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Neurofilament as a blood marker for
diagnosis and monitoring of primary
progressive aphasias

ABSTRACT

Objective: To assess the utility of serum neurofilament for diagnosis and monitoring of primary
progressive aphasia (PPA) variants.

Methods: We investigated neurofilament light chain (NF-L) levels in blood of 99 patients with PPA
(40 with nonfluent variant PPA [nfvPPA], 38 with semantic variant PPA [svPPA], 21 with logo-
penic variant PPA [lvPPA]) and compared diagnostic performance with that reached by CSF
NF-L, phosphorylated neurofilament heavy chain (pNF-H), b-amyloid (Ab1-42), tau, and phosphor-
ylated tau. The longitudinal change of blood NF-L levels was measured and analyzed for correla-
tion with functional decline and brain atrophy.

Results: Serum NF-L is increased in PPA compared to controls and discriminates between
nfvPPA/svPPA and lvPPA with 81% sensitivity and 67% specificity (cutoff 31 pg/mL). CSF
NF-L, pNF-H, tau, phosphorylated tau, and Ab1-42 achieved similar performance, and pNF-H
was the only marker for discrimination of nfvPPA from svPPA/lvPPA. In most patients with nfvPPA
and svPPA, but not lvPPA, serum NF-L increased within follow-up. The increase correlated with
functional decline and progression of atrophy of the left frontal lobe of all patients with PPAs and
the right middle frontal gyrus of patients with nfvPPA and svPPA.

Conclusions: Blood level of NF-L can aid the differential diagnosis of PPA variants, especially in
combination with CSF pNF-H. Because serumNF-L correlates with functional decline and atrophy
in the disease course, it qualifies as an objective disease status marker. Extended follow-up stud-
ies with cases of known neuropathology are imperative.

Classification of evidence: This study provides Class I evidence that in patients with PPA, blood
levels of NF-L can distinguish the logopenic variant from the nonfluent/agrammatic and semantic
variants. Neurology® 2017;88:961–969

GLOSSARY
Ab 5 b-amyloid; CDR 5 Clinical Dementia Rating; FTLD 5 frontotemporal lobar degeneration; lvPPA 5 logopenic variant of
primary progressive aphasia; MMSE 5 Mini-Mental State Examination; NF-L 5 neurofilament light chain; nfvPPA 5
nonfluent/agrammatic variant of primary progressive aphasia; pNF-H 5 phosphorylated neurofilament heavy chain; PPA 5
primary progressive aphasia; p-tau 5 phosphorylated tau; ROC 5 receiver-operating characteristics; svPPA 5 semantic
variant of primary progressive aphasia; v1 5 baseline visit; v2 5 follow-up visit.

Primary progressive aphasias (PPAs) are a heterogeneous group of progressive language disorders
within the clinical spectrum of frontotemporal lobar degeneration (FTLD). According to
recently revised diagnostic criteria,1 3 variants are distinguished on the basis of the profile of
language impairment, distribution of atrophy, and likelihood of underlying neuropathology:
a nonfluent/agrammatic variant (nfvPPA), a semantic variant (svPPA), and a logopenic variant
(lvPPA).
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There is a need for neurochemical markers for
PPA differential diagnosis, severity, progression,
and molecular pathology that, together with
neuropsychological and imaging approaches,
aid patient stratification and allow monitoring
in future etiology-specific treatments.2

Neurofilament light chain (NF-L), a marker
of neurodegeneration, is increased in the CSF
of patients with dementia, including fronto-
temporal dementia, correlating with disease
severity and outcome.3–5 Recently, NF-L was
shown to be also increased in the blood of
patients with FTLD compared to controls,
correlating with frontal lobe atrophy.6

We hypothesized that blood NF-L level can
aid the discrimination between PPA subtypes
and represents a correlate for disease progression.

In longitudinally collected serum samples
from patients with nfvPPA, svPPA, and
lvPPA, we analyzed NF-L, compared the diag-
nostic performance at baseline with that of
CSF markers (NF-L, phosphorylated NF
heavy chain [pNF-H], tau, phosphorylated
tau [p-tau], b-amyloid [Ab1-42]), and exam-
ined the course of NF-L in correlation to func-
tional decline and brain atrophy.

METHODS The primary research questions were the follow-

ing: Do serum NF-L levels discriminate between PPA variants

(Class I level of evidence), and are longitudinal serum NF-L

levels suitable to monitor disease progression in PPA (Class I

level of evidence)?

Patients. Ninety-nine patients with PPA were included in the

study, of whom 37 were examined longitudinally. As a control

group, 35 healthy participants without a neurodegenerative dis-

ease and without acute or chronic inflammation of the brain were

included, of whom 10 attended twice.

Standard protocol approvals, registrations, and patient
consents. All participants were examined between April 2011

and December 2015 within the German FTLD consortium,

a quality-controlled, monitored, multicenter initiative (www.

ftld.de).7 The study was approved by the local ethics

committees of the centers involved in Ulm, Munich, Leipzig,

Rostock, Bonn, Göttingen, Homburg, Würzburg, and

Erlangen (proposal number at central study center at University

of Ulm: 39/11, March 8, 2011). Each patient, participant,

caregiver, or legal representative provided written informed

consent for the study according to institutional guidelines.

Patients with FTLD were examined at 2 visits (v15 baseline

and v25 follow-up) with an interval of 12 months. CSF samples

taken by lumbar puncture at v1 were provided by 81 patients.

Table 1 gives demographic characteristics and clinical assess-

ments of the patient groups.

Patients with PPA underwent standardized clinical-

neurological and routine laboratory examinations. Patients with

PPA met standard diagnostic criteria according to clinical,

neuropsychological, and imaging results1 without knowledge of

fluid marker levels. The comprehensive neuropsychological

assessment was done according to the German FTLD consortium

protocol, covering all relevant cognitive domains with a focus on

language and executive functions.8

Severity of symptoms was classified by functional assessment

and global rating scales (Mini-Mental State Examination

[MMSE],9 Clinical Dementia Rating [CDR],10 and FTLD-

CDR11). Disease progression rate at baseline was calculated by

dividing the change in the functional rating by the months since

perceived disease onset. Progression rate between v1 and v2 was

calculated analogously.

Genetic analysis of C9orf72 hexanucleotide repeat in 72 pa-

tients and of the MAPT and GRN genes in 27 patients with

a positive familial history revealed no mutations (details are avail-

able on request).

MRI and volumetric analysis. The 3T MRI data, including

3-dimensional T1 magnetization-prepared rapid gradient-echo

sequences, were acquired using the same standardized protocol

in all study centers, with regular phantom-based monitoring of

scanner performance at each site. For 32 patients with PPA and

10 controls, imaging data at baseline examination were

available. For 22 patients with PPA and 10 control participants,

MRI was recorded at v1 and v2. To determine the volumes of

brain structures, we applied atlas-based volumetry, a fully

automated and objective method for volumetric analysis of

individual patients, using algorithms of the Statistical

Parametric Mapping 12 software (Wellcome Trust Centre for

Neuroimaging, London, UK; www.fil.ion.ucl.ac.uk/spm). As

previously described,12,13 the individual brain is segmented into

gray matter, white matter, and CSF compartments, and the

resulting tissue component images are mapped into a template

space by means of high-dimensional elastic registration. Then, in

the same space, predefined regions of interest derived from

probabilistic brain atlases such as the LONI Probabilistic Brain

Atlas14 and the Harvard-Oxford atlas of subcortical structures15

are used to extract regional brain volumes. Atlas-based volumetry

has been successfully used in a variety of cross-sectional and

longitudinal studies,13,16,17 and a recent study showed that the

intrascanner variability of volumetric results is ,1% for the

majority of structures investigated.18

Following a meta-analysis that validated the current

PPA imaging criteria,19 gray matter volumes of 32 brain

areas with a focus on frontal and temporal areas were

included.

Laboratory markers. Serum was extracted from blood, divided

into aliquots, and stored within 2 hours at 2808C until analysis.

CSF was obtained by lumbar puncture and processed likewise. All

analyses were performed in a blinded manner. Commercially

available ELISAs were used to measure CSF NF-L (IBL,

Hamburg, Germany), pNF-H (Biovendor, Heidelberg,

Germany), tau, and p-tau (Fujirebio, Hanover, Germany)

according to the manufacturers’ instructions. Mean coefficients

of variation of the assays were,20%. NF-L in serum samples was

measured with an electrochemiluminescence immunoassay as

described previously with an interassay coefficient of variation

,10.8%.20,21 Analyses of longitudinal NF-L measures were

applied to original and normalized data. For normalization, the

change in concentration was divided by the mean concentration

at baseline of all patients of the group analyzed.

Statistical analysis. Statistical analysis was performed with

GraphPad Prism 5.0. Because NF-L measures did not pass

Shapiro-Wilk normality test (p , 0.0001 for the PPA cohort
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Table 1 Patients’ demographic characteristics, functional and global rating scale assessment, and available MRI scans in the nonfluent/agrammatic, semantic, and logopenic variant of primary
progressive aphasia and in controls

All PPA nfvPPA svPPA nfvPPA 1 svPPA lvPPA Controls

v1 v2 v1 v2 v1 v2 v1 v2 v1 v2 v1 v2

Sex, F/M 49/50 21/16 23/17 10/7 18/20 11/4 41/37 21/11 8/13 0/5 19/16 5/5

Age, ya 66.3 (45–80) 66.4 (50–79) 70.4 (52–80) 70.2 (53–80) 63.8 (45–79) 62.5 (58–73) 65.3 (45–80) 66.5 (53–79) 68.6 (49–78) 67.7 (65–75) 63.6 (37–75) 64.8
(38–76)

Age at onset, y 64 (44–78) 60 (47–76) 68 (47–78) 64 (47–76) 60 (44–75) 57 (49–68) 64 (44–78) 61 (47–76) 64 (46–72) 60 (55–72)

Disease duration, y 2.8 (0.2–19.9) 3.3 (1–18.7) 2.2b (0.2–8.9) 3.2 (1.8–6.2) 3.0c (0.6–19.9) 4.6 (1–7.7) 2.6 (0.2–19.9) 3.3 (1–7.7) 3.3d (0.5–17.7) 7.3 (2.4–18.7)

CDR sob
n

2.5 (0–17)
89

4.3 (0.5–16)
37

2.0 (0–17)
35

6.25 (1–13)
12

3.5 (0–11)
32

5.75 (2–16)
10

2.5 (0–17)
71

5.3 (0.5–16)
22

2.8 (0–16)
18

2.5 (1–6)
4

FTLD-CDR sob
n

4.5 (0.5–23)
85

7 (1–22)
37

4.0 (0.5–23)
35

9.0 (1–18)
13

4.8 (1.5–14)
32

9.25 (4–21)
10

4.5 (0.5–23)
71

8 (1–22)
23

5.0 (1–21)
18

4.25 (3–11)
4

MMSE
n

24 (3–30)
94

23 (3–30)
37

25 (10–30)
37

20 (3–29)
13

24 (3–30)
33

21.5 (4–28)
12

24 (3–30)
74

22.5 (3–30)
34

24.0 (6–29)
20

25.0 (11–28)
4

MRI, n 32 22 17 12 8 7 25 19 7 3 10 10

NF-L serum, pg/mL

n

49.1 (7.6–304)

99

72.7 (9.8–411)

37

54.2
(10.2–304)
40

77.3
(18–147)
17

52.7 (7.6–183)

38

97.3
(23.9–411)
15

54.2 (7.6–304)

78

77.3
(18–411)
32

26 (7.6–219)

21

28.9 (9.8–71)

5

18.4
(2.1–75.6)
35

15.0
(6.7–41.4)
10

NF-L CSF, pg/mL

n

2,653
(502–9,452)
64

3,160
(1,158–7,474)
25

2,936
(828–9,452)
26

2,992
(828–9,452)
51

1,501
(502–2,859)
13

624
(302–1,528)
5

pNF-H CSF, pg/mL

n

425 (142–1,929)

67

540
(174–1,929)
27

378 (142–1,599)

26

442
(142–1,929)
53

314 (156–645)

14

201
(129–533)
5

Tau CSF, pg/mL

n

353 (102–1,422)

65

326
(139–792)
26

343 (102–785)

25

339
(102–792)
51

703
(171–1,422)
14

213
(172–290)
5

p-tau CSF, pg/mL
n

49 (16–191)
66

42 (24–100)
26

48.5 (16–89)
26

44.5 (16–100)
52

88.5 (25–191)
14

44 (30–54)
5

Ab1-42 CSF, pg/mL

n

757 (312–1,601)

65

928
(336–1,376)
26

761 (312–1,601)

25

869
(312–1,601)
51

552 (314–952)

14

1,114
(725–1,455)
5

Abbreviations: Ab 5 b-amyloid; CDR 5 Clinical Dementia Rating; FTLD 5 frontotemporal lobar degeneration; lvPPA 5 logopenic variant of primary progressive aphasia; MMSE 5 Mini-Mental State Examination;
NF-L 5 neurofilament light chain; nfvPPA nonfluent/agrammatic variant of primary progressive aphasia; pNF-H 5 phosphorylated neurofilament heavy chain; p-tau 5 phosphorylated tau; sob 5 sum of boxes;
svPPA 5 semantic variant of primary progressive aphasia; v1 5 baseline visit; v2 5 follow-up visit.
Median values (ranges) are given.
aAge of patients with nfvPPA and svPPA is different for both the serum cohort and the CSF cohort (p , 0.01).
bOne value missing.
c Two values missing.
d Three values missing.
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and for each PPA variant), nonparametric tests were applied

throughout the analyses. To compare 2 datasets of marker

concentrations, a 2-tailed unpaired Mann-Whitney t test or

Wilcoxon matched-pair test for analysis of longitudinal data

was used. To analyze .2 datasets of marker concentrations,

a Kruskal-Wallis test was used. In case of significance, a Dunn

post hoc comparison correcting for multiple testing was applied.

Correlation between the average levels of fluid analytes,

neuropsychological rating scores, disease progression rates, or

volumetric measures obtained from neuroimaging was

calculated by the Spearman rank correlation coefficient. Level

of significance was set at p 5 0.05.

The optimal cutoff level for dichotomizing values was selected

as the situation maximizing the Youden index. The receiver-

operating characteristics (ROC) curve is used for a graphic visu-

alization of the effect of the variation in the cutoff values.

In the analysis of volumetric data, correlations with NF-L

serum levels were determined, and coefficients .0.5 were re-

garded as positive if p ,0.05. Here, the Bonferroni correction

also was assessed (level of significance p , 0.002). Additionally,

linear regression analysis was applied to determine whether there

was a linear association between 2 parameters showing significant

Spearman correlation. Cross-sectional data obtained at v1 were

corrected for intracranial volume. In analyses of longitudinal

measures, original volumes were analyzed.

RESULTS Demographic and disease characteristics.

Table 1 provides a summary of demographic charac-
teristics of the PPA subgroups. For serum and CSF
investigations, but not MRI, patients with nfvPPA
were older at disease onset than patients with svPPA
(p, 0.05). Disease duration was different in the PPA
subgroups analyzed for serum NF-L (p 5 0.038);
however, the post hoc test failed to be significant.
Disease severity at v1 and v2 or the functional
decline during follow-up as quantified by means of
CDR, FTLD-CDR, and MMSE score was not
different between PPA groups for serum, CSF, or
MRI investigations.

Degree of atrophy in cortical and subcortical brain
areas was higher for svPPA compared to nfvPPA and
lvPPA. While for lvPPA atrophy was more dominant
in the left hemisphere, it was mostly symmetric for
svPPA atrophy. For a summary of brain volumetric
measures, see table e-1 and appendix e-1 at
Neurology.org.

Serum NF-L at baseline visit and comparison to CSF

markers. Table 1 gives median concentrations and
range of markers. The serum NF-L level at first
examination was higher in each of the PPA variants
compared to the control group (figure 1A). Levels
within the PPA cohort differed (p 5 0.0007), with
higher NF-L concentrations in nfvPPA and svPPA
compared to lvPPA. ROC analysis yielded 95%
sensitivity and 70% specificity (cutoff 25 pg/mL)
for discrimination between PPA and controls and
81% sensitivity and 67% specificity (cutoff 31 pg/
mL) for discrimination of pooled nfvPPA/svPPA
and lvPPA (figure 1A).

All CSF markers showed different levels in the
PPA variants (NF-L p 5 0.0002, pNF-H p 5

0.0022, Ab1-42 p 5 0.0032, tau p 5 0.0093, p-tau
p 5 0.0088). NF-L level was higher in nfvPPA and
svPPA compared to lvPPA. By contrast, pNF-H was
higher in nfvPPA compared to both svPPA and lvPPA
(figure 1C). Ab1-42 was lower in lvPPA than in
nfvPPA, with intermediate levels in svPPA (figure
1D). Tau and p-tau showed the highest levels in
lvPPA, while in both nfvPPA and svPPA CSF sam-
ples, tau and p-tau were expressed at low levels (figure
1, E and F).

ROC analysis (curves in figure 1, B–E) revealed
for CSF NF-L 92% sensitivity and 78% specificity for
discrimination of lvPPA from nfvPPA/svPPA at a cut-
off of 2,274 pg/mL. pNF-H yielded 84% sensitivity
and 69% specificity (cutoff 494 pg/mL) for differen-
tiation between nfvPPA and svPPA. Ab1-42 allowed
discrimination between lvPPA and nfvPPA/svPPA
with 86% sensitivity and 69% specificity (cutoff
705 pg/mL). Detection of lvPPA was possible with
a sensitivity of 84% for tau (cutoff 532 pg/mL) and
90% for p-tau (cutoff 81 pg/mL), with respective
specificities of 71% and 57%.

Correlation analysis of markers was conducted for
all patients with PPA together and for each subgroup
separately. Table e-2 gives a summary of results.

Serum NF-L at second examination after 1 year. Serum
NF-L at follow-up examination correlated with serum
NF-L determined at baseline (for all PPA r 5 0.8132,
p , 0.0001) and showed higher concentrations for
nfvPPA and svPPA compared to lvPPA and healthy
controls. On average, levels of serum NF-L in patients
with nfvPPA and svPPA increased from v1 to v2 (p 5
0.0018 and p 5 0.0017, respectively), while in lvPPA,
the average NF-L level changed only marginally (p 5

0.4375) (figure 2).

NF-L and atrophy at baseline examination. Table e-3
provides a summary of statistical results. In lvPPA,
high NF-L concentration correlated with a low
volume of the right temporal lobe (r 5 20.8214,
p 5 0.0234) and the left and right middle temporal
gyrus, the right inferior temporal gyrus, and the left
fusiform gyrus. None of the results survived
correction for multiple comparisons. For nfvPPA
and svPPA, there was no correlation of NF-L with
the volume of any area.

NF-L as a predictor of brain atrophy.High serum NF-L
of patients with svPPA correlated with stronger
progression of atrophy in the left middle
orbitofrontal gyrus (r 5 20.7619, p 5 0.028).
Level of significance for data corrected for multiple
comparisons was not reached, and the association was
not linear (r2 5 0.2403, p 5 0.2175).
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Serum NF-L and brain atrophy in the course of disease.

Remarkably, progression of atrophy in several brain
areas correlated with the serum NF-L course in the
analysis of all patients with PPA and the PPA
subgroups (table e-3). In patients with marked
increase of NF-L, the progression of atrophy of the
left frontal lobe (Spearman r 5 20.6375, p 5

0.0014) and of the right frontal lobe (Spearman r 5
20.5539, p 5 0.0075) (figure 3) was most
pronounced. Furthermore, the more NF-L increased,
the stronger the atrophy of the right middle frontal
gyrus and the left gyrus rectus was. When looking at
all patients with PPA, correlation of NF-L increase and
atrophy progression of the left frontal lobe survived
correction for multiple comparisons. Similarly, when
looking at patients with nfvPPA and svPPA, the same
holds true for the right middle frontal gyrus.

Correlation of baseline serum NF-L with disease

duration, functional assessment, and progression rates.

Serum NF-L levels only weakly correlated with the
age of all patients with PPA at disease onset (r 5

0.233, p 5 0.026) and not with disease duration
(r 5 20.228, p 5 0.228). In the subgroup
analysis, there was no correlation for nfvPPA or
svPPA of serum NF-L with age or disease duration,
but we found a correlation for the age at onset with
NF-L in the lvPPA cohort (r 5 0.5, p 5 0.029).

Serum NF-L levels did not correlate with CDR,
FTLD-CDR, or MMSE In addition, for the progres-
sion rates at baseline calculated on the basis of the
functional scores, we found no correlation with serum
NF-L levels except for a correlation between NF-L
and MMSE progression rate at baseline examination
in the lvPPA group (r 5 0.47, p 5 0.049).

Figure 1 Serum and CSF marker levels in patients with PPA at baseline and ROC curves

The neurofilament light chain (NF-L) levels in nonfluent/agrammatic variant (nfvPPA), semantic variant (svPPA), and logopenic variant (lvPPA) of primary
progressive aphasia serum samples and in control (Co) samples from healthy volunteers are shown by box plots, and the resulting diagnostic performance
is indicated by receiver-operating characteristics (ROC) curves with respective statistical values (A). Levels and resulting ROC curve of CSF NF-L (B),
phosphorylated neurofilament heavy chain (pNF-H; C), b-amyloid (Ab1-42; D), tau (E), and phosphorylated tau (pTau; F) are given for PPA variants. Boxes
show the mean concentration; whiskers indicate 95% confidence interval (C.I.). Kruskal-Wallis test for statistical analysis of the 3 PPA groups revealed
differences for all markers. Results of the respective post hoc tests are indicated by asterisks (*p, 0.05, **p, 0.01, ***p, 0.001). AUC5 area under the
curve; ns 5 not significant.
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Figure 2 Serum NF-L concentrations at follow-up examination of the 3 PPA variants and healthy controls

Boxes show the mean concentration; whiskers indicate 95% confidence interval (C.I.). Individual courses for nonfluent/agrammatic variant (nfvPPA), seman-
tic variant (svPPA), and logopenic variant (lvPPA) of primary progressive aphasia and healthy controls (Co) of the neurofilament light chain (NF-L) concentra-
tion in serum at baseline visit (v1) and 1 year later (v2). Mean courses are shown by red lines and symbols.

Figure 3 Serum NF-L change and progression of brain atrophy from baseline to follow-up visit

Colors indicate the primary progressive aphasia (PPA) variant: nonfluent/agrammatic variant (nfvPPA) in green, semantic
variant (svPPA) in red, and logopenic variant (lvPPA) in blue. (A) Left frontal lobe of patients with PPA, (B) right frontal lobe
of patients with PPA, (C) left frontal lobe of healthy participants, and (D) right front lobe of healthy participants. The results
of linear regression are given in the respective graphs and are indicated by lines. NF-L 5 neurofilament light chain; v1 5

baseline visit; v2 5 follow-up visit 1 year later.
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Serum NF-L and functional decline during follow-up.

We analyzed whether serum NF-L levels at baseline
or the change in serum NF-L from baseline to
follow-up is indicative of disease progression
assigned by neuropsychological assessment during
follow-up (figure 4). For the entire PPA cohort,
there was a correlation of the absolute or
normalized NF-L change and the disease
progression rate as determined by CDR (absolute
NF-L change: r 5 0.524, p 5 0.012; relative NF-L
change: r 5 0.485, p 5 0.022) (figure 4, A and B).
Analyzing nfvPPA and svPPA (the groups with
increasing NF-L levels during follow-up) together
revealed a correlation between not only the relative
NF-L change and CDR progression rate (r 5 0.594,
p5 0.009) but also the FTLD-CDR progression rate
(r 5 0.496, p 5 0.031) (figure 4C).

DISCUSSION Diagnosis of clinical PPA variants ac-
cording to the consensus criteria leads to a significant
number of unclassified cases,22,23 and objective bio-
markers are needed. Fluid biomarker research has
focused on CSF to discriminate between FTLD sub-
groups,3–5,24 which seems rational because CSF directly
contacts the central nervous system, thus representing
the most promising source to reflect neurodegenerative
processes.25 Increased levels of CSF NF-L in svPPA
and nfvPPA and a pattern of Ab1-42, tau, and p-tau
comparable to that characteristic for Alzheimer disease
in lvPPA have been reported,4,24,26 which is in
accordance with our results. Thus, we provide
further evidence for these markers to be suitable for
PPA subgroup differentiation.

In our cohort, pNF-H was the only marker able to
discriminate nfvPPA from sv/lvPPA, which has not been

described before. If this result can be confirmed in a val-
idation cohort or even in serum, pNF-H represents
a good candidate to improve PPA variant discrimina-
tion in combination with markers discriminating
nfvPPA/svPPA from lvPPA. Here, NF-L seems to be
the superior candidate.

Recent technical advances have made it possible to
measure brain-derived proteins in the blood that indi-
cate neurodegeneration, including NF-L.21 Conse-
quently, it could be shown that blood markers may
be suitable for supporting the diagnosis and for prog-
nosis of disease progression.20,27–30

We found higher NF-L levels in nfvPPA and svPPA
than in lvPPA, and longitudinally, an NF-L increase in-
dicates disease severity: the more pronounced progres-
sion of atrophy was and the faster the patients’
functional performance declined, the more serum
NF-L increased. A recent study also reported higher
serum NF-L in nfvPPA and svPPA and determined
higher levels in patients with frontotemporal dementia,
including 11 patients with PPA, correlating with higher
annual atrophy rates after serum sampling.6 Within the
cohort we analyzed, NF-L at baseline predicted the
degree of left middle orbitofrontal gyrus atrophy of
patients with svPPA. A more widespread pattern of
correlation was seen for NF-L increase and progression
of atrophy, which we observed predominantly for the
left hemisphere, consistent with the characteristic pat-
tern of atrophy in PPA, especially nfvPPA.31,32 Addi-
tionally, in a considerable number of the brain areas
analyzed, NF-L also correlated with right-sided atro-
phy, which could be explained by impaired compensa-
tion mechanisms underlying disease progression.
Looking at an association betweenNF-L and functional
performance, we found no correlation at baseline but

Figure 4 Relationship between the changes in serum NF-L levels from baseline to follow-up and respective disease progression

The increase in the Clinical Dementia Rating (CDR) score vs the absolute change of neurofilament light chain (NF-L) measured in serum samples of all patients
with primary progressive aphasia (PPA; A) and vs the relative change in serum NF-L level of patients with the nonfluent/agrammatic variant (nfvPPA) and
semantic variant (svPPA; B) is shown. (C) Relationship of the serum NF-L change and the increase in the frontotemporal lobar degeneration (FTLD)–CDR
score during follow-up is illustrated. Lines show the linear regression (A: r2 5 0.1888, p5 0.0433; B: r2 5 0.3108, p5 0.0162; C: r2 5 0.2196, p5 0.043).
lvPPA 5 logopenic variant; v1 5 baseline visit; v2 5 follow-up visit 1 year later.
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a correlation of the NF-L increase with CDR score
increase. Here, it would be interesting to see whether
NF-L also correlates with specific domains or functions.
Taken together, analysis of longitudinal data provides
evidence for the usefulness of serum NF-L as a PPA
disease status marker correlating with symptom and
atrophy exacerbation rather than as a prognostic
marker. It would be important for a monitoring marker
that the level correlates with disease parameters from
the onset. A cross-sectional study of patients with
amyotrophic lateral sclerosis, a neurodegenerative dis-
ease genetically and pathophysiologically associated
with FTLD, indicates that NF-L increases in parallel
to symptom appearance.29 A similar study on patients
with FTLD is currently pending.

A diagnostic and prognostic value of CSF NF-L
levels for amyotrophic lateral sclerosis was re-
ported,29,33,34 and 2 recent publications on longitudi-
nal serum NF-L showed that the level mostly stays
stable during follow-up.32,33 This points to a different
influence of either the localization of neurodegenera-
tion in the CNS or the rate of neurodegeneration on
the NF-L serum level.

Whether the molecular pathologic characteristics
of PPA variants prominently affect the NF-L level re-
mains unclear. In an examination of mouse models of
neurodegenerative diseases, it has recently been
shown that CSF and plasma NF-L levels were
increased, correlating with the proteopathic lesions
(Ab, a-synuclein, tau).35 Studies examining FTLD–

TARDNA-binding protein and FTLD-tau CSF sam-
ples provide evidence that TAR DNA-binding pro-
tein-43 pathology is associated with higher NF-L
levels.3,4,24 We found similar NF-L levels in the
CSF and a trend for higher serum NF-L levels in
the serum of nfvPPA compared to svPPA. It has to
be considered that PPA variants show a prominent
overlap of pathology1,36,37 and that fulfillment of certain
clinical criteria is indicative of an underlying pathology
only at the group level.38 Therefore, only analysis of
large PPA cohorts comprising neuropathologically char-
acterized cases will answer this question. Here, prefer-
ably single-molecule array technique might be used
because it currently is the most sensitive method.21

There are several limitations associated with our
study. Because it is a multicenter study, additional
variances in the volumetric measurements can be
assumed,8 and some datasets lack completeness;
e.g., not all patients were genetically analyzed, and
for some, the second neuropsychological assessments
were missing. Reasons for the latter are diverse, and
an influence on serum follow-up data cannot be
excluded.

Future studies of NF-L in serum samples
repeatedly collected over a longer period and paral-
lel longitudinal characterization by MRI and

neuropsychological testing will clarify whether
NF-L reflects atrophy in specific brain areas more
than in others and correlates with distinctive neu-
ropsychological symptoms.
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