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Abstract: Embryo implantation is a complex process involving continuous molecular cross-talk
between the embryo and the decidua. One of the key molecules during this process is human
chorionic gonadotropin (HCG). HCG effectively modulates several metabolic pathways within
the decidua contributing to endometrial receptivity. Herein, a brief overview of the molecular
mechanisms regulated by HCG is presented. Furthermore, we summarize the existing evidence
regarding the clinical impact on reproductive outcomes after endometrial priming with HCG prior to
embryo transfer. Although promising, further evidence is needed to clarify the protocol that would
lead to beneficial outcomes.
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1. Introduction

Implantation is the result of a plethora of mechanisms that happen concurrently in a timely
synchronized pattern. As the embryo advances to blastocyst, the decidualized endometrium evolves
to a receptive phenotype [1]. The biochemical cross-talking between the embryo and the decidua,
established in the maternal fetal interface, happens in synchrony. The pre-implantation embryo secretes
factors that can modulate the implantation site [2,3]. On the other hand, the decidua secretes cytokines
and growth factors that affect embryonic differentiation and early development [2,3]. Under the
appropriate biochemical environment, the embryonic and endometrial components finally interact in
order for the trophoblast to invade. One of the molecules of the initial array of molecular messages
between the blastocyst and the decidua is human chorionic gonadotropin (HCG).

This mini-review aims to summarize the contribution of human chorionic gonadotropin (HCG)
to implantation, and to present an overview of the clinical evidence regarding the potential of HCG
administration in the uterine cavity as a method of molecular priming.

2. Human Chorionic Gonadotrophin (HCG): The Role in Implantation and Early
Fetal Development

HCG is the first known hormonal signal of the conceptus. Its mRNA is transcribed as early as the
8-cell stage [4], while the blastocyst expresses HCG before its implantation [5,6]. HCG is increasingly
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produced after implantation by the syncytiotrophoblast [7]. Significant levels of HCG can already
be measured in the maternal blood 10 days after fertilization. The peak of HCG production by the
placenta is reached between the 10th and 11th week of gestation; the production then decreases until
the 12th week to remain steady from that point on. HCG mediates rescue of the corpus luteum and
ensures the ongoing production of progesterone [8].

Hyperglycosylated HCG (HCG-H), an HCG isotype with the same polypeptide structure as
HCG and branched oligo-saccharide chains that contain larger N- and O-linked oligosaccharides, has
recently been shown to play a different non-steroidogenic role in early pregnancy, as it does not induce
progesterone production by human granulosa cells in vitro [9,10]. HCG-H presents a peak during
implantation and early trophoblast invasion, being the most abundant HCG variant at that time [11].
Recently, it has been shown that the pattern of serum HCG-H concentration during the first trimester
is in line with the HCG-H immunoreactivity of the placenta [12]. HCG-H has been demonstrated to be
produced mainly by the cytotrophoblast, inducing extravillous cytotrophoblast cell proliferation and
invasion in vitro [13,14]. This may be achieved by inhibiting TGF-β receptor and, thus, trophoblast
apoptosis [13]. Additionally, HCG-H was found to be expressed by anchoring villi within the maternal
decidua, the extravillous trophoblast invading the decidua, and the endovascular trophoblast cells [12].
The recently described co-localization of HCG-H in the syncytiotrophoblast is proposed to be the
end result of rapid HCG-H expression and its accumulation to the adjacent syncytiotrophoblast [12].
Simultaneously, standard HCG induces differentiation of cytotrophoblast to syncytiotrophoblasts [15].
The co-operation of HCG-H and standard HCG is considered a driving force for placentation.

Apart from these fundamental roles in early pregnancy [16], emerging data supports the
hypothesis of an additional role of HCG in embryo implantation, through direct effects on the
endometrium. An in vivo HCG-induced modulation of the baboon endometrium was observed
during the “window of implantation” [17]. Both epithelium and stroma displayed marked responses
to intra-uterine HCG administration; a steroid-dependent epithelial plaque reaction in the luminal
epithelium was shown followed by a steroid independent up-regulation of glycodelin secretion by the
glandular epithelium [17]. Of note is the positive feedback reported between HCG and glycodelin [18].
Additionally, an induction of the decidualization-associated α-smooth muscle cell actin synthesis in
stromal fibroblasts was documented [17]. The role for HCG in promoting decidualization was further
supported by a study in human stromal fibroblasts [19]. To investigate the direct effects of HCG on
the human endometrium, an intra-uterine microdialysis device was developed to measure paracrine
mediators within the uterine cavity in vivo [20]. HCG provoked a significant inhibition of intrauterine
insulin-like growth factor binding protein-1 (IGF-BP-1) and macrophage colony stimulating factor
(M-CSF), while leukemia inhibitory factor (LIF), vascular endothelial growth factor (VEGF), and matrix
metalloproteinase-9 (MMP-9) were significantly stimulated [20–22]. To the same direction, under the
influence of HCG, tissue inhibitors of metalloproteinases have been reported to be downregulated,
further supporting a role for HCG in trophoblast invasion [21,23]. Several molecules – expressed by
the endometrium – involved in embryo implantation such as galectin-3, homeobox-A10 (HOXA-10),
VEGF, and glycodelin have been demonstrated to be induced by HCG [24,25]. At the same time, HCG
seems to protect decidualized endometrial stromal cells from oxidative stress-related apoptosis [26],
while it is reported to regulate progesterone receptor expression via the ERK1/2 pathways [27].
Taken together, all of the above support the thesis that HCG demonstrates important paracrine
effects on decidualization, implantation, vascularization, and tissue remodeling. However, emerging
evidence questions the mode of pro-implantation action of HCG on human endometrium. Aiming to
simulate HCG administration during controlled ovarian stimulation, Evans and Salamonsen studied
the prolonged low-dose HCG-exposure of endometrial epithelial cells [28]. Using endometrial samples
from women that underwent assisted reproduction techniques (ART) cycles vs. fertile women
with normal cycles and applying cell culture techniques, it was observed that prolonged low-dose
HCG treatment down-regulated LH-HCG-receptor, triggered LH-HCG-receptor internalization, and
desensitized LH-CH-receptor down-stream signaling, especially after a subsequent acute high dose of
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HCG—the latter simulating the blastocyst-derived HCG [28]. As a result, endometrial cell adhesion
ability and tight junction regulation were impaired [28]. According to the authors, such findings could
elucidate the mechanism of implantation failures in in vitro fertilization (IVF).

In addition, HCG contributes to the maternal tolerance of the embryo through interactions with
immune cells within the receptive endometrium at the time of implantation. HCG has been associated
with T cell modulation. In a recent study, Schumacher et al. used migration assays to demonstrate
that regulatory T cells (Treg) were attracted by HCG-producing trophoblasts [29]. More importantly,
HCG was recently reported to be involved in Treg differentiation [30]. In addition, HCG was found
to adjust the T helper (Th) 1/T helper (Th) 2 balance, since HCG inhibited the development of
Th1 autoimmune diabetes in a mouse model [31]. HCG has also been implicated—among other
trophoblast-secreted molecules—in inhibiting T lymphocytes [32]. Moreover, HCG can induce
macrophage migration inhibitory factor (MIF) expression by endometrial stromal cells, mainly by
regulating MIF transcription [33]. In that view, HCG can regulate macrophage migration in the
maternal-fetal interface. Additionally, HCG can promote innate functions of macrophages, such as
the resolution of inflammation [34]. HCG also intervenes with the development of local immune
tolerance in the maternal-fetal interface via the Fas/Fas ligand (Fas/FasL)-mediated apoptotic pathway.
It was shown that HCG increased apoptosis in endometrial cells, this being attributed to an FasL
up-regulation [35].

Finally, HCG has been described as a regulator of uNK cell proliferation, mediated via the
mannose receptor (CD206) rather than by the classical LH/HCG receptor that was not expressed [36].

3. HCG and Clinical Applications in Assisted Reproduction Techniques: Where We Stand

The effects of HCG on human endometrium constitute the theoretical basis to develop clinical
research protocols aiming to investigate HCG efficacy in improving clinical parameters of assisted
reproduction protocols. In that view, since 2011, several reports have been published upon this issue
with conflicting results [37–42]. Although randomized controlled trials with proper design have been
conducted, the published evidence up to now has featured large heterogeneity. HCG is administered
intra-uterine before either blastocyst transfer or earlier embryo transfer. Additionally, HCG used
was either isolated by urine or was produced via recombinant technologies. To further increase the
heterogeneity, HCG was used in different concentrations and to different time-points prior to embryo
transfer. Taking all these into consideration, it is rather difficult to extract a definite conclusion.

The lack of concordance led to meta-analytic efforts, hoping to highlight the overall result
of the HCG intra-uterine administration. Due to heterogeneity, even the meta-analyses must be
critically considered. The first meta-analysis by Ye et al. included five randomized controlled
trials (RCTs) with 1387 participants randomized as a study (HCG) group (n = 680) and a control
group (n = 707) [43]. The results were promising, since patients who received intra-uterine HCG
performed significantly better in terms of biochemical, clinical, and ongoing pregnancy rates compared
to controls [43]. However, the initial enthusiasm provoked by this meta-analysis did not last, since
a large randomized trial, published immediately afterwards with 1186 IVF cycles randomized to
HCG intra-uterine administration and controls, did not show any significant difference in the case of
blastocyst transfer [41]. More importantly, this finding was independent of blastocyst quality and of
HCG administration timing (either two days or immediately prior to embryo transfer). The size of that
study was large enough for a second meta-analysis to be performed and published later on by Osman
et al. [44]. This included eight studies with 3087 participants, randomized as a study (HCG) group
(n = 1614) and a control group (n = 1473). The conclusion did not support any HCG superiority, since
no significant difference was found in terms of live birth rates between the study and control groups.

Both meta-analyses published recently still include studies with different methodological details as
far as type of embryo, HCG concentration, and timing are concerned. Such sources of possible bias have
been addressed by a recent Cochrane review [45]. The authors considered an overall meta-analysis on
live birth and clinical pregnancy rates to be rather impossible due to high heterogeneity. By identifying
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the type of embryo transferred (blastocyst or cleavage-stage) and the HCG dose (less than 500 or 500 IU
and higher) as the sources of heterogeneity, they proceeded to consider a sub-group meta-analysis.
The results supported HCG administration only in the case of cleavage stage embryos transferred to
patients primed with an HCG dose of 500 IU or higher.

The physiology of such findings was very recently addressed by investigating the endometrial
receptivity of oocyte donors after HCG intra-uterine administration compared to controls [46].
The study protocol was oriented to simulate the endometrium in case of blastocyst transfer. In that
view, oocyte donors were administered either HCG (500 IU) or embryo culture medium 3 days after
oocyte retrieval, and endometrial sampling was performed 2 days later (day 5 after oocyte retrieval).
In agreement with the results of the recent meta-analyses, the assessment of the endometrium with
the endometrial receptivity array (transcriptome analysis) did not reveal a significant change in
the receptivity profile after HCG administration [46]. Interestingly, HCG succeeded in delaying
endometrial stroma advancement noted in the case of controlled ovarian stimulation, contributing to
endometrial synchronization [46]. However, it should be noted that the whole experimental setting
involved donors with normal endometria. Whether such findings still hold in the case of infertile
women needs properly designed studies to be elucidated.

4. The Clinical Impact of Intrauterine Administration of HCG-Treated Autologous Peripheral
Blood Mononuclear Cells on Repeated Implantation Failures

The idea of immunomodulation of the endometrium prior to embryo transfer has been very
appealing, especially in cases of repeated implantation failures. With the aim of provoking an immune
reaction, several efforts have been made by transferring autologous peripheral blood mononuclear
cells (PBMCs) in the uterine cavity prior to embryo transfer. PBMCs have been transferred either
unstimulated or stimulated by priming the PBMCs with immunomodulatory agents [47,48]. In this
context, HCG was the first agent to be used for PBMCs’ activation [48]. Few reports exist so
far with promising results in treating patients with repeated implantation failure; it seems that
endometrial priming with HCG-treated PBMCs prior to embryo transfer improves reproductive
outcomes, especially in cases of more than three implantation failures [48–50].

5. Conclusions

The clinical data taken together with the knowledge stemming from in vitro or ex vivo reports
imply a role for HCG in implantation and early trophoblast invasion. However, it is anticipated that
the impact of HCG on a successful pregnancy is the end result of a complicated orchestration of events.
The HCG cross-talk between the embryo and the decidua seems to need continuous HCG presence, a
fact not well-simulated by single-dose HCG intrauterine administration protocols [46]. Perhaps this
is the reason for the recent failures to demonstrate HCG superiority in the case of blastocyst transfer.
The promising results yielded by early cleavage embryos may be attributed to the achievement of
ongoing HCG presence, where the initial HCG administration is followed by HCG secretion from
the transferred embryo, sustaining the HCG effects that favor implantation. A consensus is therefore
needed to organize a properly powered multi-centric randomized trial involving cleavage embryos
transferred to high dose HCG-primed endometria. The produced results, if promising, are then to be
verified in women with repeated implantation failures. As far as blastocyst transfer is concerned and
in the view of the need for a constant HCG effect, it should be tested whether pregnancy outcomes
improve by replacing single HCG treatments with a repetitive administration scheme.
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Abbreviations

ART Assisted reproduction techniques
ERK 1/2 Extracellular signal-regulated protein kinases 1/2
HCG Human chorionic gonadotropin
HOXA10 Homeobox A10
LH Luteinizing gormone
LIF Leukemia inhibitory factor
M-CSF Macrophage colony stimulating factor
PBMC Peripheral blood mononuclear cells
Treg T regulatory cells
uNK Uterine natural killer cells
VEGF Vascular endothelial growth factor
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