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Ex Vivo Assessment of Coronary Atherosclerotic Plaque by
Grating-Based Phase-Contrast Computed Tomography

Correlation With Optical Coherence Tomography
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Objectives: The aim of this study was to determine the diagnostic accuracy of
grating-based phase-contrast computed tomography (gb-PCCT) to classify and
quantify coronary vessel characteristics in comparison with optical coherence to-
mography (OCT) and histopathology in an ex vivo setting.
Materials and Methods: After excision from 5 heart specimens, 15 human cor-
onary arteries underwent gb-PCCT examination using an experimental imaging
setup consisting of a rotatingmolybdenum anode x-ray tube, a Talbot-Lau grating
interferometer, and a single photon counting detector. Subsequently, all vessels
were imaged by OCT and histopathologically processed. Optical coherence
tomography, gb-PCCT, and histopathology images were manually matched using
anatomical landmarks. Optical coherence tomography and gb-PCCT were
reviewed by 2 independent observers blinded to histopathology. Vessel, lumen,
and plaque area were measured, and plaque characteristics (lipid rich, calcified,
and fibrous) were determined for each section. Measures of diagnostic accuracy
were derived, applying histopathology as the standard of reference.
Results: Of a total of 286 assessed cross sections, 241 corresponding sections
were included in the statistical analysis. Quantitative measures derived from
gb-PCCTwere significantly higher than fromOCT (P < 0.001) and were strongly
correlated with histopathology (Pearson r ≥0.85 for gb-PCCT and ≥0.61 for
OCT, respectively). Results of Bland-Altman analysis demonstrated smaller
mean differences between OCTand histopathology than for gb-PCCTand histo-
pathology. Limits of agreement were narrower for gb-PCCTwith regard to lumen
area, for OCTwith regard to plaque area, and were comparable with regard to
vessel area. Based on histopathology, 228/241 (94.6%) sections were classified
as fibrous, calcified, or lipid rich. The diagnostic accuracy of gb-PCCTwas
excellent for the detection of all plaque components (sensitivity, ≥0.95; specific-
ity, ≥0.94), whereas the results for OCT showed sensitivities of ≥0.73 and spec-
ificities of ≥0.66.
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Conclusions: In this ex vivo setting, gb-PCCT provides excellent results in the
assessment of coronary atherosclerotic plaque characteristics and vessel dimen-
sions in comparison to OCT and histopathology. Thus, the technique may serve
as adjunct nondestructive modality for advanced plaque characterization in an
experimental setting.

Key Words: x-ray phase-contrast computed tomography, coronary arteries,
optical coherence tomography, atherosclerosis

(Invest Radiol 2017;52: 223–231)

A dvanced imaging techniques have contributed greatly to our
current understanding of the pathophysiology of atherosclerotic

disease initiation and progression. They play a pivotal role in numer-
ous studies including both experimental and clinical research.1,2 In-
travascular imaging techniques such as intravascular ultrasound and
optical coherence tomography (OCT) offer excellent soft tissue con-
trast and spatial resolution, thus allowing for detailed assessment of
atherosclerotic lesions. However, also in an ex vivo setting, they are
limited with regard to penetration depth and 3-dimensional (3D)
assessment of vessel anatomy.3 Thus a noninvasive imaging method
for accurate plaque characterization is desirable. Currently, computed
tomography (CT) and magnetic resonance imaging are the methods
of choice to characterize atherosclerotic plaques noninvasively,
although both suffer from certain limitations. Coronary CT angiogra-
phy allows fast and robust data acquisition and provides excellent in-
sight into the gross vessel anatomy,4 such as vessel lumen or degree
of vessel stenosis. The degree of calcification as assessed by cardiac
CT provides information on the overall extent of coronary atherosclero-
sis and valuable prognostic information.5 However, coronary CT angi-
ography offers only few details on soft plaque composition, because
noncalcified plaque components, including fibrous and fatty tissue,
display substantial overlap in their density profiles and are thus difficult
to differentiate.2,6

Phase-contrast CT is an x-ray–based imaging technique providing
high contrast, including low absorbing materials, such as biological soft
tissue.7,8 Unlike other more common x-ray imaging techniques, the tech-
nique does not rely on x-ray attenuation, but on x-ray phase shift.9,10

Studies have shown that the image contrast of different tissue entities
can be several magnitudes higher in phase-contrast– than in absorption-
contrast–based imaging techniques.2,6,11 Its major limitation was its de-
pendency on monochromatic x-ray sources such as synchrotron radia-
tion, hampering the widespread use of this technology. Recently,
introduced grating-based phase-contrast imaging allows for the use of
polychromatic x-ray sources such as conventional x-ray tubes.9,12 Earlier
studies have demonstrated the potential of grating-based phase-contrast
CT (gb-PCCT) for atherosclerotic plaque assessment using histopathol-
ogy as standard of reference.2 However, the performance of gb-PCCT
in comparison to an established advanced high-resolution imaging mo-
dality, such as OCT, is unknown.

Therefore, the aim of this study was to evaluate the feasibility of
gb-PCCT for the comprehensive assessment of coronary artery
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atherosclerotic plaque in comparison to OCT using histopathology as
the standard of reference.We hypothesized that gb-PCCT provides non-
destructive assessment of vessel dimensions and plaque composition
similar to OCT.
MATERIALS AND METHODS

Study Design and Experimental Setup
The present study was designed as a postmortem, ex vivo exper-

imental study. The project was approved by the local ethics committee
and complies with the Declaration of Helsinki of 1975, as revised in
2008. Heart specimens were provided by the International Institute for
Advancement in Medicine (IIAM, Edison, NJ). Written informed con-
sent to grant tissue for research purposes were obtained by the donor or
the donor's relatives.

Heart specimens were obtained within 24 hours postmortem.
The coronary artery specimens (right coronary artery [RCA], left main
coronary artery [LM], left anterior descending coronary artery [LAD],
and left circumflex coronary artery [LCX]) including parts of the epi-
cardial fat and myocardium were excised and stored in neutral buffered
formalin solution (10%). Specimens were first imaged by OCT as well
as gb-PCCT and underwent histopathology workup. Histopathology,
OCT and gb-PCCT data sets were matched using multiple anatomical
landmarks. Lumen, vessel, and plaque areas were measured in histopa-
thology, OCT, and gb-PCCT independently. Measures of diagnostic ac-
curacy for the detection of calcified, fibrous, and fatty tissue were
obtained for OCT and gb-PCCT using histopathology as the standard
of reference.

Gb-PCCT Experimental Setup and Data Processing
The gb-PCCT setup described in detail in Birnbacher et al13

consisted of an x-ray tube (ENRAF Nonius rotating molybdenum
anode x-ray tube) operating at a voltage of 40 kV and a tube current
of 70 mA. The optical transmission gratings with periods of 5.4 μm
were produced by Microworks (Karlsruhe, Germany). A gold absorp-
tion grating with a height of 50 μm was positioned directly behind the
x-ray source. This grating increases coherence of the x-rays produced
by an incoherent x-ray source. During the penetration of the specimen,
the x-rays experience a phase shift and hit the nickel phase grating
(height, 8 μm), which creates an interference pattern in a certain dis-
tance according to the Talbot effect. This interference pattern carries in-
formation about the structure of the specimen. The analysis of this
pattern requires a third gold analyzer grating (height, 50 μm), which
translates the interference pattern into intensity modulations detectable
by an x-ray detector (single photon counting detector Pilatus II, Dectris,
Baden, Switzerland, 487� 195 pixels, 172� 172 μm2 pixel size).With
an intergrating distance of 87.5 cm, this setup results in a 1.72-fold
magnification and an effective pixel size of 100� 100 μm2. A number
of 1200 projections over 360 degrees were recorded for a full tomo-
graphic scan.12,14 For every 20 projections with specimen, 5 reference
projections without specimen were obtained. The phase grating was
stepped over 1 period for each projection and reference projectionwhile
11 images were acquired. Exposure time per projection was 5 seconds.
For the reconstruction of the phase-contrast data, the standard filtered
backprojection algorithm with an imaginary Hilbert filter was used.
Data were stored in DICOM format.

OCT Experimental Setup
Optical coherence tomography examinations were performed

using an ILUMIEN PCI Optimization System (St Jude Medical Inc,
St Paul, MN) and a Dragonfly Duo OCT Imaging Catheter.15 The spec-
imens were flushed with normal saline to clean the vessel of any re-
maining blood clots. Afterward, the imaging catheter was introduced
as far distally into the vessel as possible. Images were acquired during
224 www.investigativeradiology.com
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an automated pullback (pullback speed, 20 mm/s) over a maximal
length of 50 mm.15 If necessary, several pullbacks were performed to
cover the full length of the vessel. External sutures marked the positions
of the catheter at the beginning and at the end of each pullback. Images
were stored in DICOM format.

Histopathology Workup and Analysis
After completion of all imaging experiments, vessel specimens

were decalcified, dehydrated, and embedded in paraffin. Serial sections
were taken. Thickness of the sections was 10 μm, taken every 1 mm.
Staining was performed with hematoxylin-eosin. Images were scanned
using a dedicated camera (AVT Stingray F-146 Fire Wire CCD, pixel
resolution 0.23 μm; Carl Zeiss, Jena, Germany). The lumen and vessel
borders were manually traced in all cross sections. Atherosclerosis was
defined as the presence of either fibrous (FIB), lipid rich (LIP), or
calcified tissue (CAL) on histopathology. The presence or absence of
each plaque component on a cross-sectional basis was evaluated by a
pathologist withmore than 10 years of experience in vascular pathology
who was blinded to the gb-PCCT and OCT data sets.

Gb-PCCT, OCT, and Histopathology Matching
Optical coherence tomography images, gb-PCCT, and histopathol-

ogy data were manually matched by an independent investigator, whowas
not involved in further analysis, usingmultiple anatomical landmarks, such
as plaque formation, vessel shape and lumen size, bifurcations, as well as
relative distance to side branches and smaller vessels16 (see Supplement 1,
Supplemental Digital Content 1, http://links.lww.com/RLI/A305).

Analysis of Lumen, Vessel, and Plaque Area
Grating-based phase-contrast CT and OCT data were evaluated

several weeks apart by 2 independent observers with more than 5 years
of experience in cardiovascular imaging and substantial expertise in gb-
PCCTand OCT blinded to the histopathology data set. Previously pub-
lished signal criteria were used to identify the lumen and vessel border
in gb-PCCT.2,6,17 The lumen and vessel borders were manually traced
in all corresponding sections for both gb-PCCT and OCT measure-
ments. Details on how measurements were performed can be found in
Supplement 1, Supplemental Digital Content 1, http://links.lww.com/
RLI/A305. Plaque area was calculated by subtracting lumen area from
vessel area for both gb-PCCT and OCT analysis.2,6,17

Plaque Detection and Differentiation
Two experienced observers blinded to the histopathology data

analyzed and classified atherosclerotic plaque and its components.
Using previously found criteria,2,6,17 the presence or absence of athero-
sclerosis and the presence or absence of FIB, LIP, and CAL was
assessed independently by both readers. In case of disagreement, a con-
sensus between the 2 readers was reached by conjoint reading
and discussion.

Statistical Data Analysis
Statistical analyses were performed using “Statistical Package

for the Social Sciences” (SPSS) Version 23 software (IBM, Armonk,
NY). Measurements of diagnostic accuracy, namely, specificity, sensi-
tivity, negative predictive value (NPV), and positive predictive value
(PPV) including 95% confidence intervals (CIs), were calculated. Fur-
thermore, Cohen κ was calculated to assess the agreement of gb-PCCT
and OCTwith histopathology. Normal distributed numerical results are
shown as mean ± standard deviation (SD). For quantitative measures of
lumen, vessel, and plaque area, the mean ± SD was calculated for gb-
PCCTand OCT data, as well as for histopathology data. The Wilcoxon
test was used for the comparison between gb-PCCTandOCT. AP value
of less than 0.05 was used to indicate statistical significance. To evalu-
ate the correlation for gb-PCCT and OCTwith histopathology, Pearson
© 2017 Wolters Kluwer Health, Inc. All rights reserved.
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correlation coefficient rwas calculated and Bland-Altman plot analyses
were performed.

RESULTS
Initially, 286 corresponding gb-PCCT, OCT, and histopathology

cross sections were derived from 15 arteries (n = 5 RCA, n = 5 LM/
LAD, n = 5 LCX). In OCT, 25/286 (8.7%) sections were excluded,
19/286 (6.6%) due to artifacts and 6/286 (2.1%) due to large vessel di-
ameter, respectively. In gb-PCCT, 9/286 (3.1%) sections were excluded,
5/286 (1.7%) due to extensive calcifications and 4/286 (1.4%) due to air
bubbles within the vessel. In histopathology, 11/286 (3.8%) slices
showed substantial artifacts and were not included in the analysis. Thus,
a total number of 241/286 (84.3%) corresponding gb-PCCT, OCT, and
histopathology cross sections were available for analysis (Fig. 1).
Figure 2 shows examples of different plaques in gb-PCCT, OCT, and
histopathology containing different components such as FIB, LIP, and
CAL. Figure 3 shows a longitudinal reconstruction of an LAD and its
corresponding cross sections in gb-PCCT and OCT as well
as histopathology.

Analysis of Lumen, Vessel, and Plaque Area
Mean values of lumen, vessel, and plaque areas in gb-PCCT,

OCT, and histopathology measurements are summarized in Tables 1
and 2. In comparison to histopathology, both gb-PCCT and OCTwere
associated with significantly higher values for lumen, vessel, and
plaque area (P < 0.0001). Furthermore, gb-PCCT measurements pro-
vided higher values for the lumen, vessel, and plaque area than OCT
(P < 0.0001). Therewas a strong correlation between gb-PCCTand his-
topathology (r = 0.90, r = 0.77, and r = 0.89 for lumen, vessel, and
plaque area, respectively, all P < 0.0001) and good correlation between
OCTand histopathology (r = 0.64, r = 0.65, and r = 0.61, respectively,
all P < 0.0001). Bland-Altman plots, indicating mean differences and
limits of agreement for measurements of lumen, plaque, and vessel di-
mensions, for the correlation of gb-PCCTand histopathology as well as
OCT and histopathology are shown in Figures 4 and 5, respectively. In
short, mean differences between OCTand histopathology were smaller
than for gb-PCCT and histopathology. Limits of agreement were
narrower for gb-PCCTwith regard to lumen area, for OCTwith regard
to plaque area, and were comparable with regard to vessel area.

Plaque Detection and Differentiation
According to histopathology, the prevalence of any atheroscle-

rotic plaque was 228/241 (94.6%). Plaque components were detected
as follows: FIB, 228/241 (94.6%); LIP, 74/241 (30.7%); and CAL,
FIGURE 1. Exclusion of cross sections. A total number of 241/286
(84.3%) corresponding cross sections were included in the study and
used for analysis.
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135/241 (56.0%). For gb-PCCT, sensitivities, specificities, PPVs, and
NPVs ranged between 0.88 and 1.00 for all plaque tissues
(P < 0.0001) with κ-values of 0.96 for FIB, 0.97 for CAL, and 0.89
for LIP. For OCT, sensitivities, specificities, PPVs, and NPVs ranged
between 0.60 and 1.00 (P < 0.0001). Diagnostic accuracy was lowest
for the detection of LIP with a sensitivity of 0.80, specificity of 0.69,
PPV of 0.60, and NPV of 0.85 (P < 0.0001); κ-values were 0.81 for
FIB, 0.50 for LIP, and 0.62 for CAL. Details on diagnostic accuracy es-
timates are provided in Tables 3 and 4, respectively.
DISCUSSION
The results of the present study indicate that gb-PCCT is an ac-

curate tool to comprehensively assess coronary atherosclerotic plaque
in comparison with histopathology in an ex vivo setup. In this setting,
gb-PCCT showed higher diagnostic accuracy than OCT for the detec-
tion and differentiation of important atherosclerotic plaque compo-
nents, including fibrous, lipid-rich, and calcified tissue. Furthermore,
gb-PCCT allowed an accurate quantification of vessel, plaque, and lu-
men dimensions with better correlation to histopathology than OCT.

Grating-based phase-contrast imaging has recently been in-
troduced as a novel x-ray–based imaging method that provides addi-
tional value in several areas, including pulmonary18–25 and breast
imaging.26–34 In addition, initial evidence suggests that gb-PCCT
is able to detect and characterize atherosclerotic plaque lesions in
coronary and carotid arteries.6,35 Previous studies were able to show
the superior diagnostic accuracy of gb-PCCT in comparison to con-
ventional absorption CT, for the quantitative and qualitative charac-
terization of atherosclerotic plaques using a high-resolution
synchrotron setup.36 In contrast, gb-PCCT was performed with a
conventional x-ray source in the present study. The use of a conven-
tional x-ray source is associated with a reduced resolution as well as
reduced signal-to-noise ratio.16 However, it has been shown that crit-
ical structures of atherosclerotic plaque can be differentiated using
either x-ray tubes or synchrotron radiation.2,10,36 Furthermore, the
use of a conventional x-ray tube for gb-PCCT may facilitate the
widespread use of this technology due to its independence of syn-
chrotron facilities with limited access and capacities and is also
closer to potential clinical applications. Optical coherence tomography
is an established, accurate imaging tool for the analysis of quantita-
tive vessel parameters, vessel anatomy, and atherosclerotic plaque
lesions.3,37–39 However, the performance of gb-PCCT in a head-
to-head comparison to an established advanced high-resolution
imaging modality, such as OCT, was unknown so far.

Our data show significant absolute differences relative to histo-
pathology for the quantitative assessment of lumen, vessel, and plaque
area for both OCTand gb-PCCT. Average discrepancies were lower for
OCT versus histopathology than gb-PCCT versus histopathology. Most
likely, these discrepancies may be explained by tissue shrinkage during
histopathological workup, which has been documented previously6 and
vessel configuration during the imaging procedure. Furthermore, ob-
served differences between OCT and gb-PCCT may be attributable to
differences in the tilting angle during measurements, limited penetra-
tion depth of OCT that may not have optimally visualized the complete
vessel wall in larger vessels, and outside compression of the vessel dur-
ing the OCTor gb-PCCT imaging process. Thus a comparison of abso-
lute values, absolute differences to histopathology, and also the limits of
agreement in the Bland-Altman analysis have to be regarded and
interpreted with caution. However, despite higher differences in abso-
lute numbers, we observed a better correlation of gb-PCCTwith histo-
pathology than OCTwith histopathology for lumen, vessel, and plaque
underlining the potential for precise quantitative vessel assessment.
Furthermore, gb-PCCT yields complete 3D data sets that allow
multiplanar reformatting (see Fig. 3). Overall, our results suggest that
in an ex vivo setting, gb-PCCT measures of vessel, lumen, and plaque
www.investigativeradiology.com 225
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FIGURE 2. Atherosclerotic plaques of a right coronary artery (RCA) imaged by grating-based phase-contrast computed tomography (A1–A3) and
corresponding cross sections fromOCTmeasurements (B1–B3) and histopathology (hematoxylin-eosin staining) (C1–C3). Panels A1, B1, and C1 show
a fibrous lesion; panels A2, B2, and C2 represent a calcified lesion, whereas panels A3, B3, and C3 show a lipid-rich lesion. Fibrous, calcified, and lipid-rich regions
are marked with white asterisks, white arrows, and white bars, respectively. Figure 2 can be viewed online in color at www.investigativeradiology.com.
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area may serve well to quantitatively assess coronary plaque burden.
Optical coherence tomography is an established high-resolution imag-
ing modality that serves as an in vivo criterion standard for plaque
quantification and its use has greatly contributed to our current under-
standing of the natural history of coronary atherosclerosis.40 Previous
studies could show the potential of OCTas a safe and effective modality
for characterizing coronary atherosclerotic plaques, measuring and de-
tecting cap thickness and visualizing microstructures near the lumen,
226 www.investigativeradiology.com
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for example, erosions or calcified nodules.41 Further studies are neces-
sary to elucidate on the incremental role of OCT and gb-PCCT for ad-
vanced coronary plaque assessment.

It is interesting that gb-PCCT demonstrated high diagnostic ac-
curacy for the detection and differentiation of plaque types, also beyond
OCT. Although imperfect, gb-PCCT provided particularly higher diag-
nostic accuracy for the detection of LIP and CAL. One explanation is
the superior penetration depth provided by gb-PCCTas compared with
© 2017 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 3. Longitudinal reconstruction of a left anterior descending artery (LAD) in grating-based phase-contrast computed tomography (gb-PCCT)
(A) and optical coherence tomography (OCT) (B). Panels A1 to A3 show different cross sections in gb-PCCT of the LAD with a lipid-rich plaque (A1), a
calcified plaque (A2), and a fibrous plaque (A3). Panels B1 to B3 show the corresponding sections in OCT. Panels C1 to C3 show the corresponding
sections in histopathology (hematoxylin-eosin staining). In gb-PCCT, a 3D data set is acquired allowing for multiplanar reformatting and thus correct
geometrical reconstruction of the vessel. OCT data does not contain complete 3D information; therefore, the longitudinal reconstruction of the vessel
appears stretched and does not contain information about side branches. Figure 3 can be viewed online in color at www.investigativeradiology.com.
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OCT, one of the well-known limitation of OCT.41 Furthermore, with a
field of view (FOV) of 12 cm2, gb-PCCT provides images that cover
the entire vessel cross section, whereas the ability of OCT to visualize
vessel cross sections with an FOVof approximately 20 mm (scan di-
ameter, 10 mm) is limited. This aspect is highlighted in Figure 6,
demonstrating the limited penetration depth of OCT in comparison to
gb-PCCT particularly in large vessels. Moreover, the limited FOVand
penetration depth of OCT resulted in a relatively high number of
TABLE 1. Quantitative Measures of Lumen, Vessel, and Plaque Area
by gb-PCCT in Comparison to Histopathology

Area, mm2 gb-PCCT Histopathology Difference P Pearson r

Lumen 5.5 ± 4.1 3.9 ± 3.2 1.6 ± 0.9 <0.0001 0.85
Vessel 23.3 ± 14.6 14.3 ± 9.3 9.0 ± 5.3 <0.0001 0.91
Plaque 17.9 ± 11.5 10.3 ± 6.9 7.6 ± 4.6 <0.0001 0.87

gb-PCCT indicates grating-based phase-contrast computed tomography.

© 2017 Wolters Kluwer Health, Inc. All rights reserved.
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artifacts and the exclusion of multiple sections. Only few cross sections
had to be excluded in gb-PCCT due to artifacts caused by small angle
scattering at heavy calcifications, an example is shown in Supplement 2,
Supplemental Digital Content 2, http://links.lww.com/RLI/A306. Thus,
gb-PCCT may be advantageous for the assessment of large vessels,
whereas both techniques provide similar feasibility in smaller vessels.

Notably, OCT is associated with a higher in-plane resolution,
which may be advantageous in some applications. Our gb-PCCT
TABLE 2. Quantitative Measures of Lumen, Vessel, and Plaque Area
by OCT in Comparison to Histopathology

Area, mm2 OCT Histopathology Difference P Pearson r

Lumen 4.6 ± 3.0 3.9 ± 3.2 0.7 ± 0.2 <0.0001 0.64
Vessel 18.9 ± 7.8 14.3 ± 9.3 4.6 ± 1.5 <0.0001 0.65
Plaque 14.3 ± 5.5 10.3 ± 6.9 4.0 ± 1.4 <0.0001 0.61

OCT indicates optical coherence tomography.

www.investigativeradiology.com 227
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FIGURE 4. Scatter plots and Bland-Altman plots of quantitative measurements of lumen area, plaque area, and vessel area in grating-based
phase-contrast computed tomography in comparison to histopathology measurements.

Habbel et al Investigative Radiology • Volume 52, Number 4, April 2017
measurements were performed with an effective voxel size of 1003 μm3

due to sample magnification of 1.72 in the setup, whereas the axial res-
olution of our OCTmeasurements was 152 μm2.15 Therefore, OCTmay
be more useful for the characterization of smaller sized fibrous caps or
macrophage imaging, which may be very relevant for distinct
histopathological questions.42

It needs to be highlighted that gb-PCCT is an ex vivo imaging
method with a setup not optimized for image acquisition time and radi-
ation dose, which may certainly not be applicable to an in vivo imaging
setting. The tube voltage of 40 kVp is not sufficient for imaging tissues
thicker than a few centimeters; thus for an in vivo imaging application
in humans, further studies are needed. There are reports on successful
translation of the gb-PCCT toward applications in humans; this in-
cludes developments toward, for example, the clinical dose compatible
breast imaging32 or increasing FOV.43 Advances in novel monochro-
matic and compact x-ray sources44 might help to overcome the current
limitations of the gb-PCCT imaging and open completely new
228 www.investigativeradiology.com
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perspectives in a preclinical and clinical setting. Furthermore, gb-
PCCT is not only able to acquire phase and absorption contrast data
simultaneously but also information on small angle scattering, the
so-called dark field signal. Recently, the feasibility of the technique
in an in vivo small-animal setting has been shown.45 This signal
might be especially of interest in imaging microcalcifications,46,47

which have been associated with plaque instability.48,49 Given the
aforementioned obstacles in acquiring the phase information signal
in an in vivo setting, the dark field signal might be of special inter-
est because it will potentially allow assessing microstructural
changes much below the resolution of the imaging system. This is-
sue has not been the focus of the present study but is subject to on-
going research. Advances in spectrum filtering, use of higher photon
energies, applications of advanced stepping or Fourier-transformmethods,
increased pixel size, detectors with higher detection efficiency, and
further measures to overcome these limitations are the focus of
current research.
© 2017 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 5. Scatter plots and Bland-Altman plots of quantitative measurements of lumen area, plaque area, and vessel area in optical coherence
tomography in comparison to histopathology measurements.
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Although the widespread use of gb-PCCT due to the necessary
experimental setup is certainly limited at this point of time, there are
several potential applications of this imaging method, including
TABLE 3. Diagnostic Accuracy of gb-PCCT

Plaque Component Sensitivity (95% CI) Specificity (95% CI)

Fibrous tissue 0.98 (0.96–0.99) 1.00 (0.92–1.00)
Lipid-rich tissue 0.95 (0.89–0.98) 0.95 (0.90–0.97)
Calcified tissue 1.00 (0.97–1.00) 0.99 (0.95–0.99)

gb-PCCT indicates grating-based phase-contrast computed tomography; CI, confid

© 2017 Wolters Kluwer Health, Inc. All rights reserved.
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assessment of effects of novel pharmaceutical therapies ex vivo in ani-
mal models.50 Questions on the natural history relying on the 3D con-
figuration of plaque may be particularly relevant for gb-PCCT.
PPV (95% CI) NPV (95% CI) κ P

1.00 (0.98–1.00) 0.94 (0.88–0.98) 0.96 <0.0001
0.88 (0.81–0.94) 0.98 (0.94–0.99) 0.89 <0.0001
0.99 (0.96–0.99) 1.00 (0.97–1.00) 0.97 <0.0001

ence interval; PPV, positive predictive value; NPV, negative predictive value.
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TABLE 4. Diagnostic Accuracy of OCT

Plaque Component Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) κ P

Fibrous tissue 1.00 (0.97–1.00) 0.66 (0.35–0.88) 0.98 (0.93–0.98) 1.00 (0.59–1.00) 0.81 <0.0001
Lipid-rich tissue 0.80 (0.70–0.88) 0.69 (0.61–0.76) 0.60 (0.51–0.69) 0.85 (0.78–0.92) 0.50 <0.0001
Calcified tissue 0.73 (0.65–0.79) 0.98 (0.91–0.99) 0.99 (0.95–0.99) 0.61 (0.52–0.70) 0.62 <0.0001

OCT indicates optical coherence tomography; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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However, further advances alsowith respect to standardization of image
acquisition parameters are strongly warranted.

Limitation
Our results are derived from ex vivo formalin-fixated specimens,

and thus, there may be differences to non–formalin-affected tissues.
However, the study setup was not feasible to examine nonfixated sam-
ples, due to long acquisition times and the time intervals between prep-
aration and scanning. A recent gb-PCCT–based study on fixated and
nonfixated soft tissue suggested that fixation induces only minimal
changes in quantitative tissue values.51 Misregistration of the different
imaging modalities may have occurred; however, similar to previous re-
search, coregistration relied on vessel landmarks, such as side branches.
In addition, we included a relatively small number of samples, which
FIGURE 6. Stenosing atherosclerotic lesion (A1–A3), and a vessel with large d
phase-contrast computed tomography (gb-PCCT) (A1 and B1), and the corre
(hematoxylin-eosin staining) (A3 and B3). These images demonstrate the low p
OCT in vessels with large diameters (B1–B3). OCT is unable to depict the enti
cover the entire vessel diameter. Figure 6 can be viewed online in color at ww
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limited our ability to perform more stratified subanalysis. Thus, our re-
sults provide some initial evidence on the feasibility of gb-PCCT for
plaque assessment in comparison with OCT and are rather hypothesis
generation. Clearly, confirmatory and more detailed research on spe-
cific questions is warranted.
CONCLUSIONS
In conclusion, gb-PCCT provides accurate assessment of coro-

nary atherosclerotic plaque incremental to OCTex vivo. Thus, the tech-
nique may be applied as a feasible, nondestructive modality for
advanced plaque characterization in an experimental setting.
iameter (B1–B3) in a left artery descending (LAD) in grating-based
sponding cross sections from OCT (A2 and B2) and histopathology
enetration depth of OCT in comparison to gb-PCCT and the limitations of
re vessel wall measured (B2), whereas the gb-PCCT acquired data (A2)
w.investigativeradiology.com.
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