per 
generation). (a) r=O.l; (b) r=OS; (c) r= 1; (d) r=2. 
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calculate the mean extinction time for the limiting case r + cc for the NS- 
and the FLmodel. First note from Eq. (la) with /I = 1 that r + m implies 
I., + K uniformly for all i> 1. Therefore, in the NS-model the transition 
probabilities pik converge uniformly in i to pKk as r --+ CG. This shows that 
in the limiting case r --) co, all states i 2 1 may be identified with, say, i = K, 
so that a Markov chain with two states 0 and K is obtained. Its transition 
matrix is given by 

( 1 
P= 

0 
e -I( > 1-C” (13) 
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FIG. 2. Same as Fig. 1 but for population growth regime 4 and for the intrinsic growth 
rates (a) r=0.5; (b) r= I; (c)r=?; (d) r=S. 

It follows that the mean extinction time and its variance are given by 

t,(r = cc ) = eK and &r = ;x) = p-p”, (14) 

respectively (compare Appendix AI 1. Hence, the coefficient of variation is 
o,lt,=Jl --e-“. 

A similar reasoning for the FI-model yields (in the limit r + ‘x ) a 
Markov chain with three states, namely (i) N =0, (ii) N = K and N,= 0 or 
N,=N, (iii) N=K and 1 <N,-GK- 1, and 
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and the coefficient of variation is J 1 - 2e pK,2 + 8e pK. These values agree 
best with our simulated values for large r. 

3.2. The Exponential Model for Various Letlels qf Stochasticit) 

The deterministic population growth regimes 4 and 5 have received a lot 
of attention in theoretical ecology, in particular because they exhibit very 
complicated dynamics (see May, 1981). PG-regime 4 has been used to 
model populations that are regulated by epidemics at high densities. As we 
have seen in Section 2, it is also the limit of the population growth 
regimes (la) for /? + ;IC#. Figure 2 displays the mean extinction time as a 
function of K for the stochastic models PS, NS, FI, and SS under PG- 
regime 4 for different growth rates r. For r = 0.1 (not shown) and r = 0.5 
there is almost no difference between PG-regimes 2 and 4. For r = 1 the 
populations resist extinction longer under PG-regime 4. This is in accor- 
dance with Fig. 3 (see next section) from which we expect a decrease of the 
extinction time for further increased r. For r = 2 the extinction times in the 
present case are already below the corresponding values for r = 0.5. When 
r = 5 we see a very high extinction risk caused by the high probability of 
no surviving offspring. In this case, the additional risk from sex-ratio varia- 
tion is very small. In the limit r -+ CC the mean time to extinction for PG- 
regimes 4 and 5 can be calculated analytically, since from Eqs. ( lb) and 
(lc) one obtains in both cases F(0) =O, F(K) = K, F(N) = 0 for N> K and 
F(F(N))=O for O<N<K, as r+5;. The corresponding mean extinction 
time is then 

+$-- l)/(eK-$). (17) 

This is almost independent of K and it follows that for all Ka 2 the 
estimate 2.5 d t,(r = co) d 3 holds and that lim,, x t,(r = x8) = 2.5. 

A continuous time version of the logistic model (PG-regime 5) was 
investigated by Leigh (1981), among other models. He derived an 
approximation for the mean extinction time if the population fluctuates 
with average change M(N) dt = N(r - aN) dt in time dt and variance 
V(N) = N. He found that for small r and large N the mean time to 
extinction is almost independent of N and approximately equal to t,z 
m(l + 1/2rK) rp3j2 e rK . This is a very good approximation to our results 
as long as r is small (r z 0.1) but breaks down for r 2 0.5. 

3.3. How Extinction Time Depends on the Population Growth Regulation 

Figure 3a is based on the stochastic model NS (no sex). It compares the 
mean times until extinction for the population growth regimes 1-5 at 
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FIG. 3. Extinction under various population growth regimes. Mean times to extinction are 
calculated depending on intrinsic rate of increase r, 0. I c r $5, for various population growth 
regimes which are indicated by the numbers in the figures (see Section 2). On the right hand 
side the limits for r to intinity are indicated. Population growth regimes 4 and 5 have the same 
limit. The carrying capacity is K= 16. The stochastic models are (a) the NS-model and (b) 
the SS-model. 

carrying capacity K= 16. The initial population size is K. The lines at the 
right hand side of the figure indicate the limiting values as r goes to infinity. 
For the Verhulst model this is eK (see (14)). For PG-regime 1 we obtain 
from Eq. (la) that F(N) = m s a r + co, and for PG-regime 3 we get 
F(N) = K2/N. Note that the latter impIies F(F(N)) = N. For these limiting 
cases the mean times to extinction can be calculated numerically, as 
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described in the Appendix. For PG-regimes 4 and 5 the limit can be 
calculated from Eq. ( 17). For K= 16 this gives 2.628. 

At low I’, all population models give similar results. For Y = 2 the extinc- 
tion times of the Verhulst model are already close to the limit, thus sup- 
porting the earlier statement that the r-dependence levels off at such inter- 
mediate r-values. b-values below I (PG-regime 1) lead to qualitatively 
similar behavior but the extinction time converges to a lower limit at high 
I’. For p-values above I (PG-regime 3) the behavior is qualitatively dif- 
ferent. After reaching a maximum, the extinction time decreases with 
further increasing I’ and converges to a value five orders of magnitude 
below the maximum. This results from the overshooting population regula- 
tion. For /I> 1 and r sufficiently large, the expected population size for 
generation t + 1 is above K if the actual population size N(t) is less than 
K and. vice versa. As r increases overshooting becomes more pronounced 
and drives populations to lower population sizes. 

PG-regimes 4 and 5 show qualitatively similar behavior but reach their 
maxima earlier and decrease rapidly for moderate r values. PG-regimes 4 
and 5 converge to the same value for high r, but regime 5 reaches its maxi- 
mal extinction time for r < I and reaches its limit for r slightly less than 3. 
The somewhat irregular curve for PG-regime 5 results from the complex 
dynamics (cf. May, 1981 ). The values for the mean extinction time are, in 
this case. solutions of a system of finitely many linear equations (see 
Appendix, Eq. (A5)) and, therefore, exact. 

We should also point out that in Fig. 3 mean extinction times are 
plotted only for r 3 0.1. As r becomes very small the mean extinction 
time begins to increase. For r = 0 a kind of random walk model is obtained 
and it can be shown that extinction still occurs with probability one, 
but the mean time to extinction is infinite (Michael Moody, personal 
communication ). 

Figure 3b shows essentially the same dependencies as Fig. 3a but uses 
the SS-model. The initial sex ratio is always one. The results are 
qualitatively similar to the NS-model but extinction times are much smaller 
and the maximum values are reached at slightly higher r-values. The limits 
for r + <CC have been calculated numerically. 

3.4. Influence qf’ the Initial Conditions 

All previous results are calculated under the assumption that the popula- 
tion starts at carrying capacity K. To check the generality of these results 
and to get further insight into the dynamics responsible for the extinction 
process, we now investigate the influence of the initial conditions for the 
various population growth regimes. 

Generally, the extinction times can vary strongly with changing r as may 
be seen from Fig. 3. To facilitate the comparison we consider relative 
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extinction times obtained by normalizing with the corresponding extinction 
time of the population starting at carrying capacity K. 

Figure 4 is based on the NS-model. Figure 4a demonstrates that for PG- 
regime 2 the extinction time depends only weakly on the intial population 
size, except for very low growth rates. For r = 0.1, K= 16. and initial 
population size N( t = 0) = 1, the time to extinction is less than a quarter of 
the extinction time of a population starting at carrying capacity. When 
r = 1, which is still a low growth rate (r is measured in time units of genera- 
tions, therefore r = 1 means 2.72 surviving offspring per individual as long 
as population density is far from K), the maximal influence of the starting 
conditions is less than 20%. For initial values larger than the carrying 
capacity (N(t = 0) > K) there is even less variation in extinction time. 
The influence of the initial conditions becomes negligible with further 
increasing r. 

The corresponding figures for the population growth regimes 1 and 3 
(not shown) are very similar. This might be surprising in light of the dif- 
ferent behavior of regime 3 for high r-values, However, the population 
dynamics leading to extinction seems to be largely unaffected by the initial 
value. 

In contrast to the PG-regimes l-3, the results for the PG-regimes 4 and 
5 depend strongly on the initial values. The extinction time of the exponen- 
tial regime 4 (Fig. 4b) varies with the initial value in a similar manner to 
PG-regimes 1-3 for small r. At high r-values it reaches a maximum when 
starting at K. For initial values below 0.6 x K, the extinction time is half the 
maximal value. This behavior results from the strong population regula- 
tion: if the initial population size is far below K, it will grow in the next 
generation to values far above K. In the following generation it is then 
exposed to a high probability of producing no offspring because the 
expected number of offspring is much smaller than 1. Increasing the initial 
value not too far above K gives the population a reasonable chance of 
staying near K, but for sufficiently high initial values the population goes 
extinct in the next generation almost certainly. PG-regime 5 with its dis- 
continuous population regulation (the population goes extinct next genera- 
tion if it is above Ke’/(e’- 1)) shows an even stronger dependence on the 
initial values (Fig. 4c), but for low r-values the population regulation is 
smooth enough to generate the same response to initial conditions as PG- 
regimes l-4. 

For the FI-model the dependence of the mean extinction times on the 
initial condition follows the same patterns we have seen in the NS-model, 
since the extinction time is independent of the sex ratio, as long as initially 
at least one male and one female are present (compare Appendix AV). For 
the SS-model the mean extinction time also depends on the initial sex-ratio. 
In all our simulations presented here this ratio was assumed to be one. 
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FIG. 4. Influence of initial population size. The mean extinction time r(i) of populations 
with initial size i is normalized by the mean extinction time r(K) of populations starting at 
carrying capacity (y-axis: r(i)/f(K)). The initial size i of a population is given relative to 
carrying capacity (x-axis: i/K). The symbols refer to the intrinsic growth rates r= 0.1, 1. 
and 5. The stochastic model NS has been used. The population growth regimes are 2, 4, and 
5 in (a), (b) and (c), respectively. 
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With this assumption the dependence on the initial population size is again 
similar to the NS-model. A deviation from an even initial sex ratio leads to 
a slightly higher extinction time if initially more females are present, and to 
a considerably lower extinction time as the number of females decreases 
to 1. 

3.5. The Distribution of Estinction Times 

The distribution of extinction times can be calculated easily if population 
size is constant and if extinction is solely due to sex-ratio fluctuation (PS- 
model). The probability that K offspring are all male or all female is 
l/2”- ‘. If initially (fr = 0) the population consists of K> 2 individuals (not 
all female or all male), the probability that the population dies out in 
generation n is 

for n=O, 1 

for nb2, 
(18) 

because extinction occurs in generation n, if in generation n - 1 all 
individuals are of the same sex while in all previous n - 2 generations 
individuals of both sexes were present. Equation (18) shows that extinction 
times are geometrically distributed up to a shift of two units in n and that 
the mean extinction time and its variance are 

t,=p-‘+ 1 and (7:,=2K-I (2K- ’ - l), (19) 

respectively. The coefficient of variation is therefore 0,/t,= 

Jl - l/2”-r/(1 + l/2” -‘)z 1 -3/2K which is approximately 1 even for 
small K. 

Under density dependent population regulation there is, in general, no 
simple expression for the distribution of extinction times. However, for the 
NS-model and the limiting case r + co we obtain from the transition 
matrix (13) that the probability to die out in generation n is 

p,r=epK(l -e-“)“-I. (20) 

Therefore, the mean extinction time is eK (compare Eq. (14)). In general, 
if the conditional probability MT to die out in generation n (under the condi- 
tion of survival until generation n - 1) is independent of the actual genera- 
tion number then a geometric distribution of extinction time results with 
prr = MV( 1 - M’)” - ’ for n > 1 and p,, = 0. If 16’ is small this geometric distribu- 
tion can be approximated by the exponential distribution ItIe-“““-‘I for 
.Y > 1 with expected value I/MI + 1. 
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FIG. 5. Distribution of extinction times. The extinction times are given relative to their 
mean value so that the value 1 corresponds to the mean time of extinction. The frequencies 
are normalized so that they estimate the probability density function. The dashed Line gives 
an exponential distribution with the same mean. The solid lines in (a) and (b) represent an 
exponential distribution with mean ed (the r -+ ‘CC limit), scaled so that zK again corresponds 
to I. This distribution is not shown in (c) and (d) because it coincides almost with the 
abscissa. All panels are calculated for a carrying of K= 8 with PC-regime 2. For each distribu- 
tion 10’ simulations have been performed. The r-values, the type of stochastic model (NS or 
SS). the mean time to extinction I,. and the length I of the intervals in the histograms. 
measured in number of generations, are (a) r = 0.1, NS, fK = 31.46, I = 6.5; (b) r = 2, NS, tK = 
1878, /=376: (c)r=O.l, SS, f,=ll.l3. f=2; (d)r=2. SS, r,=l3.40, 1=2. 
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FIG. S-Continued 

Figure 5 gives some typical distributions of relative extinction time for 
PG-regime 2 at r values 0.1 and 2 with the stochastic models NS and SS. 
In all of these subfigures the extinction times are scaled so that the value 
1 corresponds to the mean extinction time t, for this parameter combina- 
tion. The dashed lines represent the exponential distributions, with corre- 
sponding mean rK, after scaling. To facilitate comparison of Fig. 5a and 5b, 
whose means are very different, we included also an (appropriately scaled ) 
exponential distribution (solid line) with mean eK, corresponding to the 
limit r -+ #cc. 
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The observed distributions deviate from a geometric (exponential) dis- 
tribution with the same mean. This has also been observed by Goodman 
(1987) for his model. He suggests that the model has a short “memory” of 
prior population sizes. Thinking of this as a demographic “drag,” the slight 
deficiency at the shorter extinction times is accounted for by the relative 
improbability of going extinct more rapidly than the drag will permit. 

In Fig. 5a, 5c, and 5d the extinction risk in the first generations is 
reduced compared to a geometric distribution with the same mean. The 
form of the distribution depends on the initial condition, unless r is large. 
The geometric distribution (dashed line) would be obtained if the extinc- 
tion probabilities were constant and equal to l/t,. If actual population size 
is N(t), its probability of going extinct within the next generation is (from 
Eq. (5)) epNi”. Except for the first generation, the population size can be 
anywhere in its state space. Therefore. the distribution of extinction times 
depends on the relative contributions from all possible states N(t) > 0. If 
the average of these conditional extinction probabilities is l/t,, indepen- 
dent of generation number, then we expect a geometric distribution. But 
this cannot be true as long as the probabilities are influenced by the initial 
conditions. If, for example, the population starts at K, the extinction prob- 
ability is e K < l/f,. Typically, a population that becomes extinct has 
decreased by random processes in several steps to a low size, at which 
point its extinction risk is high. Moreover, for low r it is likely that a 
population remains small once it is small. Thus, if N(t) is sufficiently small 
we have e ““’ > l/tK. If such small populations make the main contribu- 
tion to extinction at generation t, then we get a higher frequency of extinct 
populations than expected from the geometric distribution. 

This verbal argument explains the hump in Fig. 5a. As observed from 
Fig. 5a and Sb, the deviation from a geometric distribution is much more 
pronounced for small r-values. Generally, the influence of starting condi- 
tions is larger if the population regulation is weaker; i.e., for smaller Y 
we expect a stronger deviation from a geometric distribution. For large r 
(strong population regulation) the conditional probability of extinction is 
quite independent of the actual population size, because the expected 
population size in the next generation will always be near the capacity K. 
This can also be inferred from Fig. 4 which shows that for large r the mean 
extinction time is almost independent of the initial population size. 

In the SS-model, the probability of going extinct in the first generation 
is again e ~~ R (compare Eq. (6)). Since in the SS-model the mean extinction 
time is shorter than in the corresponding NS-model a larger deviation from 
the geometric distribution (dashed line) occurs (see Figs. 5c, d). (Since the 
minimum time to extinction is two generations in the PS-model and one 
generation in the SS-model, these offsets become visible if the expected 
extinction time is very small. This causes additional deviations from the 
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pure geometric distribution.) The details of the distributions of extinction 
time are of course highly dependent on the dynamics of the population 
regulation. 

4. DJSCUSSJON 

To cover the range of what is thought to be ecologically relevant (see 
Hassel er al., 1976), we selected live different types of density dependent 
population regulation regimes. All these models are of course too simple to 
describe real populations, but are helpful to gain insight into selected 
processes. We did not make separate assumptions about birth and death 
processes but assumed that the expected size of the next generation is a 
function of carrying capacity, growth rate, and the size of the present 
generation. With discrete non-overlapping generations, the number of off- 
spring produced is, therefore, equal to the number of newborns surviving 
until reproduction. Even for a species with small variation in clutch size, 
the distribution of surviving offspring will then be well approximated by a 
Poisson distribution. This has also been assumed by other authors (e.g., 
Maynard Smith, 1989; Bell, 1988). The reader may also note that if the 
number of offspring per individual follows a Poisson distribution then the 
total number of offspring follows a Poisson distribution. 

Most restrictive is the assumption that intrinsic growth rate and carrying 
capacity remain constant over time. Except in some captive populations 
such conditions are hardly satisfied in real populations. Nevertheless, the 
extinction times presented in our study are not irrelevant because our 
estimates are minimal extinction risks coming from unavoidable sources 
--of course assuming that the applied density dependent population 
regulation is a suitable model of reality. Including the variability of the 
environment and considering genetical problems would lead to higher risks 
of extinction (cf. Lynch and Gabriel, 1990). 

For weak density dependent population regulation, the risk of extinction 
is reduced by an increased intrinsic growth rate. A large r, however, is not 
always beneficial to the population: if the density dependent population 
regulation reduces population size to small numbers immediately after the 
population becomes larger than its carrying capacity (as in PG-regimes 3, 
4, and 5), the risk of extinction can increase if r becomes larger than an 
optimal value (see Fig. 3). This raises an interesting question on the evolu- 
tion of high fecundity or, more generally, on maximizing individual fitness. 
Because of the individual advantage, higher fecundity (or higher r on the 
individual level) would become fixed after a short time in a local popula- 
tion, but this might be countered by the higher risk of extinction of this 
population via group selection. In such a case, maximization of individual 
fitness is disadvantageous and it would be interesting to study how the 
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evolutionary stable strategy depends on the interaction between local 
populations via migration. 

Almost all of our results show that the extinction time increases 
exponentially with carrying capacity. This is already known from other 
models (e.g., MacArthur and Wilson, 1967) but the rate of increase 
presented in this study is much smaller especially if the risk by sex ratio is 
included. The risk due to sex-ratio variation alone is relevant only at very 
small population size, but it becomes important via interaction with 
stochastically changing population size. To emphasize the importance of 
the risk by sex ratio, we point out that already at K= 20 and the moderate 
growth rate r = 2 (measured per generation) the time to extinction is six 
orders of magnitude higher without sex. Therefore, in cases when one could 
believe that the extinction risk due to variation in offspring number is 
negligible compared to other risks, there might still be a substantial risk if 
sex-ratio variation occurs. 

Conservation biologists often prefer to calculate extinction risks within a 
given timespan. Such risk analysis can also be performed with our model 
results. Especially if the intrinsic growth rate is not too small, good 
approximate risks can be easily calculated by integration over the 
geometric (or exponential) distribution for the appropriate time interval 
using our numerical or analytical results on mean extinction time. 

APPENDIX 

(AI) For absorbing Markov chains with discrete state space I= 
(0, 1, 2, . ..) niorZ=(0,1,2,...) d an a single absorbing state, labelled 0, the 
mean times t, to absorption, or extinction times (in I, i # 0, the initial 
state), are the unique minimum non-negative solutions of the following 
system of linear equations: 

r, = C piktk + 1, i3 1. 
k>l 

Here p,k denotes the transition probability i--f k (cf. Ewens, 1979 or 
Kemeny et al., 1976). Using the vector and matrix notations t = (t,, t,, ...)T 
(column vector of mean extinction times), Q= [pii]l,.i2, (the transition 
matrix with the O-row and O-column omitted), and u = (1, 1, ...)T, the above 
equation for the mean absorption times can be written as 

(I-Q)r=u. 

Of course, I is the identity matrix. 

(Al) 
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If the process starts at i let ri, denote the mean number of generations the 
process spends in j before absorption. Moreover, let T= [ ro] ;, , a , . Then it 
is well known (Ewens, 1979; Kemeny et 01.. 1976) that 

holds and 

(I-Q,T=I (A.21 

1, = c t;;. (A3) 
/>I 

The variance of the extinction time may be calculated as 

g; = 2 1 t,,t, - t, - t; (A4) 
121 

(cf. Ewens, 1979) and in principle all higher moments can be derived. All 
the Markov chain models treated in this paper are absorbing and have 0 
as the unique absorbing state (see below). 

The numerical method that was mentioned in Section 2 for determining 
the extinction times and their variances is, in principle, based on the 
numerical evaluation of Eqs. (Al ), (A2), and (A4) with pin chosen 
according to the particular model. However, all three systems are infinite 
dimensional because the state space is infinite due to the choice of the 
Poisson distribution. Therefore, careful numerical approximations are 
necessary. 

(AH) Here we consider the asexual NS-model with stochastic 
population regulation. We first show that the population dies out with 
probability one in finite time. We consider the matrices P, Q, Z, etc. as 
linear operators on the space I Y of bounded sequences .Y = (x,, .‘cz, . ..) with 
norm II-YII = supi 1.~~1. Then the norm of such an operator is given by llP/l = 
sup, x, Ipi, I. Since P is stochastic we have lIPI] = 1. Now we assume that 
the population growth function F satisfies either Eq. (la) with fi 2 1 or 
(lb) or (lc), as in PG-regimes 2 to 5. Then F(N) is bounded above, i.e., 
there is some h>O such that F(N) <b holds for all Na 1. The constant b 
depends only on the parameters r, a, /?, K, and p. Hence, in the notation 
of Section 2 I, d b holds for all i. It follows from Eq. (12) that plo = ePit B 
e -’ for all i Z 1. Therefore, /I QII d 1 - e ph holds and the matrix I- Q is 
invertible and satisfies the estimate Il(I- Q) ~ ‘11 < eh. Thus the solution 
vector 1 of Eq. (A 1) is uniquely determined in I r. It follows that the mean 
extinction times t, are uniformly bounded, as may be seen in Fig. 3. 

Now we consider numerical questions. If F is given by the logistic equa- 
tion (lc) then the Markov chain model can be reduced to a finite one, as 
follows. If N(t) > K(p + 1)/p then N(t + 1) = 0 with probability one. 
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Denoting by NN+ 1 the smallest integer >K(p + 1)/p it follows that 
pi0 = 1 and ti = 1 for i 2 NN + 1. Therefore, Eq. (Al) can be written as 

2v.v 

fi= c Ptktk+ c P,k + 1 
i= I i 2 ‘.Y + , 

.Y:\ MN 

= c Piktk+2- c Plkt (A51 
i=l r=O 

because P is a stochastic matrix, i.e., x LaOpjk= 1 for all i>O. Then it is 
sufficient to solve (A5) for 1 ,< i < NN, which is numerically straight- 
forward. 

If F is given by (la) or (lb) we show below that Eq. (Al) can be 
truncated, i.e., a sufficiently large NN can be chosen so that the solution of 
the finite system 

:Vh 
ti= C Plktk+ 1, i= 1, . . . . NN, (A6) 

k=l 

approximates the solution of (A 1) to a preassigned degree. The solution of 
(A6) is always smaller than the exact solution of (Al), because truncation 
makes the state 0 equivalent to the states i> NN + 1. 

Our numerical data on the NS-model are based on solving Eq. (A6) (or 
(A5)). In order to achieve at least live significant digits it was sufficient to 
choose NN ,< 3K + 40. In the majority of cases NN = 2K + 20 was sufficient. 

(AM) Here we prove for the NS-model that the solutions of (Al ) 
can be approximated by the solutions of (A6) if F satisfies (la) with p& 1 
or (lb) or (lc) for appropriately chosen NN. The present proof does not 
apply to case (la) with b < 1, although convergence occurs numerically. 

Denote by t = (t, , t,, . . . )T the column vector of solutions of (Al ), by I(‘) 
the n x n identity matrix, and by Q ‘n’ the matrix consisting of the first n 
rows and columns of Q. Then Q can be written as the partitioned matrix 

(A7) 

with A’“‘, B(“), and C(“) chosen in the obvious way. 
If F satisfies one of the above mentioned assumptions then we have seen 

in AI1 that F(N) is bounded above, F(N) < b, for all N 2 1. Next, the 
Poisson distribution with parameter 2 takes its maximum at the largest 
integer ~1. Denoting by L the integer where k H e -bbk/k ! takes its 
maximum, simple computations show that the inequalities 

Pik =e -‘znF/k! <epbbklk! <epbbL/L! (A8) 
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are valid for all i, k 3 1. This implies that one can choose n such that the 
sums over the rows of A”” and C’“’ become arbitrarily small uniformly for 
all i 3 1. This means that for every E > 0 one can choose n such that 

IIC”‘)(l <E t.49) 

holds. 
Writing the solution t of (Al ) as the partitioned vector c = (t’“‘, r’n’)T 

and denoting by u lrr’ the n-dimensional truncation of U, Eq. (Al) can be 
written as 

(AlO) 

Substitution for r”” yields 

([c”‘- Q’“‘-A’“‘([-C’“‘)-1 @“I) t’“l 

= #I) + A’“‘(I- c’“‘)-l I,. (All) 

It follows from (A9) that IIA’“‘(Z- C”“))’ B”‘J\I -+O and IIA’“‘(Z- C”*))-’ u\I 
+ 0 as n -P 1~. Therefore 

ll(z’“‘- Q’“‘) 1’“’ -#“(I + 0 (A1-2) 

holds. 
Denoting the solution of the truncated equation 

(Z’“‘_ Q’d) s’It’ = &rl (A131 

by s”“, we obtain together with (A12) that I/P” - t”“ll + 0, as n + co, since 
II (I’“’ - Q”“) ~ ’ 11 < eb holds (see AH). This proves the desired numerical 
convergence. 

(AIV) The computational treatment of the SS-model is much more 
demanding than that of the NS-model since the Markov process is 
bivariate. However, due to the choice of cp (Eq. (8)) it is biologically and 
mathematically clear that in this model the probability of reaching very 
high population size is lower and, therefore, the extinction times are 
smaller than in the NS-model. In particular, it is again possible to truncate 
the transition matrix by choosing an appropriate NN and to restrict the 
state space to {(i,j):OGj<i<NN}. 

Denoting the mean extinction time for the initial value (i, j) by rii and 
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recognizing that T 00 = 0, T;~ = T,, = 1 for i > 1 a simple computation shows 
that it is suffkient to solve 

for 1 <j< i< NN. This gives NN( NN - I )/2 equations to solve. In fact, we 
have always chosen NN< 3K+ 40 (usually much smaller), as in the NS- 
model. Due to limited memory (although 64 MB were available!) calcula- 
tions for K> 16 could not be performed using this method. For these cases 
Monte Carlo simulation is much more efficient due to the relatively short 
extinction times. 

(AL’) The special case FI simplifies SS considerably, since it follows 
from the transition matrix (Eq. (12)) that T,~ = T;, = i and TV, = T, for 
1 <j<i. 

Then some algebra reduces Eq. (A 14) to 

k+‘)TP+2emm”’ ‘(1 -e-“, :)+ 1 (A151 

for 1 < id NN. This is computationally much less demanding. 

ACKNOWLEDGMENTS 

We thank M. Lynch and M. Moody for valuable discussion and M. Jensen. M. Lynch. 
M. Moody, and a reviewer for comments on earlier drafts. WC was supported by the Deutsche 
Forschungsgemeinschaft and RB was supported by a grant from the Max Planck Gesellschaft 
and by the Austrian “Fonds zur Forderung der wissenschaftlichen Forschung,” Project P6866. 

REFERENCES 

BELL. J. E. 1988. Recombination and the immortality of the germ line, J. Ed Bid. 1. 67-82. 
COHEN, J. E. 1977. Ergodicity of age structure in populations with Markovian vital rates. III. 

Finite-state moments and growth rate; an illustration, Ah. Appl. Probab. 9. 462475. 
EWENS. W. J. 1979. “Mathematical Population Genetics,” Springer-Verlag, Berlin. 
FELLER, W. 1939. Die Grundlagen der Volterraschen Theorie des Kampfes urns Dasein in 

wahrscheinlichkeitstheoretischer Behandlung, .4cta Biotheorer. 5, 1140. 
GABRIEL. W.. BURGER, R.. AND LYNCH, M. 1991. Population extinction by mutational load 

and demographic stochasticity, in “Species Conservation: A Population Biological 
Approach” (A. Seitz and V. Loeschcke, Eds.), pp. 49960, Birkhauser, Basel. 

GOODMAN. D. 1987. The demography of change extinction, in “Viable Populations for 
Conservation” (M. E. Soul& Ed.), pp. I l-34, Cambridge Univ. Press, London/New York. 

HASSEL. M. P.. LAWTON. J. H.. AND MAY, R. M. 1976. Patterns of dynamical behavior in 
single species populations. J. Anim. Ecol. 45. 471486. 



SURVJVAL OF SMALL POPULATJONS 71 

KEMENY, J. G.. SNELL. L. S.. AND KNAPP. A. W. 1976. “Denumerable Markov Chains.” 
Springer-Verlag, New York. 

LANDE. R.. AND ORZACK. S. H. 1988. Extinction dynamics of age-structured populations in 
a fluctuating environment. Proc. Nufl. .4cad. Sci. GSA. 85, 7418-7421. 

LEIGH. E. G. 1981. The average lifetime of a population in a varying environment. J. Tlrror. 
Bid. 90. 213-239. 

LYNCH. M., AND GABRIEL. W. 1990. Mutational load and survival of small populations. 
Erolurion 44. 1725-1737. 

MACARTHUR. R. H.. AND WILSON, E. 0. 1967. “The Theory of Island Biogeography.” 
Princeton Univ. Press, Princeton, NJ. 

MAY. R. M. 198 I. Models for single populations. irk “Theoretical Ecology” (R. M. May. Ed. I. 
pp. 5-29, Blackwell, Oxford. 

MAY. R. M.. AND OSTER, G. F. 1976. Bifurcations and dynamic complexity in simple 
ecological models. Anler. %‘ut. 110, 573-599. 

MAYNARD SMITH. J. 1989. “Evolutionary Genetics.” Oxford Univ. Press, Oxford. 
MILTON. J. G.. AND B~LAIR. J. 1990. Chaos, noise. and extinction in models of population 

growth. Thcor. PI.+. Bid 37, 273-290. 
MODE. C. J.. ANL) JACOBSON. M. E. 1987a. A study of the impact of environmental 

stochasticity on extinction probabilities by Monte Carlo integration. Mar/~. Biosci. 83, 
105-125. 

MODE. C. J., AND JACOBSON. M. E. 1987b. On estimating critical population size for an 
endangered species in the presence of environmental stochasticity, Mar/~. Biosci. 85, 
185-209. 

RICHTER-DYN. N.. AND GOEL, N. S. 1972. On the extinction of a colonizing species. 7&w. 
Popul. Bid. 3, 40&433. 

STREBEL, D. E. 1985. Environmental fluctuations and extinctionsingle species, Theor. Pop~l. 
Bid. 27. I-26. 

WRIGHT. S. J., AND HUBBELL. S. P. 1983. Stochastic extinction and reserve size: A focal 
species approach, O&-OS 41, 46&476. 

TULJAPURKAR. S. D. 1981. Population dynamics in variable environments, 11. Correlated 
environments, sensitivity analysis and dynamics, Theor. Poptrl. Bid. 21, 114-140. 

TULJAPLTRKAR, S. D. 1989. An uncertain life: Demography in random environments, Them-. 
Popul. Bid. 35. 227-294. 


