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Abstract

Tuberculosis remains one of the major threats to public health worldwide. Given the preva-

lence of multi drug resistance (MDR) in Mycobacterium tuberculosis strains, there is a strong

need to develop new anti-mycobacterial drugs with modes of action distinct from classical

antibiotics. Inhibitors of mycobacterial virulence might target new molecular processes and

may represent a potential new therapeutic alternative. In this study, we used a Dictyostelium

discoideum host model to assess virulence of Mycobacterium marinum and to identify com-

pounds inhibiting mycobacterial virulence. Among 9995 chemical compounds, we selected

12 inhibitors of mycobacterial virulence that do not inhibit mycobacterial growth in synthetic

medium. Further analyses revealed that 8 of them perturbed functions requiring an intact

mycobacterial cell wall such as sliding motility, bacterial aggregation or cell wall permeability.

Chemical analogs of two compounds were analyzed. Chemical modifications altered con-

comitantly their effect on sliding motility and on mycobacterial virulence, suggesting that the

alteration of the mycobacterial cell wall caused the loss of virulence. We characterized further

one of the selected compounds and found that it inhibited the ability of mycobacteria to repli-

cate in infected cells. Together these results identify new antimycobacterial compounds that

represent new tools to unravel the molecular mechanisms controlling mycobacterial pathoge-

nicity. The isolation of compounds with anti-virulence activity is the first step towards develop-

ing new antibacterial treatments.

Introduction

Tuberculosis (TB) caused by Mycobacterium tuberculosis represents a threat to public health

worldwide. One third of the world population is infected and TB accounts for 1.8 million

yearly deaths (WHO Global tuberculosis report 2016). Antibacterial TB treatments such as iso-

niazid, rifampicin, pyrazinamide and ethambutol have been used for decades to treat TB.

Multi drug resistance (MDR) to these conventional drugs has emerged worldwide [1].
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Efforts are currently made to develop novel antimycobacterial drugs, and this requires a

better understanding of the biology of mycobacterial infections and the identification of new

drug targets. Novel antibiotics have proven extremely difficult to discover in the last decades

[2]. A promising alternative may be to identify compounds that inhibit bacterial virulence that

could be used either in combination with or instead of antibiotics [3].

Researchers have used different bacteria to study mycobacterial infection, including M.

smegmatis, M. bovis and M. marinum. M. marinum is the closest genetic relative of the M.

tuberculosis complex [4] and causes TB-like infections in fish [5]. Eighty-five percent of M.

marinum loci encoding putative virulence genes have homologous genes in M. tuberculosis.
Thus, due to its relative safety and similar pathogenicity, M. marinum is widely used as a reli-

able model to study mycobacterial infections.

Similarly, free-living amoebae such as Acanthamoeba castellanii or Dictyostelium discoi-
deum provide cost-effective and ethically unproblematic models to measure bacterial virulence

and to screen for anti-virulence compounds [6–8]. Dictyostelium discoideum amoebae have

proven a valuable non-mammalian host to study bacterial virulence and host resistance with

human pathogens such as Legionella, Klebsiella, Mycobacteria [9–11], Pseudomonas (reviewed

in [12, 13]), Vibrio cholera [14], and Salmonella typhimurium [15]. This system has also been

used to identify compounds inhibiting bacterial infectivity [6, 8, 16].

Here, we used a Dictyostelium-M. marinum infection model to identify new chemical com-

pounds inhibiting mycobacterial virulence. Preliminary characterization of the compounds

suggests that they inhibit a variety of virulence mechanisms. A significant group of compounds

affects functions requiring an intact mycobacterial cell wall.

Materials and methods

Cell culture

Dictyostelium discoideum strain DH1–10 [17] was grown at 21˚C in HL5 medium and subcul-

tured twice a week to maintain a maximal density of 106 cells ml−1. The parental M. marinum
M strain (referred to as wild-type (WT) for simplicity) and the RD1 mutant were gift from Pr.

L. Ramakrishnan [18]. It was cultured in Middlebrook 7H9 (Difco) supplemented with 10%

OADC (Becton Dickinson), 0.5% glycerol (Sigma Aldrich), 0.05% Tween 80 (Sigma Aldrich)

at 30˚C in shaking culture. The M. marinum TesA mutant [19] was a gift from Dr. L. Kremer

(Montpellier University, CNRS, France). M. marinum FadD28 [20] was a gift from Pr. J. Liu

(University of Toronto, Canada). The M. marinum strain used to measure intracellular replica-

tion carries the pMV306-lux plasmid [11, 21]. Klebsiella pneumoniae is a previously described

non-pathogenic laboratory isolate and was grown in LB (lysogeny broth) medium [22].

Growth of Dictyostelium on bacteria

M. marinum virulence was measured as previously described [19]. Briefly, 10 ml of mid-log

phase mycobacterial cultures were centrifuged for 5 min at 2,000 rpm, resuspended in 5 ml of

an overnight culture of K. pneumoniae diluted to 10−5 in LB medium, and residual clumps

were disrupted by passaging through a 25-gauge blunt needle. In each well of a 24-well plate,

50 μl of the bacterial suspension were plated on 2 ml of solid SM (standard medium)-agar

medium supplemented with glucose [11] and left to dry for 2–3 h. Finally, 1,000 Dictyostelium
cells were added in the center of the well. Plates were incubated for 5–9 days at 25˚C and the

formation of phagocytic plaques was monitored visually. To test the effect of a compound on

M. marinum virulence, it was added to the SM-Agar medium at 30 μM (6 μl of DMSO in 2 ml

of SM-Agar) and allowed to diffuse in the agar for 1 h before the addition of bacteria. Except

during the first test screens (that led to the identification of the M4 compound), a negative

Inhibitors of Mycobacterium marinum virulence

PLOS ONE | https://doi.org/10.1371/journal.pone.0181121 July 20, 2017 2 / 16

Competing interests: Although we received

funding from the Novartis Consumer Health

Foundation, the funder had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript, and this does not

alter our adherence to PLOS ONE policies on

sharing data and materials.

https://doi.org/10.1371/journal.pone.0181121


control (Bacteria+Dictyostelium+DMSO), and a positive control (Bacteria+Dictyostelium

+M4 30μM) were included in every plate.

Chemical compound collections

Different collections of chemical compounds were used for the screening. We initially

screened a library of 1,040 compounds compiled by the NINDS: the NIH Custom Collection

for FDA-approved drugs and bioactive compounds. Then, we screened the Prokinase library

composed of 1,035 compounds targeting cellular kinases (http://www.proteinkinase-research.

org/), and the open access malaria box collection of 400 hit and lead candidates targeting

malaria (http://www.mmv.org/research-development/open-access-malaria-box. In addition,

we tested a targeted library enriched in putative anti-virulence compounds that we designed

specifically for this project (1,600 compounds, Kicka et al, “in preparation”). Finally, we tested

a set of 6,000 compounds from the commercially available highly diverse Maybridge collection

(Table 1). Selected compounds are identified by their ZINC number (zinc.docking.org) or

their CAS number (pubchem.ncbi.nlm.hih.gov).

Antibiotic assay

In order to test the inhibitory effect of compounds on mycobacterial growth in a 24-well plate,

each molecule was added to a well containing 2 ml of 7H11 agar medium at the indicated con-

centration ranging from 0.3 μM to 30 μM. Then, 1,000 bacteria were deposited in each well

and plates were incubated at 30˚C for 7 days to allow bacterial growth. The minimal inhibitory

concentration was determined visually and represented the minimal concentration at which

even a minor inhibition of mycobacterial growth was detected. A similar assay was used to

measure antibiotic effects of compounds on K. pneumoniae, except that LB medium was used

instead of 7H11very similar results were determined in 3 independent experiments. For a few

compounds, the absence of antibiotic effect on mycobacteria was verified in 7H9 liquid me-

dium by measuring optical density of the suspension at 600nm, and by counting colony-form-

ing units after plating of diluted aliquots on 7H11 medium.

“Sliding motility” on soft agar medium

“Sliding motility” was visualized essentially as previously described [23]. Briefly, 7H9 medium

(5 ml) supplemented with 0.3% agarose was poured in each well of a 6 well plate. Compounds

were added at the indicated concentration (30 to 0.3 μM). With a toothpick one colony was

inoculated in the center of the well and plates were covered and incubated at 30˚C for 10 days.

Sliding motility, i.e. the ability of the mycobacteria to spread over the agarose surface was

determined visually.

Table 1. Chemical libraries screened in this study.

Library Compounds Primary hits Confirmed hits Hit rate (%)

Targeted Sinergia 1,260 68 15 1.15

Prokinase 1,200 24 9 0.75

Diverse NINDS 1,099 15 7 0.6

Malaria Box 400 38 6 1.5

Maybridge 6,000 171 11 0.18

https://doi.org/10.1371/journal.pone.0181121.t001
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Bacterial aggregation and permeability

We used flow cytometry to determine the effect of compounds on bacterial aggregation and

permeability. Bacteria were cultured in the presence of the indicated compounds for 48 h.

They were then washed, resuspended in 500 μl of 50 mM potassium phosphate buffer (pH 7)

and incubated at room temperature in the presence of 6 μM ethidium bromide for 20 min.

Forward scatter and fluorescence intensity were measured by flow cytometry. Fluorescence

due to dye accumulation within bacteria was determined at an excitation and emission wave-

length of 545 nm and 600 nm, respectively. Forward scatter provided a measure of the aggrega-

tion status of bacteria. Fluorescence entry was measured for bacteria with the same levels of

forward scatter, and provided a measure for bacterial cell permeability.

Infection of Dictyostelium with luminescent M. marinum

As described previously [11], mycobacteria expressing luciferase [21] were grown for 24 h in

the presence of antivirulence compounds (10 μM) in shaking (220 rpm) 6-well plates in 5 ml

of 7H9 medium containing 10% OADC (Becton Dickinson), 0.5% glycerol (Sigma Aldrich)

and 0.02% tyloxapol (Sigma Aldrich). The cultures were then washed twice with HL5c me-

dium and passed through a 25-gauge blunt needle to disrupt residual clumps, then added onto

10 cm dishes containing adherent Dictyostelium cells (around 5 × 107) at a multiplicity of infec-

tion (MOI) of 10:1. Dishes were centrifuged at 500 x g for 10 min in a Beckman Coulter Allegra

6R centrifuge, turned 180 degrees, and centrifuged a second time to avoid accumulation of

cells and bacteria in one side of the dish. The cells were left at 25˚C for an additional 10–20

min. Then, excess extracellular bacteria were carefully removed by washing 4–5 times with 10

ml of HL5c without detaching Dictyostelium cells. Amikacin (10 μM) was added to inhibit

extracellular proliferation of bacteria [24, 25]. The infected cells were then detached and added

to a 96-well plate (White F96 MicroWell™ plates, non-treated (Nunc)), 200 μl of a suspension

of infected cells per well should contain 1–2 × 104 Dictyostelium cells to record up to 48–72 h

post-infection at 25˚C.

Results

New inhibitors of M. marinum virulence

Growth of Dictyostelium on bacteria has been used as a reliable assay to measure bacterial viru-

lence. Amoebae feed upon non-pathogenic bacteria and form phagocytic plaques in the bacte-

rial lawn, whereas pathogenic bacteria restrict the growth of Dictyostelium [26]. To assess

virulence of M. marinum, Dictyostelium cells were grown on a mixed bacterial lawn of non-vir-

ulent K. pneumoniae (for feeding of amoebae) and of virulent M. marinum, which inhibit the

growth of the amoebae [19] (Fig 1). In the presence of virulent M. marinum, even 10,000 Dic-
tyostelium cells were unable to clear bacteria and to form a phagocytic plaque. Three different

mutant strains that were previously shown to exhibit decreased virulence were used to validate

this assay: TesA mutant bacteria are defective for synthesis of major cell wall-associated lipids

[19], FadD28 mutant bacteria fail to produce both PDIMs and PGLs [20] and the RD1 mutant

strain lacks the RD1 virulence gene cluster [27]. In all three cases, decreased mycobacterial vir-

ulence restored the growth of Dictyostelium (Fig 1), indicating that mutations altering different

facets of mycobacterial virulence are readily detected in this assay.

We then tested a total of 9,995 compounds at a concentration of 30 μM for their ability to

restore growth of Dictyostelium cells in this assay. For this, several libraries of chemically

diverse compounds were used (Table 1). Compounds inhibiting growth of K. pneumoniae
were not selected for further analysis, a procedure that eliminated 20 antibiotics. The initial
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hits (316) were then retested, leading finally to the identification of 48 hit compounds (Table 1

and Fig 2). This strict selection procedure selected only compounds with strong and reproduc-

ible effects, but it is likely that is also eliminated mistakenly some active compounds. Thirty-

two of the 48 hit compounds were commercially available and reproducibly restored growth of

Dictyostelium in the presence of M. marinum. For each of these validated hits, the minimal

concentration restoring Dictyostelium growth (Virulence Minimal Inhibitory Concentration)

was determined (Fig 3).

A compound restoring growth of Dictyostelium in the presence of virulent M. marinum
could in principle act either by selectively inhibiting growth of M. marinum on the plate (with-

out inhibiting Klebsiella growth), or by decreasing virulence of M. marinum. In this manuscript,

we refer to the first possibility as an antibiotic compound, and to the second as an anti-virulence

compound. To determine more precisely the mode of action of each compound, we tested its

ability to directly inhibit growth of M. marinum and growth of Klebsiella. As expected, none of

Fig 1. Dictyostelium growth on bacteria provides a measure of bacterial virulence. A. Dictyostelium

cells deposited on a bacterial lawn formed a phagocytic plaque within 7 days. B. The ability of Dictyostelium to

grow on a bacterial lawn was assessed by depositing 10,000, 1,000, 100 or 10 Dictyostelium cells on a lawn of

bacteria. Dictyostelium grew efficiently on a lawn of non-pathogenic Klebsiella pneumoniae (Kp). The addition

of virulent M. marinum (Kp + Mm WT) inhibited Dictyostelium growth. Non-virulent M. marinum mutants TesA,

FadD28 and RD1 were permissive for Dictyostelium growth.

https://doi.org/10.1371/journal.pone.0181121.g001

Fig 2. Selection and classification of M. marinum virulence inhibitors. 9,995 molecules were initially

tested, from which 48 reproducibly allowed Dictyostelium to grow in the presence of virulent M. marinum. To

validate the effect of these hit compounds, they were reordered and retested. Ten compounds were no longer

commercially available. Six compounds showed a poorly reproducible effect, and 32 compounds restored

Dictyostelium growth reproducibly. Of these 32 compounds, 20 demonstrated antibiotic activity that accounted

for their effect while 12 did not and are referred to here as anti-virulence compounds. Among the latter, 8

compounds inhibited the “sliding motility” of M. marinum.

https://doi.org/10.1371/journal.pone.0181121.g002
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the selected compounds inhibited growth of Klebsiella. On the contrary, 20 compounds inhib-

ited M. marinum growth at a concentration similar to or smaller than that required to restore

growth of Dictyostelium in the presence of M. marinum (Fig 3) (S1 Table). For a few selected

compounds (M5, M24, M33, M39) it was verified further that they did not inhibit bacterial

growth in a liquid culture at a concentration of 10μM (S1 Fig). These 20 compounds are thus

expected to act mostly by specifically inhibiting mycobacterial growth, and were not investi-

gated further in this study. According to this selection, 12 compounds were finally selected as

putative inhibitors of bacterial virulence: M4, 5, 7, 8, 12, 18, 24, 33, 34, 36, 38 and 39 (Table 2).

Fig 3. Inhibition of mycobacterial virulence and growth. A. Virulence assay. Dictyostelium growth in the

presence of WT M. marinum and of compounds M4, M15, M33 at concentrations of 0.3 to 30 μM. The results for

compounds M24 and M39 are shown in Fig 5 and Fig 6, respectively. First, each compound was added on top of

SM-agar medium. Then a mixture of avirulent Klebsiella and M. marinum was added. Finally, 1,000 Dictyostelium

cells were deposited in the center of the well. Within 7 days of culture at 25˚C a phagocytosis plaque became

visible when mycobacterial virulence was inhibited. In the examples shown, the minimal concentration inhibiting

virulence was 1 μM for M4 and M33 and 3 μM for M15. B. Antibiotic assay. Compounds were added to 7H11

medium in each well at the indicated concentration, then 1,000 M. marinum bacteria were deposited in the well.

Growth of mycobacteria was visible after 6 days at 30˚C. Compound M33 did not exhibit any antibiotic effect, M15

inhibited bacterial growth at a concentration of 3 μM or higher, and M4 inhibited growth of bacteria at 30 μM. C.

Comparison of virulence and growth MIC. For each compound tested, the minimum concentration at which it

inhibited mycobacterial virulence and mycobacterial growth are indicated. Compounds inhibiting M. marinum

virulence at concentrations at which no antibiotic effect was detectable are underlined and marked with full circles

and were selected for further analysis.

https://doi.org/10.1371/journal.pone.0181121.g003

Table 2. Selected mycobacterial virulence inhibitors.

Code Reference Mw

M4 CAS: 12542-36-8 578.6

M5 CAS: 127-47-9 328.49

M7 CAS: 2752-65-0 628.75

M8 ZINC19940158 432.37

M12 ZINC13799740 358.39

M18 ZINC00315276 291.39

M24 ZINC09007974 324.38

M33 ZINC12366919 455.76

M34 ZINC01040827 395.87

M36 ZINC00069763 330.34

M38 ZINC01047885 400.33

M39 ZINC01035926 476.43

https://doi.org/10.1371/journal.pone.0181121.t002
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Inhibitors of M. marinum sliding motility

“Sliding motility” describes the spreading of a bacterial colony as it grows on semi-solid agar

media [23]. Defects in sliding motility were notably observed for M. marinum mutants exhibit-

ing decreased virulence [28]. In order to examine whether virulence inhibitors perturbed slid-

ing motility, isolated colonies of M. marinum were inoculated and bacteria were allowed to

grow for 2 weeks at 30˚C in the presence of anti-virulence compounds. Note that the effect of a

compound on sliding motility could only be determined in this assay at concentrations where

bacterial growth was not inhibited. Of 12 compounds tested, a total of 8 compounds affected

sliding motility (M4, 8, 12, 18, 24, 36, 38 and 39). Among these compounds, M39 was most

efficient at inhibiting M. marinum virulence (MIC 0.3μM) and sliding motility (MIC 0.3μM)

(Fig 4). On the contrary, compounds M5, 7, 33 and 34 did not affect sliding motility (Fig 4).

The coincidental observation that a compound inhibits both bacterial virulence and sliding

motility does not in itself establish a causal relationship between these two effects. To analyze

the putative link between inhibition of sliding motility and inhibition of bacterial virulence, we

focused on two compounds (M39 and M24), and analyzed how their effects would be affected

by modification of the original compounds.

Five structural variants of M39 were analyzed (Fig 5). H38, H41, H44 and H47 retained the

ability to inhibit bacterial virulence, albeit at concentrations slightly higher than M39 (Fig 5).

N39 did not inhibit bacterial virulence at any concentration, although its structure is closely

related to that of M39 (Fig 5). These five compounds were then tested for their ability to inhibit

sliding motility of M. marinum. Qualitatively, at a concentration of 10 μM H41 partially

retained the ability to inhibit sliding motility, while N39 was inactive (Fig 5). Quantitatively, in

three independent experiments, H38, H41, H44 and H47 retained the ability to inhibit sliding

motility, but at a higher concentration than M39. N39 did not reproducibly inhibit sliding

motility. Thus, alterations in the M39 structure concomitantly affected its ability to inhibit M.

Fig 4. Inhibition of M. marinum sliding motility. A. Sliding motility of M. marinum was determined in the

presence of compounds M39, M5 (0.3 μM each) or DMSO. Compounds were added in the center of each well

containing 7H9 medium supplemented with 0.3% agarose, then mycobacteria were inoculated in the center

and allowed to grow for 10 days at 30˚C. The borders of the bacterial colony are indicated with black arrows.

After 6 to 10 days, mycobacteria spread over the whole surface of the well. Spreading was inhibited by M39,

but not by M5. Bar: 1 cm. B. Effect of each compound on sliding motility; (+) or (-) indicates if sliding motility

occurred or not, respectively. For each compound, sliding motility could only be tested at concentrations

where bacterial growth was not inhibited (NT: not tested).

https://doi.org/10.1371/journal.pone.0181121.g004
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marinum virulence and sliding motility. Similar observations were made when structural vari-

ants of compound M24 (Fig 6) were analyzed: the compounds H2 and H3 still inhibited bacte-

rial virulence, but N25 did not (Fig 6). Concomitantly, H2 and H3 inhibited sliding motility,

but N25 did not (Fig 6).

In summary, for both compounds M24 and M39, chemical modifications that decreased

the ability to inhibit M. marinum sliding motility also decreased to a similar extent the effect of

Fig 5. Chemical modifications of M39 concomitantly alter inhibition of M. marinum virulence and sliding motility. A. Chemical

structure of M39 and its variants H38, H41, H44, H47 and N39. B. Virulence of M. marinum was assessed in the presence of

increasing concentrations of each compound (0.3 to 30 μM). M39 inhibited M. marinum virulence at all concentrations down to 0.3μM,

analog N39 showed no effect at all concentrations tested. Scale bar: 1 cm. C. For each compound, the minimal concentration inhibiting

M. marinum virulence was determined in four independent experiments and is indicated with a different symbol for each experiment

(the experiment shown in B is represented with full squares). D. Sliding motility of M. marinum in the presence of compounds M39,

H41 and N39 (10μM) was analyzed as described in Fig 4. Sliding motility was inhibited efficiently by M39, partially by H41, and not at

all by N39. E. For each compound, the minimal concentration inhibiting M. marinum sliding motility was determined in three

independent experiments and is indicated.

https://doi.org/10.1371/journal.pone.0181121.g005
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the compound on bacterial virulence. One possible interpretation of these results is that the

primary effect of M24 and M39 is to inhibit sliding motility, and that this then results in a

decrease in bacterial virulence.

Alterations of the M. marinum envelope

Modifications in sliding motility can be caused by alterations in the properties of the mycobac-

terial envelope, and several mutations affecting the synthesis of envelope constituents indeed

also affect sliding motility [29]. This led us to test the effect of selected compounds on other

properties linked to the M. marinum envelope: bacterial aggregation and permeability. To

assess mycobacterial aggregation, we grew mycobacteria in the presence of 10 μM of each com-

pound for 48 h, then analyzed the size of bacterial aggregates using flow cytometry by measur-

ing the forward scatter of bacterial aggregates (Fig 7). Mycobacteria formed large aggregates in

untreated cultures, which as expected disassembled partly when the bacterial culture was

homogenized by repeated passing through a syringe needle (Fig 7). Exposure to compound

M39 reduced the number of aggregates with higher sizes (Fig 7). Of 12 compounds tested, 3

molecules (M8, M24 and M39) significantly decreased bacterial aggregation in this assay (Fig

7).

Bacterial permeability was tested in the same experiments by incubating bacteria in the

presence of ethidium bromide and then measuring the amount of dye penetrating the cells

(Fig 8). One compound (M8) significantly decreased bacterial permeability in this assay. The

variations observed upon exposure to other compounds were not statistically significant.

Fig 6. Chemical modifications of M24 concomitantly alter the compound’s activity on M. marinum

virulence and sliding motility. As described in Fig 5, analogs of M24 (A) were tested for their ability to inhibit

M. marinum virulence (B) and sliding motility (C). The results of three independent experiments are indicated

each with a different symbol.

https://doi.org/10.1371/journal.pone.0181121.g006
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Finally, we tested directly whether the concentration of phenolic glycolipids (PGL) and

phthiocerol dimycocerosates (PDIM) in the M. marinum envelope were affected upon treat-

ment with anti-virulence compounds. The amounts of PGL and PDIM were measured as

described previously using two-dimension thin layer chromatography (2D-TLC) [30, 31].

After treatment for 48 h at 10 μM, none of the compounds tested visibly decreased the amount

of PGL and PDIM (S2 Fig). It seems likely that they affect some other (unidentified) element

of the complex mycobacterial wall.

Antivirulence compounds inhibit intracellular replication of M. marinum

within Dictyostelium

One hallmark of an anti-virulence compound is that it would be expected to inhibit intracellular

replication of mycobacteria. In order to examine directly whether selected compounds inhibit

intracellular replication of M. marinum, we focused on compound M39 and two of its variants,

one active (H41), and one inactive (N39). Mycobacteria expressing bacterial luciferase plasmid

Fig 7. Effect of anti-virulence compounds on mycobacterial aggregation. In order to assess

mycobacterial aggregation, cultures were analyzed by flow cytometry and the forward scatter (FSC) of

bacterial aggregates was recorded. (A) Untreated cells (NT) aggregated readily, and as expected, repeated

passage through a needle (NT + needle) reduced aggregation. Cultivation in the presence of compound M39

(10 μM) reduced the degree of aggregation. (B) In five independent experiments, the mean FSC of M.

marinum cultures was measured, and expressed as a percentage of FSC measured in an untreated culture.

Three compounds (M8, M24, M39) significantly inhibited mycobacterial aggregation (one-way analysis of

variance: p = 0.0002; *: post-hoc Tukey-Kramer p<0.05).

https://doi.org/10.1371/journal.pone.0181121.g007
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were incubated with compounds (10 μM) for 24 h, and used to infect Dictyostelium cells in the

continued presence of compounds. Intracellular replication of M. marinum was followed by

measuring the increase in luminescence (Fig 9). M39 as well as its active variant H41 inhibited

the intracellular replication of M. marinum (Fig 9). As expected, the inactive variant N39 did

not inhibit intracellular bacterial replication (Fig 9). These data confirm that the screening strat-

egy employed in this study successfully identified compounds that decrease virulence of myco-

bacteria and, at least in the case of the M39 series of analogs, can effectively inhibit their

intracellular replication.

Discussion

In this study, we used a host-based assay to measure the pathogenicity of M. marinum and to

isolate small molecules inhibiting virulence of these mycobacteria. Since this screen was not

intentionally biased towards inhibitors of a specific virulence mechanism, any facet of myco-

bacterial physiology implicated in virulence represented a potential target. We identified 12

small molecules that inhibited virulence of M. marinum at concentrations that did not inhibit

its growth in broth, and thus represent bona fide virulence inhibitors, distinct from classical

antibiotics. A first classification of the selected compounds was performed, based on a few phe-

notypic assays, and the results obtained suggest that the selected compounds may have very

different modes of action. Eight of the 12 compounds inhibited at least to some extent M. mar-
inum sliding motility, three of these (M8, M24, M39) also decreased formation of bacterial

aggregates, and one (M8) decreased in addition membrane permeability of bacteria. For two

of these compounds (M39 and M24), analysis of structural variants revealed that the effect on

sliding motility was decreased or lost concomitantly with the effect on bacterial virulence. To

our knowledge, this is the first study identifying inhibitors of mycobacterial sliding motility.

Overall, it seems likely that the eight compounds inhibiting sliding motility of M. marinum
act mostly by altering the complex composition or organization of the mycobacterial cell wall,

which is the main determinant of sliding motility. However, other functions associated with

the mycobacterial envelope (propensity to aggregate, permeability) were affected to a very

Fig 8. Effect of anti-virulence compounds on mycobacterial cell wall permeability. Mycobacteria were

grown in the presence of each compound (10 μM), incubated for 20 min in the presence of 6μM ethidium

bromide, and analyzed by flow cytometry. Analysis of fluorescence was performed on bacteria with very

similar aggregate size. The average and SEM of five or six independent experiments is presented. One

compound (M8) significantly inhibited bacterial permeability (one-way analysis of variance: p = 0.0002; *:

post-hoc Tukey-Kramer p<0.05).

https://doi.org/10.1371/journal.pone.0181121.g008
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Fig 9. M39 inhibits intracellular replication of M. marinum. A. Dictyostelium cells were infected at time 0

with luminescent M. marinum grown for 24 h in the presence of DMSO (empty triangle), M39 (black square),

H41 (empty square) or N39 (full triangle) (10 μM). Intracellular replication was assessed by measuring the

increase in intracellular luminescence. B. The experiment described in A was performed three times

independently and the level of luminescence at 24 h was recorded. The average and SEM are indicated. *:

significantly different from NT (student’s t-test; p<0.05).

https://doi.org/10.1371/journal.pone.0181121.g009
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variable degree by each of these compounds, suggesting that they induce different types of

alterations. The analysis of mycobacterial lipids did not reveal gross alterations upon treatment

with the selected compounds, and further analysis will be necessary to determine the exact bio-

chemical modifications leading to alterations of sliding motility.

In addition to the compounds affecting mycobacterial sliding motility, several compounds

(M5, M7, M33 and M34) did not exhibit any effect on the phenotype of M. marinum in the

assays used here. These compounds presumably act on some other facet(s) of M. marinum
physiology, not tested in this study. Alternatively, they may act primarily on the host, boosting

cellular defenses against M. marinum.

In this study, we isolated inhibitors of M. marinum virulence by directly measuring the

virulence of the bacteria in a Dictyostelium host model. Such a host-based screening has the

advantage of identifying compounds that are capable of entering mycobacteria to alter their

phenotype, while excluding toxic compounds that would kill host cells. Indeed, we obtained

no evidence that any of the compounds isolated is toxic. This approach also allows the isolation

of a variety of compounds with different modes of actions. Finally, we tested further one of

the isolated compounds and showed that it affects the ability of mycobacteria to replicate in

infected cells. Very few reports describe inhibitors of mycobacterial virulence. A previous

screen was designed specifically to isolate inhibitors of mycobacterial protein secretion [32]. In

other screens, inhibitors of selected mycobacterial targets were identified, such as inhibitors of

the PhoPR regulon [33], the MycP1 protease [34], the Zmp1 metalloprotease [35], or the PtpB

phosphatase [36]. We are not aware of any previously described screening that would poten-

tially identify virtually any inhibitor of mycobacterial virulence. This may account for the fact

that our screen exclusively identified new inhibitors that were aimed at least in part at a previ-

ously untargeted pathway, mycobacterial sliding motility. Further studies will be necessary

to identify the exact mode of action and molecular target of each of these compounds, since

many gene products are essential for sliding motility and for mycobacterial virulence in gen-

eral, and thus represent possible targets for such inhibitors [20, 29, 37]. It will also be interest-

ing to determine in other model systems (e.g. zebrafish infection) if the compounds identified

in our study also inhibit mycobacterial infections. It remains to be seen whether these com-

pounds would act on other mycobacteria, and in particular on M. tuberculosis. Besides reveal-

ing new aspects of M. marinum virulence, these studies may lead to the identification and

characterization of new anti-mycobacterial compounds with therapeutic potential.

Supporting information

S1 Table. Compounds with antibiotic activity against M. marinum.

(DOCX)

S1 Fig. Effect of compounds M5, M24, M33 and M39 on mycobacterial growth. M. mari-
num bacteria were grown in 7H9 medium for 55h in the presence of DMSO, or 10μM of com-

pounds M5, M24, M33 or M39. OD600 was measured at the indicated times (A). After 24h of

growth, the colony-forming units were determined after plating dilutions of the cultures on

7H11 plates (B). No significant effect of compounds on mycobacterial growth was detected.

(TIF)

S2 Fig. Two-dimension thin layer chromatography (2DTLC). Apolar lipid fractions were

prepared from M. marinum (NT) grown for 24 hours in the presence of virulence inhibitors

M24 and M39 (10μM), according to published procedures [1, 2]. These lipids were analyzed

by two-dimensional thin layer chromatography (2D-TLC) on silica gel 60 plates (EMD Chemi-

cals Inc). For PDIM development lipids were migrated in petroleum ether-ethyl acetate (98:2,
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v/v, 3 times) in the first dimension and petroleum ether-acetone (98:2, v/v) in the second

dimension. The plates were sprayed with 5% molybdophosphoric acid 95% ethyl alcohol (v/v)

and heated at 150˚C for 15 min. For PGL development, chloroform-methanol (96:4, v/v) was

used in the first dimension followed by toluene-acetone (90:10, v/v, 3 times) in the second

dimension. Plates were then spread with alpha-naphtol sulfiric acid reagent and heated at

120˚C for 10 min.

(TIF)
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