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Clinical and genetic characteristics of
sporadic adult-onset degenerative ataxia

ABSTRACT

Objective: To define the clinical phenotype and natural history of sporadic adult-onset degenera-
tive ataxia and to identify putative disease-causing mutations.

Methods: The primary measure of disease severity was the Scale for the Assessment and Rating of
Ataxia (SARA). DNA samples were screened for mutations using a high-coverage ataxia-specific
gene panel in combination with next-generation sequencing.

Results: The analysis was performed on 249 participants. Among them, 83met diagnostic criteria
of clinically probable multiple system atrophy cerebellar type (MSA-C) at baseline and another
12 during follow-up. Positive MSA-C criteria (4.94 6 0.74, p , 0.0001) and disease duration
(0.226 0.06 per additional year, p5 0.0007) were associated with a higher SARA score. Forty-
eight participants who did not fulfill MSA-C criteria and had a disease duration of.10 years were
designated sporadic adult-onset ataxia of unknown etiology/non-MSA (SAOA/non-MSA). Com-
pared with MSA-C, SAOA/non-MSA patients had lower SARA scores (13.66 6.0 vs 16.06 5.8,
p 5 0.0200) and a slower annual SARA increase (1.1 6 2.3 vs 3.3 6 3.2, p 5 0.0013). In 11 of
194 tested participants (6%), a definitive or probable genetic diagnosis was made.

Conclusions: Our study provides quantitative data on the clinical phenotype and progression of
sporadic ataxia with adult onset. Screening for causative mutations with a gene panel approach
yielded a genetic diagnosis in 6% of the cohort.

ClinicalTrials.gov registration: NCT02701036. Neurology® 2017;89:1043–1049

GLOSSARY
INAS 5 Inventory of Non-Ataxia Signs; MSA 5 multiple system atrophy; MSA-C 5 multiple system atrophy cerebellar type;
PHQ-9 5 Patient’s Health Questionnaire; SAOA 5 sporadic adult-onset ataxia of unknown etiology; SARA 5 Scale for the
Assessment and Rating of Ataxia; UMSARS 5 Unified MSA Rating Scale; VAS 5 visual analog scale; VUS 5 variant of
uncertain clinical significance; WES 5 whole-exome sequencing.

Patients with progressive, adult-onset, nonfamilial ataxia may have an acquired ataxia. Others
have a genetic cause despite a negative family history.1–3 In most of them, however, a cause
of ataxia cannot be identified, suggesting a sporadic neurodegenerative disease. In one group, the
underlying disease is multiple system atrophy cerebellar type (MSA-C) clinically characterized
by severe autonomic failure. Although a definitive diagnosis of MSA requires demonstration of
oligodendroglial inclusions at autopsy,4,5 a probable diagnosis can be made with high predictive
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accuracy on clinical grounds.6 However, sen-
sitivity of clinical criteria in early stages is
low.6,7 The second group, sporadic adult-
onset ataxia of unknown etiology (SAOA), is
distinguished from MSA-C by the absence of
severe autonomic failure.8,9 Because severe
autonomic failure may manifest years after
ataxia,10 a portion of SAOA patients will later
turn out to have MSA. The reported preva-
lence rates of sporadic ataxias range from 2.2
to 12.4: 100,000. Thus, they are more fre-
quent than hereditary ataxias.11–14

Knowledge of the clinical phenotype and
natural history of sporadic adult-onset degener-
ative ataxia are limited.10,15,16 We therefore
created SPORTAX, a registry of sporadic
adult-onset degenerative ataxia. We present
cross-sectional and longitudinal clinical data
of 249 SPORTAX participants. We aimed to
address the following objectives: to determine
the proportion of MSA-C among patients with
sporadic ataxia; to compare the phenotype and
natural history of MSA-C and SAOA; to iden-
tify determinants of disease severity in sporadic
ataxia; and to identify putative disease-causing
mutations using an ataxia-specific gene panel.

METHODS Inclusion of study participants into the SPORTAX

registry started on April 1, 2010. We recruited participants from

ataxia clinics at 14 European centers. Inclusion criteria were as

follows: (1) progressive ataxia, (2) ataxia onset after age 40, (3)

informative and negative family history (no similar disorders in

first- and second-degree relatives; parents older than 50 years,

or, if not alive, age at death of more than 50 years, no consan-

guinity of parents), and (4) no established acquired cause of ataxia.

Details of required workup are given in table e-1 at Neurology.org.

Follow-up assessments were done whenever a registered patient

revisited the respective study center, if possible on an annual basis.

Data download was performed on March 18, 2016.

The primary measure of disease severity was the Scale for the

Assessment and Rating of Ataxia (SARA).17 We additionally used

the Unified MSA Rating Scale parts I and II (UMSARS-I and II).18

We assessed symptoms other than ataxia with the Inventory of

Non-Ataxia Signs (INAS).19 As a measure of health-related quality

of life, we applied EQ-5D. EQ-5D includes a visual analog scale

(EQ-5D VAS) that yields a number out of 0–100 between the

anchors “worst imaginable health state” (0) and “best imaginable

health state” (100).20 Assessment of depressive symptoms was done

using the Patient’s Health Questionnaire (PHQ-9). To determine

the proportion of patients with clinically relevant depressive symp-

toms, we used a cutoff score of PHQ-9 .9. All investigators were

experienced in the use of the applied scales.21

We screened genomic DNA samples prepared from whole

EDTA blood for a high-coverage custom HaloPlex gene panel

(Agilent, Santa Clara, CA) using an NextSeq500 sequencer (Illu-

mina, San Diego, CA) and paired-end 2 3 150 bp sequencing

(671-kb target size). The panel included 201 genes associated

with ataxia (table e-2). The mean vertical coverage was 413 reads,

and a minimal coverage of 20 reads was achieved for 98.8% of the

target region. The bioinformatic pipeline included read mapping

with Burrows-Wheeler-Aligner and variant calling with Free-

Bayes. A total of 417–541 variants were identified in the target

region (467 on average) and consecutively filtered for low pop-

ulation frequency (,1% in ExAC, 1000 Genomes, ESP6500)

and for frameshift, nonsense, splicing, or missense variants. All

variants were annotated with available mutation database infor-

mation (HGMD professional, ClinVar) to identify known rare

variants with pathogenicity. We used in silico prediction and

conservation tools (SIFT, PolyPhen, MutationTaster, and Phy-

loP) to further evaluate rare missense variants.

Variants were classified following the joint consensus recom-

mendation of the American College of Medical Genetics and

Genomics and the Association for Molecular Pathology as path-

ogenic, likely pathogenic, variant of uncertain clinical significance

(VUS), likely benign, and benign.22 Rare variants with published

evidence for a disease-causing effect were considered either path-

ogenic or likely pathogenic depending on the amount of pub-

lished evidence. Variants were classified as likely pathogenic when

they were rare (minor allele frequency ,1% in public databases)

and had a strong effect on protein function (frameshift variant,

nonsense variant, or splicing variant at the consensus site within 2

bp from exon-intron boundaries), but no or insufficient pub-

lished evidence. Missense variants that did not fulfill the criteria

of likely pathogenicity were assigned as VUS.

Based on the genetic findings and clinical phenotype, study

participants were assigned to definitive genetic diagnosis, proba-

ble genetic diagnosis, and no genetic diagnosis. A definitive

genetic diagnosis was assumed when participants had pathogenic

or likely pathogenic variants including an ultrarare VUS in one

patient with 2 heterozygous variants in the ATM gene and a per-

fectly compatible phenotype. A probable genetic diagnosis was

assumed for patients with pathogenic or likely pathogenic variants

and less consistent phenotypes. All others were assigned to the

group without genetic diagnosis.

An analysis of covariance was performed with the SARA score

as the dependent variable and sex, age at onset, disease duration,

and fulfillment of probable MSA-C criteria as independent vari-

ables. A multivariate model included variables with a p value

,0.10 in univariate analysis, and a backward selection procedure

was carried on. Comparisons between subgroups of patients were

made using the Student t test for the quantitative variables and
the x2 or Fisher exact test for the qualitative variables. To estimate

the annual increases of the clinical scores, the difference in the

clinical score between baseline and the first follow-up visit was

divided by the time interval. Statistical analyses were performed

with SAS 9.4 software (SAS Institute, Cary, NC). All tests were 2

sided. Test results were considered significant at the 0.05 level.

Standard protocol approvals, registrations, and patient
consents. The study was approved by the local ethics commit-

tees. All participants provided written informed consent. This

study is registered with ClinicalTrials.gov (NCT02701036).

RESULTS Demographic and clinical data of the study
population are given in table 1. In 122, at least one
follow-up visit was recorded, resulting in 197 follow-up
visits. Flowcharts detailing the number of patients seen
in each year following inclusion are given in table e-3.

At baseline, 83 patients met diagnostic criteria of
probable MSA-C. Because these criteria have a high
predictive value, we classified them as MSA-C. Of
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the remaining 166 patients, 24 met criteria of possible
MSA.6 We assigned these patients to the SAOA
group because the criteria for possible MSA have
a low predictive value for MSA. During follow-up,
12 SAOA patients developed severe autonomic fail-
ure, thus meeting criteria of probable MSA-C. The
median latency from onset until conversion to MSA
was 4 years (range: 2–12 years). Only 1 of the 12
converters developed severe autonomic failure later
than 10 years after ataxia onset. Six of these converters
(50%) met criteria of possible MSA at baseline.

To identify factors that determined the severity of
ataxia at baseline, we performed an analysis of covari-
ance with the SARA score as the dependent variable
and sex, age at onset, disease duration, and positive
MSA-C criteria as independent variables. In the final
multivariate model, positive MSA-C criteria and

disease duration were associated with a higher SARA
score (table 2).

The observation that some SAOA patients con-
verted to (probable) MSA-C indicates that SAOA
can be subdivided into a group that actually has
MSA-C, although diagnostic criteria are not yet ful-
filled, and another group that has a disorder that is
distinct from MSA-C. Based on the observation that
only 1 of 12 converters converted later than 10 years
after disease onset, we defined a subgroup of 48
SAOA patients who had a disease duration of at least
10 years and designated them SAOA/non-MSA (table
1). Two of them (4%) met criteria of possible MSA at
baseline.

Although the disease duration of the SAOA/non-
MSA patients was more than 10 years longer than
that of the patients with MSA, their disease pheno-
type was milder, indicated by lower SARA,
UMSARS-I, and UMSARS-II scores and a lower
INAS count (table 1). In addition, health-related
quality of life was less compromised in SAOA/non-
MSA than in MSA-C, as indicated by a lower EQ-5D
value and higher EQ-5D VAS values (table 1). By
contrast, the PHQ-9 sum score did not differ
between SAOA/non-MSA and MSA-C (table 1).
Correspondingly, the proportion of patients with
clinically relevant depressive symptoms defined by
a PHQ-9 sum score .9 was similar in SAOA/non-
MSA and MSA-C (table 1).

The frequency of single nonataxia symptoms was
similar in SAOA/non-MSA and MSA-C with the
exceptions of hyperreflexia, rigidity, and urinary dys-
function, which were less frequent in SAOA/non-
MSA than in probable MSA-C (table 3). Urinary
dysfunction had a similar distribution between male
and female participants (8 SAOA/non-MSA male
(29%) vs 9 female (45%) p , 0.0001; 46 MSA-C
male (84%) vs 35 female (88%), p 5 0.0004).

Longitudinal data were available for 35 SAOA/
non-MSA and 36 MSA-C patients. Annual increases
of the SARA, UMSARS-I, and UMSARS-II scores
were lower in SAOA/non-MSA than in MSA-C. By

Table 1 Cohort characteristics at baseline

SPORTAX SAOA/non-MSA MSA-C p Value

No. 249 48 95

Men 149 (60) 28 (58) 55 (58) 0.9600

Age, y 65.2 6 8.7 69.5 6 8.1 63.9 6 8.5 0.0004

Age at onset, y 56.5 6 8.7 52.3 6 8.5 56.9 6 8.3 0.0013

Disease duration, y 6.4 6 5.5 14.9 6 5.7 4.6 6 3.0 ,0.0001

SARA 13.6 6 5.8 13.6 6 6.0 16.0 6 5.8 0.0200

UMSARS-I 13.9 6 8.1 11.5 6 6.1 19.3 6 8.8 ,0.0001

UMSARS-II 17.0 6 7.4 16.5 6 6.5 20.8 6 7.6 0.0010

INAS 2.9 6 1.8 2.7 6 1.8 3.7 6 1.8 0.0013

EQ-5D 3.3 6 1.7 3.0 6 1.8 3.8 6 1.7 0.0118

EQ-5D VAS 54 6 22 60 6 19 47 6 20 0.0013

PHQ-9 7.2 6 5.0 6.6 6 4.9 7.8 6 5.0 0.2407

PHQ-9 >9 63 (30) 15 (35) 25 (32) 0.7159

Abbreviations: INAS 5 Inventory of Non-Ataxia Signs; MSA-C 5 multiple system atrophy,
cerebellar type; PHQ-9 5 Patient’s Health Questionnaire; SAOA/non-MSA 5 sporadic adult-
onset ataxia of unknown etiology/nonmultiple system atrophy; SARA 5 Scale for the
Assessment and Rating of Ataxia; UMSARS 5 Unified MSA Rating Scale.
Data are given as mean 6 SE or n (%). p Values relate to comparison between SAOA/non-
MSA and MSA-C.

Table 2 Determinants of severity of ataxia at baseline

Univariate Multivariate

Parameter 95% CI p Value Parameter 95% CI p Value

Intercept 10.6 6 0.6 9.47–11.81

Sex (female) 0.98 6 0.76 20.51 to 2.47 0.1973

MSA-C criteria positive 4.40 6 0.74 2.95 to 5.85 ,0.0001 4.94 6 0.74 3.49–6.40 ,0.0001

Age at onset 20.03 6 0.04 20.12 to 0.05 0.4202

Disease duration 0.13 6 0.07 20.003 to 0.26 0.0562 0.22 6 0.06 0.09–0.35 0.0007

Abbreviations: CI 5 confidence interval; MSA-C 5 multiple system atrophy cerebellar type.
Parameters are given as mean 6 SE.

Neurology 89 September 5, 2017 1045

ª 2017 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.



contrast, there was no difference between the annual
changes of the INAS count, EQ-5D value, EQ-5D
VAS, and PHQ-9 sum score (table 4).

DNA for genetic analysis was available in 194
study participants. In 6 (3%), a definitive genetic
diagnosis was made. In 3 of them, we found variants
in recessive genes (ATM, 2x SPG7), in the remaining
3, in dominant genes (2x CACNA1A, TRPC3/

SCA41). In another 5 (3%), a probable genetic diag-
nosis was made. In 3 of them, we found variants in
recessive genes (ADCK3, POLG, SNX14), in the re-
maining 2, in dominant genes (CACNA1A, OPA1).
Thus, the total number of definitive or probable
genetic diagnoses was 11 (6%). In addition, we found
17 interesting variants in 16 probands, which did not
result in a definite or probable genetic diagnosis.
Three variants were rated as pathogenic (GBA com-
pound heterozygous with a GBA VUS, 2xOPA1) and
14 as VUS (ATPB3, 2x COQ2, ELOVL5, GBA,
OPA1, 8x SPTBN2).

Three of the participants with a genetic diagnosis
fulfilled MSA-C criteria. The affected genes included
ATM, POLG, and CACNA1A. The proportion of pa-
tients with a genetic diagnosis was higher in SAOA/
non-MSA than in MSA-C, but the difference was not
significant (9% vs 4%, p 5 0.2376). A full account of
the clinical and genetic findings of the patients with
a genetic diagnosis is given in tables e-4 and e-5.

DISCUSSION This study provides clinical and
genetic data from a large multicenter cohort of 249
participants with sporadic adult-onset degenerative
ataxia. Strengths of our study include the large
number of patients, the use of validated scales, and
the systematic genetic testing. Although great efforts
were taken to exclude patients with acquired ataxia,
we cannot rule out that some of the participants had
an immune-mediate ataxia. Limitations of our study
are limited follow-up and lack of neuropathologic
data. As we have no autopsy confirmation, there re-
mains uncertainty about the final neuropathologic
diagnosis. For the diagnosis of MSA, we relied on
consensus criteria, which are based on previous
clinical-pathologic correlation studies.6 The accuracy
of a clinical diagnosis of MSA is high with positive
predictive values ranging from 86% to 100%,7,16,23

suggesting that most study participants with clinically
probable MSA-C indeed had MSA. The neuropath-
ologic substrate of ataxia in participants who did not
meet MSA criteria remains unknown.

Approximately 40% of the cohort met MSA-C
diagnostic criteria. For the inclusion in SPORTAX,
we adopted an age at onset of 40 years, which is high-
er than that in previously published criteria for
SAOA.3 Inclusion of patients with an earlier onset
than 40 years had presumably decreased the percent-
age of MSA-C. In the 12 participants who converted
to MSA-C, the median latency from onset to occur-
rence of severe autonomic failure was 4 years. These
data are in good agreement with 2 previous stud-
ies.10,15 Occurrence of autonomic failure in MSA
more than 10 years after onset of motor symptoms
is extremely rare.24 To select SAOA patients who were
unlikely to convert to MSA-C, we defined a cutoff of

Table 3 Frequency of nonataxia symptoms

SAOA/non-MSA (n 5 48) MSA-C (n 5 95) p Value

Hyperreflexia 10 (21) 40 (42) 0.0118

Areflexia 11 (23) 16 (17) 0.3808

Extensor plantar reflex 9 (19) 17 (18) 0.9228

Spasticity 14 (29) 22 (23) 0.4343

Paresis 2 (4) 6 (6) 0.7180

Muscle atrophy 7 (15) 8 (8) 0.2561

Fasciculationa 2 (4) 10 (11) 0.3378

Myoclonusa 0 (0) 2 (2) 0.5509

Rigidity 3 (6) 27 (28) 0.0021

Chorea/dyskinesiaa 1 (2) 1 (1) 1.0000

Dystoniaa 2 (4) 6 (6) 0.7180

Resting tremor 2 (4) 14 (15) 0.0583

Impaired vibration sense 37 (79) 68 (72) 0.3614

Urinary dysfunction 17 (35) 81 (85) ,0.0001

Cognitive impairment 7 (15) 25 (27) 0.1051

Brainstem oculomotor signsa 5 (10) 8 (8) 0.7611

Abbreviations: MSA-C 5 multiple system atrophy, cerebellar type; SAOA/non-MSA 5 spo-
radic adult-onset ataxia of unknown etiology/non-multiple system atrophy.
Data are given as n (%). Comparisons were made using the Pearson x2 test.
a The Fisher exact test was used for small samples.

Table 4 Annual increase of the outcome
measures

SAOA/non-MSA MSA-C p Value

No. 35 36

SARA 1.1 6 2.3 3.3 6 3.2 0.00133

UMSARS-I 1.0 6 2.0 4.7 6 4.0 0.00001

UMSARS-II 1.2 6 2.9 5.3 6 4.5 0.00005

INAS 0.1 6 0.8 0.0 6 1.4 0.75528

EQ-5D 0.1 6 0.9 0.2 6 1.5 0.83675

EQ-5D VAS 21.1 6 19.7 4.5 6 32.4 0.43966

PHQ-9 20.6 6 2.6 0.0 6 6.6 0.63337

Abbreviations: INAS 5 Inventory of Non-Ataxia Signs;
MSA-C 5 multiple system atrophy, cerebellar type; PHQ-9
5 Patient’s Health Questionnaire; SAOA/non-MSA 5 spo-
radic adult-onset ataxia of unknown etiology/non-multiple
system atrophy; SARA 5 Scale for the Assessment and
Rating of Ataxia; UMSARS 5 Unified MSA Rating Scale.
Data are given as mean 6 SD.
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10 years after onset and designated them as SAOA/
non-MSA.

Compared with MSA-C, SAOA/non-MSA pa-
tients had a less severe phenotype and slower progres-
sion. A milder phenotype was proven by lower SARA
and UMSARS scores, a lower INAS count and a higher
estimate of health-related quality of life despite the lon-
ger disease duration. Although longitudinal data are
limited so far, they showed a smaller annual increase
of the SARA and UMSARS scores in SAOA/non-
MSA compared with MSA-C. The increase of the total
UMSARS score in the MSA-C patients (10.0/12
months) is in good agreement with that of a prospective
study of 141 patients with MSA (21.9/24 months).25

The serious nature of MSA-C is further underlined by
the finding that positive diagnostic criteria for MSA-C
were a major determinant of ataxia severity. These
findings are in line with studies of smaller cohorts that
reported significantly better survival in SAOA/non-
MSA than in MSA-C.10,15,16

Although ataxia was the prominent symptom in all
participants, the majority had additional neurologic
symptoms. Among the 16 assessed symptoms, hyper-
reflexia, rigidity, and urinary dysfunction were more
frequent in MSA-C. Similarly, autonomic symptoms
including urinary urgency and incontinence were
more frequently encountered in a study that com-
pared 53 MSA-C with 12 SAOA patients.16 How-
ever, the higher prevalence of urinary dysfunction
and rigidity in MSA-C is explained by the applied
diagnostic criteria.6 Thus, hyperreflexia was the only
phenotypic difference between MSA-C and SAOA/
non-MSA that we identified a posteriori.

As MSA-C and SAOA/non-MSA have a different
prognosis, it would be useful to identify indicators
that allow to predict whether an individual SAOA
patient will convert to MSA-C or remain perma-
nently free of severe autonomic failure resulting in
a diagnosis of SAOA/non-MSA. To date, the number
of follow-up visits in the SPORTAX cohort is limited
so that the statistical power to identify such indicators
is insufficient. However, we noted that 50% of the
converters met criteria of possible MSA at baseline,
whereas this proportion was only 4% in the partici-
pants with SAOA/non-MSA.6

Using a gene panel that included 201 genes asso-
ciated with ataxia, we were able to make a definitive
or probable genetic diagnosis in 11 of 194 (6%)
tested participants. This is by far the largest group
of patients with adult-onset sporadic ataxia that
underwent systematic genetic testing. To reduce the
likelihood of including patients with unrecognized
familial forms of ataxia, we used strict inclusion crite-
ria. In addition, all study participants were negatively
tested for the common repeat mutations causing
ataxia. Previous studies that looked for repeat

mutations in patients with adult-onset sporadic ataxia
reported prevalence rates ranging from 10% to
19%.1–3 Combining these results with those of the
present study, one can conclude that a 2-stage genetic
diagnostic approach including search for common
repeat mutations followed by an ataxia-specific gene
panel will result in a genetic diagnosis in 15%–24%
of patients with sporadic adult-onset ataxia. We did
not screen for mitochondrial mutations, so we cannot
rule out that single patients had mitochondrial
disorders.

The genes that we identified by gene panel diag-
nostics included both recessive and dominant genes.
A late onset of disease has been described for many
recessive ataxias. Dominant mutations in sporadic
disease can be explained by a new mutation, reduced
penetrance, or misattributed paternity. As studies of
family members were not possible in SPORTAX,
the mechanisms underlying the occurrence of domi-
nant mutations in our cohort remain unresolved. A
relatively high number of VUS with damaging in sil-
ico prediction was observed, especially in the OPA1
and the SPTBN2 genes. Because we could not initiate
further family investigations, this observation remains
remarkable, but needs to be addressed systematically
in follow-up studies.

In 4% of the patients who fulfilled clinical diag-
nostic criteria of MSA-C, the gene panel analysis
led to a genetic diagnosis. Rare families with definitive
MSA have been reported, and presumably causative
mutations of the COQ2 gene have been identified
in 2 Japanese MSA families.26 COQ2 was included
in our gene panel, but variants with suspected path-
ogenicity were not found. Variants were rather found
in ATM, POLG, and CACNA1A. Because the MSA
diagnoses were not confirmed by autopsy, there is no
proof that the participants fulfilling clinical MSA-C
criteria had MSA. It is more likely that they represent
MSA phenocopies.

Systematic genetic testing of patients with adult-
onset sporadic ataxia has been previously performed
in 2 smaller studies that used whole-exome sequenc-
ing (WES). Among 25 patients with sporadic ataxia
with onset after age 20, 3 (12%) had pathogenic var-
iants and 8 (32%) variants of uncertain significance or
potential pathogenicity.27 In a study of 12 patients
with sporadic ataxia with onset after age 30, 4 (33%)
had pathogenic mutations.28 The higher proportion
of genetic diagnosis in these studies may be due to the
inclusion of patients with lower age at onset, and by
less restrictive criteria for pathogenicity. In one of
these studies, 6 rare homozygous mutations in reces-
sive genes typically seen in consanguineous popula-
tions were identified, which have not been enriched
in our central European cohort.27 A general sensitivity
issue in our approach compared with the published
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WES studies is not likely because all disease genes
identified in these studies were included and
sequenced at high quality. In all 3 studies, there was
a high degree of heterogeneity of the genetic findings,
and many genes were found only in single patients.
Those that appear to be most frequently associated
with adult-onset sporadic ataxia are CACNA1A and
SPG7.

Our analysis of baseline and longitudinal data of
the SPORTAX cohort provide a detailed quantitative
account of the clinical phenotype and natural history
of sporadic ataxias with adult onset. Our results give
useful information for the counseling of patients.
The finding that application of an ataxia-specific gene
panel established a genetic diagnosis in 6% of the
cohort has important implications for the diagnostic
approach in patients with sporadic ataxia.
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