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Abstract

Researchers analyzing historical data on human stature have long sought an estimator that
performs well in truncated-normal samples. This paper reviews that search, focusing on
two currently widespread procedures: truncated least squares (TLS) and truncated
maximum likelihood (TML). The first suffers from bias. The second suffers in practical
application from excessive variability. A simple procedure is developed to convert TLS
truncated means into estimates of the underlying population means, assuming the
contemporary population standard deviation. This procedure is shown to be equivalent to
restricted TML estimation. Simulation methods are used to establish the mean squared

error performance characteristics of the restricted and unconstrained TML estimators in



relation to several population and sample parameters. The results provide general insight
into the bias-precision tradeoff in restricted estimation and a specific practical guide to

optimal estimator choice for researchers in anthropometrics.



Introduction

Human height is a widely used synthetic indicator of biological living standards in
many different settings, including but not limited to underdeveloped economies,
historical contexts, and circumstances in which economic indicators are either unreliable
or completely lacking, as, for example, for the children of Soweto (Cameron 2003).
Physical stature is positively correlated with net nutrition - the balance between the
quantity and quality of nutrient intake and the demands on those resources by the human
organism for growth, metabolic maintenance, work, and for resistance to diseases. Of
course, individual heights depend as much on genetic potential as on nutrition, but at the
population level environmental factors play a very substantial role in determining height
at a particular age (Bogin 1999).

Statistical analysis of height data is facilitated considerably by the biological law
that height is approximately normally distributed within a population, and that its
standard deviation is practically constant, varying over a range of only about one cm,
while mean heights can easily vary by more than 15 cm within a population over time
(Cole 2000; 2003; Baur and Komlos 2003)." Consequently, variations in a population’s
nutritional status affect primarily the mean of the distribution of heights, and not its form
or dispersion.

The Problem of Truncation

Historical height data, though drawn from a normal population, are generally not
random samples. In particular, height distributions drawn from military records prior to
the introduction of universal conscription are often truncated from below, insofar as most

armies imposed a minimum height requirement. 2 Often, the requirement was not strictly



enforced, and varied across units or over time, leaving the distribution with a deficient

but not clearly-truncated left tail: the problem of shortfall (Komlos 2003). In the presence

of truncation or shortfall, least squares (LS) estimators are biased. The nature of this bias
is readily visualized as in Figure 1, which depicts the probability density function (pdf) of
a truncated standard normal random variable. Without the lower tail, the mean of the

distribution shifts to the right: in Figure 1, truncation at —10 changes the mean of the

distribution from zero to 0.29, clearly biased upward.

Figure 1. Density and mean of a truncated standard normal random variable.
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More precisely, suppose that observations on a latent normal random variable Y*:

y¥=u+¢& £~ N(O, 0°), are selected only if they exceed truncation point T, that is, when

U+ E2T,or £2 17— . Conditional on being selected into the sample, then,

E[g|y*=1]>0 and var(g| y*= 1) < 0”. The sample mean of the observed variable Y
(the LS estimator of W), has expected value:

1 n 1 n
E[— Zy,-J = EL—Z(LHE,-)J
n - n

1 n
=+~ E(E) (Eq. 1)



In case of a truncated variable, the second term in Eq. 1 does not equal zero, since the
conditional expectation of £1is positive. Nor does the sum of the £s go to zero as n — .
Hence, the sample mean is also inconsistent. This intuition generalizes to situations in
which mean height £ varies across individuals i in relation to observable characteristics.
LS estimators of the coefficients of that relationship are biased, and suffer the further
problem of heteroskedasticity, the variance of €; depending positively on z4.

Estimators for Truncated Samples, Part I

Two early approaches to the problem of bias in samples suffering shortfall or
truncation took quite different approaches. The Quantile Bend Estimator (QBE) sought to
fill in the missing lower tail observations, creating an artificial complete distribution as
close as possible to a normal. The mean and standard deviation of this artificial
distribution provided unbiased estimators of the underlying population parameters.
Komlos and Kim criticized QBE estimates of time trends as displaying excessive short-
term variability — fluctuations that were implausible, given biological limits to the
variability in the physical stature of a population in the short run. Subsequent simulation
studies by Heintel confirmed that the QBE suffers much higher sampling variability than
alternative estimators, and its popularity has waned.*

In contrast to the QBE, Komlos and Kim (K&K) proposed to exclude those
observations that should not have been present, excluding from analysis data below the
highest truncation point known to have been applied by military authorities in any period
or to any group in the data (Komlos and Kim 1990).” The means of the K&K truncated

samples by group ifR ,J=1...k, of course, remain biased, but the differences over time or

across groups, i.e. y.« — y,.,, have the same sign as the true differences in the underlying



population means. This is the case, because /" is a monotonic function of 4, and y " is
an unbiased estimator of £": if 44 <4, then it follows that p;<p; .

A shortcoming of the K&K method is the difficulty of estimating the impact of
multiple covariates on height, as the sample must be divided into mutually exclusive
subgroups for which means can be calculated. However, it can be extended to the
multivariate case by employing least squares regression with multiple dummy variables,
again truncating at the highest known 7 (truncated LS, or TLS). Though biased, the TLS
estimator preserves the signs and relative sizes of coefficients. Chung and Goldberger
(1984) showed that the regression slope coefficients relating two variables in a truncated
population are proportional to those for the entire population. As TLS is an unbiased
estimator of those truncated population slopes, if follows that TLS-estimated coefficients
will on average have the same signs and relative sizes as the (complete) population
parameters of interest, though not the correct absolute magnitudes.6 Both K&K and TLS
have been used extensively in the literature on historical heights, and offer greater
robustness and stability than available alternatives. However, the Chung and Goldberger
result implies that we would expect truncated means to vary less than true, suggesting
that some of the apparently reduced sampling variability of the TLS estimator is illusory.
We provide evidence on this below.

Estimators for Truncated Samples, Part 11

Given the biologically determined normality of height distributions, an alternative
approach to unbiased estimation is maximum likelihood (ML), based on the normal pdf.
In the case of truncation, we require a likelihood function that conditions on the

probability of y having been selected into the sample, i.e. on the chances that Y* > Tor



£2 T — (. Intuitively, it is clear that the area under the normal pdf will not integrate to
unity without the lower tail, and the function must be normalized accordingly. The pdf of

the truncated normal random variable Y is thus:

1 ¢{ Y~ H j
_ O g . .
f=————~ ifyz 1 fly)=0ify<rT (Eq. 2)
r—-H
()
g
@denotes the standard normal pdf and ® denotes its cumulative distribution function
(cdf).” Note that T should be adjusted for rounding.®
Equation 2 provides the basis for truncated maximum likelihood (TML)
estimation of f/ and g. The TML estimator has the usual ML properties of unbiasedness,
consistency, and asymptotic efficiency, yields a direct estimate of ¢ is amenable to
handling multiple truncation points, and permits all forms of hypothesis testing. While
these desirable characteristics make TML appear the ideal estimator, experience has
demonstrated that TML estimates frequently display implausible magnitudes of variation
over time or across groups.’
Note that Equation 2 also provides a basis for inferring estimates of y from K&K-

or TLS-estimated truncated sample means y '~ . Using f(y) from Equation 2, for given
values of 14, 7, and o, (/" = j:o yf(y) dy .'"° While this integral cannot be solved

analytically for &/ as a function of £/®and the other parameters, it is possible to generate
U™ for successive values of 4/ (given Tand o) until a 4"is found that equals y'*. The
associated value of f/is taken as an estimator for the population mean. As y'* is an

unbiased estimator of 4%, this converted-TLS (CTLS) method yields unbiased estimates



of . This method requires an assumption about O - an assumption that will rarely be
exactly correct and will therefore induce bias; it discards all observations below the
highest known T; it does not address the difficulty of hypothesis testing in the TLS
framework; and it is quite cumbersome computationally. However, if the greater stability
of the TLS estimator is real, CTLS should share that characteristic. Both issues are
addressed in the next section.

Restricted and Unconstrained TML Estimation

In the simple linear regression model with normal disturbances, the LS and ML
estimators are equivalent. The use of the truncated-normal pdf in CTLS — the same pdf
used in TML estimation — suggests the intuition that the two procedures may be
equivalent here too. The assumption of a particular value for g would then be a form of
restricted TML (RTML). This intuition can be tested by simulation, in which repeated
samples are generated, [/, and [, estimated, and their squared difference
calculated. Table 1 presents the root mean squared difference for various values of 7and
g, based on 1,000 trials in each case.!! The simulation results demonstrate that the two
estimators are, in fact, essentially identical. The root mean squared difference between

the two estimates is on the order of a hundredth of a millimeter with (&=165.

Table 1. Root mean squared difference between RTML and CTLS estimates (cm)

o 6.00 6.86 7.50
I:

150 .0012 .0012 .0013

163 .0012 .0012 .0013

166 .0012 .0013 .0012

1000 replications; sample size 1000; true mean 165 cm in all cases.



While yielding identical estimates of 4, RTML has the advantages of permitting
hypothesis testing and allowing for multiple truncation points, and can be considered
together with unconstrained TML in a unified framework. In the simulations summarized

in Table 1, the true value of o was used in estimating ff..,, , i.e. 6.00 cm in the column 1

simulations, 6.86 in column 2, etc. In practice, of course, Ois never known. And
whenever an incorrect restriction is imposed some degree of bias is induced. The figure
of 6.86 cm has been suggested as a plausible figure for males based on data for modern
populations, but any such rule of thumb will never be exactly correct (Frisancho 1990;
Cole 2000). However, a general property of restricted ML estimators is their greater
sampling precision in comparison with unconstrained estimation, and this is true
regardless of any bias introduced by incorrect restrictions."?

The optimal choice of estimator thus depends on how we evaluate the tradeoff

between bias and precision. A common criterion for balancing these risks is mean

squared error (MSE):
MSE(f) = E(f1= 1] =bias(2)® + var(Z) (Eq. 3)

If the restrictions imposed are “close” to the true value, the bias induced will be
small, and the reduction in variance substantial. So the choice between restricted and
unrestricted estimation depends on the researcher’s degree of confidence in the
restrictions. The extent of the trade-off between bias and variance is an empirical
question, depending on sample size (n), T, i/ and &. In the remainder of this paper, we use

simulation methods to explore this trade-off and provide a practical guide for which



estimator, [, or [, ,is to be preferred in the range of circumstances typical of
applied work with historical heights.

MSE Performance of Restricted and Unconstrained TML Estimators

The simulation results reported here are based on 2,000 replications for a range of
n, 0, and T. The ranges for each parameter were chosen as representative of values likely
to be encountered in research on historical heights: (=165 cm throughout; o varies
between 6 and 8 cm by increments of 0.5 cm, with special consideration give to 6.86 cm;
Tvaries from 150 cm to 167 cm; n = 250, 500, and 1000. The RTML procedure imposes
the restriction that o= 6.86 cm in all cases.

RTML results are summarized in Appendix Table 1, and illustrated in Figure 2.
They indicate that a) MSE and both of its constituent elements increase with increasing
T; b) MSE is very highif 7> ; ¢) if 0 # 6.86 cm then E( 1) # i, with bias increasing
very rapidly as the orestriction error exceeds about 5 mm; d) the variance of the

estimates decreases as n increases, while bias is roughly constant.

Figure 2: MSE of the Restricted TML Estimator, n = 500."
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Note: T is measured along the long axis, 0 along the short, both in centimeters.
MSE is measured vertically in cm® units.

Table A2 and Figure 3 present the results for unconstrained ML estimation. They
indicate that a) the bias of the TML estimator is zero, so that MSE is driven by variance
alone; b) MSE rises with 7, but much more rapidly than was the case for the restricted
estimator: MSE at 7= 167 is more than ten times its value at 7= 159; ¢) variance
decreases with sample size, yielding a sharper decrease in MSE than for the restricted
estimator since bias plays no role in its determination; d) MSE rises with the underlying

population standard deviation @ It is clear that for small n and 7=, fI 1r is unreliable.

(In Figure 3, MSE is off the scale for 7 > 166. 14) At the extremes of 7= 167, 0=38, and
n =250, MSE is 12 cm”. This implies a root MSE of 3.5 cm, which is very large relative
to the differences typically observed over time or across groups of historical data. Note

that MSE values are off the scale (greater than 4) for 7 = 166 at the higher values of o.

11



Figure 3. MSE of the Unrestricted TML Estimator, n = 500.

Note: T is measured along the long axis, 0 along the short, both in centimeters.
MSE is measured vertically in cm® units.

The practical question is: over what range of parameter values of (/and ois the
restricted estimator preferred to unconstrained TML? Table A3 reports differences in
MSE: [t.,,, = [l - Positive numbers thus indicate superior performance of the restricted
estimator. Figure 4 makes it clear that if the orestriction is approximately true (say,
within half a centimeter) and the truncation point exceeds about 160 cm, the restricted
estimator offers substantial advantages over unconstrained TML. Considering Table A3,
the choice is clearest at the extremes (the upper right and lower left corners). At
truncation points well above the mean in small samples, the restricted estimator offers
dramatically better precision than /1, , which far outweighs its bias. However, at

truncation points well below the mean in large samples, unconstrained estimation is

12



generally to be preferred; it performs less well only in the immediate neighborhood of o

= 6.86 cm and then only by a very slight amount.

Figure 4. MSE Difference ft,,, = flxs» 1 = 500.

150

Note: T is measured along the long axis, 0 along the short, both in centimeters.
The MSE difference is measured vertically in cm” units.
The front lower left corner of the surface is off the scale, i.e. less than —2.

In historical datasets one typically encounters truncation points less than but not
far from the mean, and sample sizes that are relatively small on account of the fact that
they have to be drawn manually from archival records. Thus, the center row of Table 3A,
for 7= 163 cm, and the columns for n = 250 or 500 can be considered typical of such
situations. Figure 5 depicts the MSE graphically for 7= 163 and n = 250 and 500.

(Appendix Figure 1 shows the same information for the more extreme case of 7=165.) It

13



becomes clear that the optimal choice of estimator depends on the degree of confidence
in the O restriction. If one is confident that ois within a half-centimeter or so of 6.86,

[ crLs or [ rTr is clearly preferred over [t tr. The reduction in risk can be substantial in
small samples: on the order of 2 cm” when the restriction is approximately correct. That
implies a reduction of about 1.4 cm in the expected error (i.e. root MSE). This is large,

relative to likely true differences over time and across groups.

14
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Figure 5a. MSE of TML and RTML Estimators, T = 163 cm, n = 250.

Figure 5b. MSE of TML and RTML Estimators, T = 163 cm, n = 500.

4.0

3.0

2.0

0.0

Summary

v

Cr \\Q/’/

6

6.5 7 7.5 8

true s.d.

15



Much research with historical height data must confront the problem of samples
truncated from below, a situation that induces bias in the standard LS estimator. Two
currently popular approaches are the calculation of truncated sample means (the K&K or
TLS estimators) and truncated maximum likelihood estimation (TML). The TLS method
has the advantages of simplicity, accuracy in estimating the sign of differences over time
or across groups, and robustness. TML has the advantages of unbiasedness, yielding an
estimate of the population’s standard deviation, the ability to handle multiple truncation
points, and allowing hypothesis testing.

Wwe have described a method for inferring estimates of population parameters
from TLS-estimated truncated sample means. We show by simulation that this
Converted-TLS estimator is a restricted form of TML, in which the population standard
deviation is constrained to take a value chosen by the researcher. The choice between a
restricted and an unconstrained ML estimator boils down to the tradeoff between the bias
induced by incorrect restrictions and the superior precision offered by the restricted
estimator.

This tradeoff is evaluated in terms of the mean squared error criterion, which is
calculated for a range of parameter values using simulation methods. The results show
that the restricted estimator’s precision is a decisive advantage if the truncation point is
close to or above the population mean. This is particularly the case with small sample
sizes. In situations most typical of research with historical height data, choice of
estimation technique will depend on the degree of confidence in the restriction that the

historical population’s standard deviation equals a particular value such as the modern

16



figure of 6.86 cm. If that restriction is true within (0.5 cm, the restricted estimator is

preferred in all situations except in large samples with a relatively low truncation point.
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Table Al. Mean Squared Error of the Restricted TML Estimator, [, -

n=250 n =500 n= 1000
T o bias®  var. MSE | bias’  var. MSE | bias’  var. MSE
167 6.00 |6.105 0620 6725 |6.180 0.383 6.563 |6.122 0.187 6.309
6.50 1.023 0.692 1.714 | 0.952 0.301 1.253 | 0.932 0.153 1.085
6.86 0.000 0.591 0.594 | 0.000 0.314 0.315 |[0.000 0.157 0.158
7.00 0.082 0.613 0.695 | 0.123 0.300 0423 | 0.112 0.151 0.263
7.50 2.226 0.571 2.797 | 2323 0279 2602 |2374 0.135 2.509
8.00 6.759 0555 7.314 | 6.918 0.271 7190 |6.855 0.135 6.990
165 6.00 4350 0574 4923 | 4334 0.282 4.616 |4.293 0.148 4.440
6.50 0.720 0534 1254 |0.725 0.259 0984 |0.669 0.128 0.796
6.86 0.000 0526 0.528 | 0.000 0.254 0.255 | 0.000 0.131 0.131
7.00 0.096 0536 0.632 | 0.103 0.261 0.364 | 0.083 0.126 0.209
7.50 1.731 0.537 2268 | 1530 0.278 1.808 | 1.759 0.123 1.882
8.00 4967 0.489 5456 |5.038 0.251 5289 |5.086 0.108 5.194
163 6.00 2.857 0.436 3.293 | 2.821 0.222 3.043 | 2.823 0.105 2.928
6.50 0.498 0.449 0947 | 0462 0.213 0.674 | 0462 0.114 0.575
6.86 0.000 0428 0.428 | 0.000 0.218 0.218 | 0.000 0.113 0.113
7.00 0.040 0.483 0.523 | 0.052 0.249 0.301 0.059 0.116 0.175
7.50 1.305 0.408 1.713 | 1.305 0.206 1.511 1.194 0.107 1.301
8.00 3.648 0.405 4.053 | 3.699 0.197 3.896 | 3.651 0.105 3.757
161 6.00 1830 0.353 2.183 |1.750 0.166 1.916 | 1.760 0.091 1.851
6.50 0.281 0.383 0.664 | 0.304 0.193 0.497 |0.282 0.092 0.374
6.86 0.000 0.405 0.406 | 0.000 0.199 0.199 | 0.000 0.098 0.098
7.00 0.027 0.352 0.379 | 0.037 0.189 0.226 | 0.045 0.093 0.138
7.50 0.768 0406 1.174 | 0.678 0.188 0.866 | 0.844 0.094 0.938
8.00 2.528 0.398 2.926 | 2.541 0.186 2.727 | 2.553 0.093 2.646
159 6.00 1.057 0.286 1.343 |1.062 0.157 1.219 |1.017 0.074 1.091
6.50 0.184 0.325 0.509 | 0.240 0.162 0.402 | 0.172 0.076 0.247
6.86 0.000 0.322 0.322 | 0.000 0.171 0.171 0.000 0.085 0.085
7.00 0.020 0.317 0.337 | 0.022 0.157 0.180 | 0.025 0.079 0.104
7.50 0.565 0.320 0.885 | 0.542 0.166 0.708 | 0.520 0.088 0.607
8.00 1.657 0.348 2.005 | 1.712 0.161 1.873 | 1.682 0.084 1.767
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Table A2. Mean squared error of the Unrestricted TML Estimator, fz .

n=250 n =500 n= 1000
T o bias®  var. MSE | bias®  var. MSE | bias’  var. MSE
167 6.00 0.000 9.431 9.431 0.000 3.894 3.894| 0.000 1.604 1.604
6.50 0.000 9559 9559 | 0.000 4450 4.450| 0.000 1.875 1.875
6.86 0.000 10.728 10.728 | 0.000 4.771 4.771 0.000 1970 1.970
7.00 0.000 12.476 12.476 | 0.000 4.704 4.704 | 0.000 2.083 2.083
7.50 0.000 16.214 16.214 | 0.000 4.836 4.836 | 0.000 2.191 2.191
8.00 0.000 12.233 12.233 | 0.000 6.515 6.515| 0.000 2.468 2.468
165 6.00 0.000 4.474 4474 | 0.000 1.898 1.898 | 0.000 0.821 0.821
6.50 0.000 4669 4669 | 0.000 2.051 2.051 0.000 1.015 1.015
6.86 0.000 5.575 5575 | 0.000 2470 2470 0.000 1.123 1.123
7.00 0.000 5936 5936 | 0.000 2392 2.392| 0.000 1.183 1.183
7.50 0.000 5913 5913 | 0.000 2819 2.819| 0.000 1.336 1.336
8.00 0.000 7.776 7.776 | 0.000 3.146 3.146 | 0.000 1.391 1.391
163 6.00 0.000 1.876 1.876 | 0.000 0.841 0.841 0.000 0.420 0.420
6.50 0.000 2.374 2.374 | 0.000 1.078 1.078 | 0.000 0.507 0.507
6.86 0.000 2959 2959 | 0.000 1.318 1.318 | 0.000 0.589 0.589
7.00 0.000 2907 2907 | 0.000 1.289 1289 | 0.000 0.644 0.644
7.50 0.000 3.468 3.468 | 0.000 1.646 1646 | 0.000 0.712 0.712
8.00 0.000 4594 4594 | 0.000 1.988 1.988 | 0.000 0.864 0.864
161 6.00 0.000 0.909 0909 | 0.000 0.440 0.440| 0.000 0.217 0.217
6.50 0.000 1.215 1.215| 0.000 0.588 0.588 | 0.000 0.290 0.290
6.86 0.000 1.537 1.537 | 0.000 0.691 0.691 0.000 0.348 0.348
7.00 0.000 1.465 1465 | 0.000 0.697 0.697| 0.000 0.375 0.375
7.50 0.000 1.907 1.907 | 0.000 0.927 0.927 | 0.000 0422 0.422
8.00 0.000 2355 2355| 0.000 1.139 1.139| 0.000 0.558 0.558
0.000
159 6.00 0.000 0.478 0.478 | 0.000 0.240 0.240| 0.000 0.123 0.123
6.50 0.000 0.664 0.664 | 0.000 0.337 0.337| 0.000 0.158 0.158
6.86 0.000 0.832 0.832| 0.000 0.364 0.364| 0.000 0.193 0.193
7.00 0.000 0.896 0.896 | 0.000 0.393 0.393| 0.000 0.205 0.205
7.50 0.000 1.100 1.100 | 0.000 0.525 0.525| 0.000 0.271 0.271
8.00 0.000 1.422 1422 | 0.000 0.667 0.667 | 0.000 0.332 0.332
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Table A3. MSE Difference, Unconstrained — Restricted TML, fL,,, = Her -

n =250 n = 500 n = 1000
1 o MSE diff. MSE diff MSE diff
167 6.00 2.706 -2.669 -4.705
6.50 7.845 3.197 0.790
6.86 10.134 4.456 1.812
7.00 11.781 4.281 1.820
7.50 13.417 2.234 -0.318
8.00 4.919 -0.675 -4.522
165 6.00 -0.449 -2.718 -3.619
6.50 3.415 1.067 0.219
6.86 5.047 2.215 0.992
7.00 5.304 2.028 0.974
7.50 3.645 1.011 -0.546
8.00 2.320 -2.143 -3.803
163 6.00 -1.417 -2.202 -2.508
6.50 1.427 0.404 -0.068
6.86 2.531 1.100 0.476
7.00 2.384 0.988 0.469
7.50 1.755 0.135 -0.589
8.00 0.541 -1.908 -2.893
161 6.00 -1.274 -1.476 -1.634
6.50 0.551 0.091 -0.084
6.86 1.131 0.492 0.250
7.00 1.086 0.471 0.237
7.50 0.733 0.061 -0.516
8.00 -0.571 -1.588 -2.088
159 6.00 -0.865 -0.979 -0.968
6.50 0.155 -0.065 -0.089
6.86 0.510 0.193 0.108
7.00 0.559 0.213 0.101
7.50 0.215 -0.183 -0.336
8.00 -0.583 -1.206 -1.435

Note: positive numbers indicate superior MSE performance of the restricted estimator.
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Appendix Figure 1a. MSE of TML and RTML Estimators, 7= 165 cm, n = 250.
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Appendix Figure 1b. MSE of TML and RTML Estimators, 7= 165 cm, n = 500.
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! More specifically, the standard deviation of heights appears to range between 6 and 7
cm among modern male populations, between 5.3 and 6.5 cm among females: Cole
(2000) p. 402.

2 Truncation from above is also observed on occasion, but will not be dealt with here.

3 See Ruud (2000) Ch. 28 for a full discussion of truncated distributions.

% Heintel has shown that both the TLS and TML estimators defined below offer superior
mean squared error (Heintel 1995, 1996). See, in addition, Komlos (1985, 1989) and
Heintel, Sandberg and Steckel (1998) for empirical investigations confirming the
unreliability of the QBE.

> By applying the highest-known T to all groups, the artificial impact of potentially different
shortfall patterns in the sub-samples is avoided by “equalizing” the bias over the complete
sample (see Heintel and Baten, 1998, footnote 17, for an interesting study of artificial
correlations if one fails to equalize the bias). When 7is unknown, Heintel’s truncation
point estimator can be used. This procedure first smoothes the histogram of sample
heights using a kernel density estimator, then identifies 7 as the point where the
estimated density’s slope is maximal (i.e., where its first difference is greatest) (Heintel
1996).

® Chung and Goldberger ‘s results apply to a wide variety of selection and censoring rules,
and require only minimal assumptions, not including normality. In the particular case of
interest here, the truncated population slope coefficients can be shown to be biased toward

zero, relative to the complete population slopes. The authors base their discussion on the
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concept of projection. For the connection between projection and LS regression, see Ruud
(2000) Part 1.

" Ruud (2000) Ch. 28 and Greene (1993) Ch. 22 provide more detail.

® If measurements were to the nearest half-centimeter, for example, the truncation point
should be set at 7 - 0.25 cm. Aside from this, rounding has no significant effect on the
performance of the estimators considered here, even if heaping, or the clustering of
observations around particular values such as even integers, may pose more problems.
See Komlos (1999) for a preliminary investigation.

? Examples include ML estimates by Twarog and A’Hearn of time trends in German and
Italian data, respectively. In both cases, heights could fluctuate by as much as 2-3 cm
across five-year birth cohorts, a figure as large as cumulative gains (losses) one would
expect over about two decades of improving (deteriorating) living standards. Twarog
(1997), A’Hearn (forthcoming). In the absence of famine, wars, or comparable events and
their aftermaths, such dramatic and temporary fluctuations in height of a population are
completely implausible.

' Ruud (2001, p. 804) gives an alternative expression for the truncated mean as the
population mean plus a term involving the hazard rate (ratio of pdf to cdf) evaluated at
the population mean, and shows how this equation can be the basis of a feasible weighted
non-linear least squares (FWNLS) estimation procedure. It is further shown that FWNLS
is not efficient, however.

' The simulations were run using code written by the authors for both the CTLS and
RTML estimators in STATA6. STATAT has a built-in TML command (‘“truncreg”),

which can be used subject to any linear constraints.
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'2 For a proof see Judge et al 1988, pp. 235-40.
" The data were smoothed before graphing in this and the other figures.
' The increase in MSE with 0 is seen in the torque of the surface, which twists up in the

back, down in the front from the viewer’s perspective. This effect is pronounced for high

values of T.
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