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TRPM7 kinase activity is essential for T cell
colonization and alloreactivity in the gut
Andrea Romagnani1,2, Valentina Vettore3, Tanja Rezzonico-Jost1, Sarah Hampe3, Elsa Rottoli4, Wiebke Nadolni3,

Michela Perotti1, Melanie A. Meier3, Constanze Hermanns3, Sheila Geiger3, Gunther Wennemuth 5,

Camilla Recordati6, Masayuki Matsushita7, Susanne Muehlich3, Michele Proietti1,9, Vladimir Chubanov3,

Thomas Gudermann3, Fabio Grassi1,4,8 & Susanna Zierler 3

The melastatin-like transient-receptor-potential-7 protein (TRPM7), harbouring a cation

channel and a serine/threonine kinase, has been implicated in thymopoiesis and cytokine

expression. Here we show, by analysing TRPM7 kinase-dead mutant (Trpm7R/R) mice, that

the enzymatic activity of the receptor is not essential for thymopoiesis, but is required for

CD103 transcription and gut-homing of intra-epithelial lymphocytes. Defective T cell gut

colonization reduces MHCII expression in intestinal epithelial cells. Mechanistically, TRPM7

kinase activity controls TGF-β-induced CD103 expression and pro-inflammatory T helper 17,

but not regulatory T, cell differentiation by modulating SMAD2. Notably, we find that the

TRPM7 kinase activity promotes gut colonization by alloreactive T cells in acute graft-versus-

host disease. Thus, our results unravel a function of TRPM7 kinase in T cell activity and

suggest a therapeutic potential of kinase inhibitors in averting acute graft-versus-host

disease.
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The antigen-rich environment of the gut interrelates with a
highly specialized mucosal immune system, mastering the
challenge of preventing invasion and systemic spread of

microbes while avoiding unnecessary immune reactions to
commensal bacteria. Besides representing a physical barrier, the
intestinal epithelium constitutes also a dynamic interface between
the host immune system and the luminal environment, which
harbours potentially harmful microbes. Therefore, maintenance
of the protective barrier is essential in mucosal immunity, and
intra-epithelial lymphocytes (IEL) have an important function in
maintaining this barrier function1. The intestinal mucosa is
composed of a single layer of columnar epithelial cells, the
underlying lamina propria and the muscularis mucosa. Tight
junctions, components of the apical junctional complex, seal the
paracellular space between epithelial cells. IELs are located above
the basement membrane, but are subjacent to tight junctions. The
lamina propria is located beneath the basement membrane and
contains immune cells, including macrophages, dendritic cells
and lamina propria lymphocytes (LPL)2. Intestinal T cells are
highly heterogeneous in phenotype and function and include
both conventional and unconventional subpopulations. Conven-
tional mucosal T cells express the αβ T cell receptor (TCRαβ)
together with CD4 or CD8αβ as co-receptors, whereas uncon-
ventional mucosal T cells express either TCRαβ or TCRγδ toge-
ther with CD8αα homodimers1. During their activation in
specialized mesenteric lymph nodes or Peyer’s patches, naive
T cells acquire gut-homing properties through the upregulation of
distinct adhesion receptors including the integrins α4β7 and αEβ7
(CD103)3, 4. Moreover, the resident microbiota regulates the
development of specific lymphocyte subsets in the gut. CD4+ T
helper 17 (TH17) cells preferentially accumulate in the intestine,
indicating a developmental regulation by gut-intrinsic mechan-
isms5. Forkhead box P3 (FoxP3) expressing regulatory T (Treg)
cells represent another CD4+ T helper (TH) cell subset that pre-
ferentially accumulates in the intestine and contributes to gut
homoeostasis. The regulated induction of pro-inflammatory TH17
and immunosuppressive Treg cells in the gut illustrates the
importance of an equilibrium between effective immunity and
tolerance to preserve tissue integrity1. However, the mechanisms
responsible for this physiologic balance are not well understood.
The induction of both these TH subsets depends on TGF-β, which
is abundantly present in the intestine6, 7.

Among the mammalian transient receptor potential (TRP)
superfamily of unselective cation channels, the TRPM subfamily,
named after its founding member melastatin, TRPM18, comprises
eight members including the dual-function protein, TRPM7.
TRPM7 is a divalent selective cation channel, mainly conducting
Mg2+, Ca2+ and Zn2+, fused to a C-terminal α-kinase domain9, 10.
TRPM7 has been implicated in cell survival, proliferation,
apoptosis as well as migration and immune cell function. How-
ever, the physiologic function of TRPM7 ion channel or enzy-
matic activity is poorly understood11, 12. Unlike conventional
kinases, TRPM7 kinase does not recognize known specific amino
acid motifs but phosphorylates serines (Ser) and threonines (Thr)
located within alpha-helices10. TRPM7 contains a Ser/Thr-rich
autophosphorylation site, which aids in TRPM7-substrate bind-
ing13. In vitro, TRPM7 kinase phosphorylates annexin A110, 14,
myosin II isoforms15, eEF2-k16 and PLCγ217.

Deletion of the ubiquitously expressed TRPM7 protein is
embryonic lethal18, 19. Deletion of the exons encoding only the
TRPM7 kinase domain (Trpm7ΔK/ΔK) also causes early embryonic
death, most probably attributable to reduced channel function in
this mutant19. However, heterozygous mice (Trpm7+/ΔK) are viable
and develop severe hypo-magnesaemia upon Mg2+ restriction,
causing increased mortality, susceptibility to seizures and prevalence
for allergic hypersensitivity19. Interestingly, homozygous mice with

genetic inactivation of TRPM7 kinase activity by a point mutation
within the active site of the kinase (K1646R, Trpm7R/R) have no
obvious phenotype20, 21, indicating that the Trpm7+/ΔK phenotype,
is due to decrease in both channel and kinase activity. Moreover,
analysis of these mouse models revealed that TRPM7 kinase activity
regulates mast cell degranulation and histamine release, implicating
TRPM7 in the hyper-allergic phenotype observed previously22.
Tissue-specific deletion of Trpm7 in the T cell lineage disrupts
thymopoiesis and results in altered chemokine and cytokine
expression profiles18, indicating that TRPM7 channel and/or kinase
are important for T cell function.

Here we show that the ubiquitous kinase-dead mouse model,
Trpm7R/R, with a single point mutation at the active site of the
kinase21 has an exquisite requirement for TRPM7 kinase activity
in intra-epithelial T cell homoeostasis. We find that gut coloni-
zation by alloreactive T cells in acute graft-versus-host disease
depends on TRPM7 kinase activity, indicating a therapeutic
potential of kinase inhibitors in averting this condition.

Results
TRPM7 kinase does not affect channel activity. To investigate
the impact of the TRPM7 kinase on T cell function, we utilized a
mouse model carrying a point mutation at the active site of the
enzyme21. Mutating lysine at position 1646 to arginine (Trpm7R/R)
disrupts ATP binding and thereby kinase activity (Supplementary
Fig. 1a)21. Using immunoprecipitation and western blot analysis,
we were able to confirm that the mutation indeed disrupted native
kinase activity and thus autophosphorylation at serine 1511 in
primary splenocytes (Supplementary Fig. 1b). Unlike mice lacking
the entire kinase domain19, homozygous Trpm7R/R mice are
viable20, 21. They are normal in size, weight and Mendelian
inheritance ratio compared to wild-type (WT)20, 21. To test whe-
ther inactivation of TRPM7 kinase has any effect on Mg2+ and Ca2
+ homoeostasis, we used inductively coupled mass spectrometry
(ICP-MS), biochemical as well as calcium-imaging techniques. By
ICP-MS, we observed no changes in serum Mg2+ and Ca2+ con-
centrations (Supplementary Fig. 1c, d). Cellular ATP levels are
often taken as an estimate for intracellular Mg2+ contents23.
Therefore, we performed a luciferin luciferase assay and found no
alterations in intracellular ATP levels between WT and Trpm7R/R

primary naive CD4+ T cells (Supplementary Fig. 1e). To deter-
mine basal intracellular free Ca2+ concentrations ([Ca2+]i), we
used ratiometric Fura-Red imaging. No significant differences in
[Ca2+]i between WT and Trpm7R/R primary naive CD4+ T cells
were detected (Supplementary Fig. 1f). Further, we assessed the
potential function of kinase activity in the regulation of biophy-
sical features of the TRPM7 channel. Whole-cell patch-clamp
experiments revealed that the channel function is unaltered in
primary peritoneal mast cells (Supplementary Fig. 1g, h) as well as
in naive CD4+ T cells (Supplementary Fig. 1j), which is in line
with previous reports on peritoneal macrophages and mast cells,
as well as embryonic fibroblasts isolated from Trpm7R/R mice20–22.
Trpm7R/R channels display slightly decreased Mg2+-sensitivity
without obvious consequences for the channel activity at physio-
logic Mg2+ levels (Supplementary Fig. 1i). As already shown,
serum Mg2+ and Ca2+ concentrations were unaffected (Supple-
mentary Fig. 1c, d)21. This overall constellation allowed us to
independently investigate TRPM7 kinase function.

TRPM7 kinase affects serum cytokines but not thymopoiesis.
Tissue-specific deletion of Trpm7 in the T cell lineage was shown
to disrupt thymopoiesis and resulted in altered chemokine and
cytokine expression profiles18, indicating that TRPM7 channel
and/or kinase are important in T cell development. Our TRPM7
kinase-dead mouse model, Trpm7R/R, allows us to specifically

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01960-z

2 NATURE COMMUNICATIONS | 8:  1917 |DOI: 10.1038/s41467-017-01960-z |www.nature.com/naturecommunications

www.nature.com/naturecommunications


address the function of TRPM7 kinase activity in T cells. The total
numbers of thymocytes, as well as the percentages of double-
negative (DN, CD4−CD8−), double-positive (DP, CD4+CD8+)
and single-positive (SP, CD4+CD8−, CD4−CD8+) thymocytes
were similar in both genotypes (Fig. 1a–c). Tissue-specific dele-
tion of Trpm7 in the T cell linage affected thymopoiesis through a

block in the transition from the DN3 (CD25+CD44−) to the DN4
(CD25−CD44−) stage18. However, in the kinase-dead Trpm7R/R

mutant, the distribution of DN3 and DN4 thymocytes was
unaltered with respect to WT (Fig. 1d–f), indicating that the
kinase activity is not responsible for the thymic phenotype
observed previously.
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Fig. 1 Normal T cell development in Trpm7R/R mice but altered cytokine secretion. a Total WT or Trpm7R/R cell recovery from thymus. b Representative dot
plot analysis of thymocytes fromWT or Trpm7R/R thymi stained with CD4 and CD8 mAbs. Percentages are shown in each gate. c Dot charts comparing the
total number of thymocytes in the double-negative (DN), double-positive (DP), CD4+, and CD8+ thymocytes are shown (mean± s.e.m. n= 5). d
Representative dot plot analysis of thymocytes gated on DN cells from WT or Trpm7R/R thymi stained with CD44 and CD25 mAbs. Percentages are shown
in each gate. e Representative histogram overlay of cell surface CD25 in WT or Trpm7R/R thymocytes. f Dot charts showing the number of total cells
(mean± s.e.m. n= 5) of DN population found in the DN1, DN2, DN3 and DN4 stages. Data are representative results of two independent experiments with
five mice per experiment. g Basal cytokine levels evaluated in serum of WT (black, n= 3–7) and Trpm7R/R (grey, n= 3–7) mice, respectively, and shown as
pgml−1. Bar charts indicate mean± s.e.m. A total number of seven mice were used for each genotype. Note a significant reduction of serum levels of IL-17
and G-CSF in Trpm7R/R. A two-tailed Student’s t test was used with *p< 0.05; **p< 0.01 and ***p< 0.001
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In spite of normal T cell development and similar to T cell-
specific conditional Trpm7−/− mice18, the Trpm7R/R mutant had
a reduction of pro-inflammatory cytokines in the serum,
including granulocyte colony-stimulating factor (G-CSF) and
interleukin (IL)-17A. Also IL-1β, IL-3, IL-4, IL-9, IL-10, IL12p70,

IL-13, granulocyte-macrophage colony-stimulating factor
(GM-CSF), interferon (IFN)-γ and tumor necrosis factor (TNF)
were reduced, albeit not significantly (Fig. 1g), thus indicating a
function of the TRPM7 kinase in shaping the cytokine secretion
profile.
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In vitro activation of CD4+ T cells derived from Trpm7R/R mice
using αCD3/αCD28-coated plates resulted in slightly reduced
intracellular Ca2+ signalling compared to WT cells (Supplemen-
tary Fig. 2a). Although Trpm7R/R T cells had similar kinetics of
receptor-operated Ca2+ entry (ROCE) compared to WT T cells,
Ca2+ amplitudes in Trpm7R/R T cells were different at 150 s
compared to WT (Supplementary Fig. 2a). Nonetheless, the
proliferation rates were similar between the two genotypes,
indicating no primary defect of Trpm7R/R mice in T cell activation
(Supplementary Fig. 2b, c).

TRPM7 kinase promotes T cell colonization of gut epithelium.
While T cell subsets in the spleen and peripheral lymph nodes
were distributed normally in Trpm7R/R mice (Supplementary
Fig. 3a, b), we found a strong reduction of all T cell subsets in the
intestinal epithelium (Fig. 2a, c) and the lamina propria (LP)
(Fig. 2b, d) by fluorescence-activated cell sorting (FACS) analysis.
Notably, LPLs as well as CD4+ TCRαβ+ IELs were particularly
affected by the lack of TRPM7 kinase activity (Fig. 2a, b). In line
with these findings, the analysis of the distribution of CD3+

T cells in tissue sections of the small intestine from Trpm7R/R

mice revealed a reduction of IELs compared to WT (Fig. 2e). The
presence of IELs correlates with the induction of MHCII
expression on epithelial cells24. Consistent with the reduction of
IELs, we detected a dramatic reduction of MHCII expression in
EpCAM+ intestinal epithelial cells in Trpm7R/R compared to WT
mice (Fig. 2f). Analysis of the transcriptional profile of the few
IELs that were present in Trpm7R/R mice revealed no differences
in T-bet or FoxP3 expression when compared to WT, indicating a
normal TH1 and Treg polarization, respectively. However, the
signature transcription factor for TH17 cells, Rorc, was reduced in
Trpm7R/R IELs compared to WT that was also reflected by
reduced IL-17 expression (Fig. 2g). These findings were con-
firmed by intracellular staining via FACS for IFN-γ and IL-17A in
IELs isolated from WT and Trpm7R/R mice. While IFN-γ
secreting cells were comparable between Trpm7R/R and WT
IELs, IL-17A secreting cells were diminished in Trpm7R/R com-
pared to WT IELs (Fig. 2h).

Defect in gut epithelium colonization is T cell intrinsic. In the
intestinal epithelium the upregulation of CD103 is required,
specifically integrin αEβ7, which in turn interacts with E-cadherin
on the epithelial cells and thus facilitates the retention of IELs
into the epithelial layer25, 26. Interestingly, CD103 and integrin β7
expressing CD4+ IELs were reduced in Trpm7R/R mice, while
CD8+ IELs were only slightly reduced and α4β7 expressing cells
were unaffected (Fig. 3a). The analysis of CD4+ and CD8+ LPLs
revealed a similar reduction in CD103 expression in Trpm7R/R

mice compared to WT (Fig. 3b). However, integrin β7 expressing
CD8+ LPLs were unaffected in Trpm7R/R mice compared to WT
(Fig. 3b). Also the mean fluorescence intensity (MFI) of CD103
expression was reduced in Trpm7R/R CD4+ and CD8+ IELs as

well as CD4+ and CD8+ LPLs compared to WT cells (Fig. 3c, d).
Correspondingly, the MFI of the integrin β7 was similarly reduced
(Fig. 3c, d). At the transcriptional level, analysis of the gene
encoding CD103, Itgae, via quantitative real-time (qRT)-PCR
revealed reduced Itgae messenger RNA (mRNA) expression in
lymphocytes isolated from the spleen, LP and intestinal epithe-
lium of Trpm7R/R compared to WT mice (Fig. 3e).

To rule out the contribution of other cells to the reduction of
IELs and LPLs as well as CD103 expression, we further examined
intestinal epithelial as well as dendritic cells. Transmission
electron microscopic images of the ileum (upper panel) and the
colon (lower panel) of WT and Trpm7R/R mice illustrate no
changes in overall structure, tight junction, adherens junction or
desmosome formation (Fig. 4a), indicating no primary difference
between the epithelial barrier of WT and Trpm7R/R mice.
Interestingly, MHCII as well as CD103 surface expression of
WT and Trpm7R/R dendritic cells was unaltered (Fig. 4b),
suggesting that dendritic cell function is not affected by the
TRPM7 kinase. Consistently, Trpm7 mRNA levels were strongly
reduced in DCs as well as in epithelial cells, compared to T cells
(Supplementary Fig. 3c).

CD103 expression strongly depends on TGF-β stimulation27.
The analysis of TGF-β1, two and three mRNA levels in dendritic
as well as intestinal epithelial cells, two main sources of TGF-β in
the gut, did not reveal significant differences between WT and
Trpm7R/R mice (Fig. 4c). Moreover, we did not detect any
difference in TGF-β serum levels between the different mice
(Fig. 4d). Notably, TGF-β1 was the most prominent isoform in
serum, while TGF-β3 was not detectable.

To confirm that the reduced number of IELs and LPLs in
Trpm7R/R mice was T cell intrinsic, we adoptively transferred
either WT or Trpm7R/R naive CD4+ cells into congenic Rag1
−/−/Il2rg−/− double mutant mice, lacking T and B as well as
natural killer cells. While both WT and Trpm7R/R naive T cells
equally reconstituted the spleen, Trpm7R/R T cells exhibited an
intrinsic defect in colonizing the intestinal epithelium (Fig. 4e).
Trpm7R/R CD4+ IELs poorly, if at all, expressed CD103 (Fig. 4f),
thereby indicating that the defect of IEL retention within the
small intestinal epithelium was T cell autonomous. Moreover,
lymphopenic hosts adoptively transferred with naive CD4+ T cells
from Trpm7R/R mice had impaired upregulation of MHCII in
intestinal epithelial cells (Fig. 4g).

TRPM7 kinase regulates TGF-β/SMAD pathways. As Trpm7R/R

IELs displayed a pronounced reduction in Rorc and IL-17
expression while T-bet and FoxP3 were equivalent in Trpm7R/R

compared to WT IELs (Fig. 2g), we addressed whether in vitro
differentiation of naive CD4+ Trpm7R/R T cells would reproduce
this phenomenon. After polarization of naive T cells into TH1 or
Treg for 5 days using the respective cytokine and inhibitory-
antibody cocktails (Methods), we observed no differences in the
percentage of IFN-γ or CD25+FoxP3+ T cells between the two

Fig. 2 Selectively reduced intra-epithelial lymphocytes in Trpm7R/R mice. a Dot plot (left) and statistical analyses (right) of intra-epithelial lymphocytes
(IEL) from WT or Trpm7R/R mice stained as indicated. Percentages are shown in each gate, bar charts show mean percentages± s.e.m. (WT, n= 6;
Trpm7R/R, n= 7). b Dot plot (left) and statistical analyses (right) of lamina propria lymphocytes (LPL) from WT or Trpm7R/R mice stained as indicated.
Percentages are shown in each gate, bar charts show mean percentages± s.e.m. (n= 7). c Absolute numbers (WT, n= 6; Trpm7R/R, n= 7) of the indicated
IELs subsets. Bar charts show mean percentages± s.e.m. d Absolute numbers (mean± s.e.m. n= 7) of the indicated LPL subsets. e CD3
immunohistochemical staining of small intestine sections of WT or Trpm7R/R mice and relative quantification (right). Scale bars indicate 100 µm. f Dot blots
and statistical analyses of MHCII expression in EpCAM+ intestinal epithelial cells (IEC). Percentages are shown in each gate, bar charts show mean
percentages± s.e.m. (n= 3). g Quantitative real-time PCR of T-bet, Foxp3, Rorc and Il-17a expression in purified TCRαβ+CD4+ IELs from WT or Trpm7R/R

mice. h Dot plot and statistical analyses of IFN-γ and IL-17A staining in WT or Trpm7R/R TCRαβ+CD4+ IELs. Percentages are shown in each gate, bar charts
show mean percentages± s.e.m. (WT, n= 5; Trpm7R/R, n= 8). Data are representative results of at least 3 independent experiments. A two-tailed
Student’s t test was used with *p< 0.05; **p< 0.01 and ***p< 0.001
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genotypes (Fig. 5a, left and middle). Interestingly, in vitro
polarization of naive CD4+ T cells into TH17 cells, using TGF-β,
IL-6 and αIFN-γ, was reduced in Trpm7R/R compared to WT cells
(Fig. 5a, right), consistent with the robust reduction of IL-17
concentration in serum from Trpm7R/R mice (Fig. 1g) as well as
the diminished number of IL17-producing Trpm7R/R IELs
(Fig. 2h). In contrast, T-bet and Ifn-γ mRNA levels were not
different among in vitro-differentiated Trpm7R/R and WT
TH1 cells (Fig. 5b). Since Rorc and IL-17 mRNA levels were
reduced in in vitro-differentiated Trpm7R/R TH17 cells (Fig. 5b),
we analysed STAT3 signalling as a signalling pathway involved in
TH17 differentiation. However, western blot analysis of CD4+

T cells treated with IL-6 for 15 and 30 min showed no differences
in STAT3 phosphorylation at Tyr705 (Fig. 5c).

Next, we asked whether the defect in CD103 expression in vivo
was also reflected in vitro. To this end, naive CD4+ T cells were
treated with TGF-β1, stimulated with αCD3/αCD28 and analysed
for CD103 and integrin β7 surface expression by FACS.
Interestingly, Trpm7R/R CD4+ T cells were characterized by a
reduction in CD103 and integrin β7 expression (Fig. 5d). While
WT naive CD4+ T cells increased Itgae gene expression twofold,
Trpm7R/R naive CD4+ T cells were unable to upregulate Itgae
expression after 24 h stimulation (Fig. 5e), suggesting a
transcriptional regulation of CD103 via the TRPM7 kinase. Since
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TGF-β was shown to upregulate CD103 via SMAD and NFAT
pathways in human T cells28, we addressed whether the TGF-β/
SMAD signalling pathway was affected by TRPM7 kinase activity,
particularly as TGF-β/SMAD pathways are also crucial for the
polarization of CD4+ T cells into TH17 cells29. Importantly,
western blot analysis of Trpm7R/R naive CD4+ T cells treated with
5 ng ml−1 TGF-β1 for 10 min revealed a strong and reduction in
SMAD2 (Ser465/467) phosphorylation (Fig. 5f, upper row and

middle panel), while SMAD3 (Ser423/425) phosphorylation was
unaltered (Fig. 5f, middle row and right panel). Consistently,
SMAD2 translocation into the nucleus was impaired in Trpm7R/R

T cells compared to WT (Fig. 6a). Thus, we conclude that the
TRPM7 kinase regulates TH17 differentiation and Itgae expres-
sion via TGF-β/SMAD2 dependent pathways.

To further clarify the mechanism by which TRPM7 kinase
activity controls TGF-β/SMAD2 signalling, we performed an
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in vitro kinase assay using highly purified recombinant TRPM7
kinase, SMAD2-GST, as well as C-terminally truncated SMAD2-
GST and GST-tag as controls. Remarkably, TRPM7 phosphor-
ylates SMAD2 in a dose dependent manner. Moreover, TRPM7
fails to phosphorylate the truncated SMAD2 or the GST-tag,
thereby identifying the C-terminal SXS motif of SMAD2 as a
substrate for TRPM7 kinase (Fig. 6b). Thus, we conclude that
TRPM7 kinase can modulate SMAD2 signalling via direct
phosphorylation at the C-terminal Ser465/467 motif (Figs. 5f,
6b), which is essential for its transcriptional activity, while the
linker region (Ser245/250/255) is unaffected by TRPM7 kinase
(Supplementary Figs. 3d, 6b).

Moreover, we performed a proximity ligation assay (PLA) on
purified CD4+ T cells, to characterize the interaction of SMAD2
with TRPM7 kinase in more detail. Figure 6c depicts a significant
increase in SMAD2 co-localization with TRPM7 in WT T cells
treated with 5 ng ml−1 TGF-β1 (p< 0.0001, two-tailed Student’s t
test), while Trpm7R/R T cells fail to recruit SMAD2 into close
proximity to TRPM7 kinase (Fig. 6c). SMAD2 has previously
been shown to bind to the Itgae promoter sequence, thereby
facilitating its transcription25. To link the observed defect in
CD103 expression of Trpm7R/R T cells to their defective
SMAD2 signalling, we performed a chromatin

immunoprecipitation (ChIP) assay on primary murine CD4+

T cells with and without TGF-β1 stimulation (Fig. 6d). Our
results show that SMAD2 binds to the Itgae promoter regions
upon TGF-β1 stimulation in WT T cells, but fails to do so in
Trpm7R/R T cells in response to TGF-β1 stimulation, under-
scoring the indispensable requirement of a functional TRPM7
kinase in TGF-β/SMAD2 signalling in T cells.

TRPM7 kinase activity promotes graft-versus-host disease. In
acute graft-versus-host disease (GVHD), naive donor CD4 cells
recognize alloantigens on antigen presenting cells in target
organs, including skin, intestine and lung. However, the function
of different TH subsets and signalling pathways in the patho-
genesis of GVHD in distinct organs is incompletely characterized.
We hypothesized that defective intestinal colonization by CD4+

cells lacking TRPM7 kinase activity could affect acute GVHD. To
address this hypothesis, BALB/c WT mice were lethally irradiated
and transplanted with bone marrow cells from WT C57BL/6J
mice together with WT or Trpm7R/R splenocytes. As expected,
injection of WT splenocytes resulted in massive intestinal damage
as demonstrated by shortening of the colon (Fig. 7a) and most
mice died within 35 days after transplantation (Fig. 7b). In
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contrast, injection of Trpm7R/R splenocytes did not cause intest-
inal damage and shortening of the colon in BALB/c hosts
(Fig. 7a). Moreover, we observed a dramatically increased survival
of these mice; only about 10% of mice injected with Trpm7R/R

splenocytes died within the first 30 days after transplantation
(Fig. 7b).

The analysis of intestinal epithelium by FACS with H2KB

(C57BL/6J haplotype)-specific mAb revealed a reduction of
TCRαβ+ cells derived from Trpm7R/R splenocytes with respect
to WT cells, suggesting an impairment of T cells lacking TRPM7
kinase activity in the colonization of host intestine (Fig. 7c). Also,
the expression of CD103 and integrin β7 was reduced in CD4+ as
well as CD8+ TCRαβ+ Trpm7R/R compared to WT cells (Fig. 7e).
The reduction of gut colonization by Trpm7R/R T cells correlated
with a reduced expression of MHCII in host intestinal epithelial
cells with respect to mice injected with WT cells (Fig. 7d). These
results indicate that TRPM7 kinase activity in T cells is a decisive
factor in the pathogenesis of GVHD by promoting host gut
epithelium colonization.

Discussion
Tissue-specific deletion of Trpm7 in the T cell lineage results in
impairment of T cell development in the thymus and altered
chemokine as well as cytokine expression profiles18. In contrast,
mice carrying an inactive TRPM7 kinase (Trpm7R/R) have

unaltered thymopoiesis21, indicating that the channel but not the
kinase activity is important in regulating the progression of T cell
progenitors to mature T cells. However, in these mice, we
observed a significant reduction of pro-inflammatory cytokines,
including IL-17 and G-CSF, suggesting that TRPM7 kinase
activity might be essential for immune system homoeostasis.

While T cells in the spleen and peripheral lymph nodes of
Trpm7R/R mice were distributed normally, conventional T cells
within IELs and LPLs were reduced. In particular, CD4+ T cells
were the most significantly reduced IELs and LPLs subsets in
Trpm7R/R as compared to WT mice. In addition, the analysis of
functional subsets in the few CD4+ cells recovered from the gut of
Trpm7R/R mice revealed a dramatic reduction of TH17 cells,
indicating that TRPM7 kinase activity is important for gut colo-
nization by T cells and TH17 cell differentiation. In fact, experi-
ments of in vitro polarization of naive CD4+ T cells into TH1, Treg

and TH17 cells showed a selective defect of Trpm7R/R CD4+ T cells
to polarize into Rorc and IL-17 expressing cells. STAT3 phos-
phorylation is important for TH17 cell differentiation29 and Trpm7
silencing was shown to affect STAT3 phosphorylation at Tyr705
in breast cancer cells stimulated with epidermal growth factor30.
However, IL-6 induced Tyr705 phosphorylation was unaffected in
Trpm7R/R CD4+ T cells, suggesting that this signalling event is not
involved in the defect in TH17 polarization of Trpm7R/R cells; this
result also suggests that in breast cancer cells Tyr705
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percentages± s.e.m. (n= 3). d Dot plot and statistical analyses of MHCII expression in EpCAM+ IEC from BALB/c mice reconstituted with WT or Trpm7R/R

splenocytes. Percentages are shown in each gate, bar charts show mean percentages± s.e.m. (n= 3). e Dot plot and statistical analyses of CD103 and β7
expression in electronically gated H-2b+TCRαβ+CD4+ or H-2b+TCRαβ+CD8+ IELs. Percentages are shown within each gate, bar charts show mean
percentages± s.e.m. (n= 3)
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phosphorylation might be conditioned indirectly by the TRPM7
channel rather than kinase moiety.

In Trpm7R/R mice, the vascular adhesion molecule integrin
α4β7 was not affected in intestinal T cells, whereas CD103
(integrin αEβ7) was dramatically reduced. These data indicate that
the profound reduction of intestinal T cells that characterizes
these mice is due to the impaired retention of T cells mediated by
the interaction of CD103 with E-cadherin expressed in epithelial
cells rather than emigration from blood vessels into the LP4. Mice
lacking CD103 have selectively reduced numbers of mucosal
T cells and are more prone to experimentally induced colitis25, 26.
However, this phenomenon was attributed to lack of CD103 in
gut associated CD11chighMHCIIhigh dendritic cells (DCs)31, a cell
population that was not affected by lack of TRPM7 kinase
activity. Our observations are consistent with a selective defect of
Trpm7R/R T cells in upregulating CD103 and gut retention, while
CD103 expression is not affected in DCs by Trpm7R/R, pointing
to different regulatory mechanism/s in DCs. We demonstrated
the T cell intrinsic nature of the intestinal defect due to lack of
CD103 upregulation by adoptive transfer of Trpm7R/R CD4+ cells
into lymphopenic hosts. Another important consequence of
defective TRPM7 kinase activity in T cells was the significant
reduction of MHCII expression in intestinal epithelial cells, a
IELs-dependent feature essential for proper antigen presentation
and immunological function of gut epithelial cells1, 4.

Both TH17-cell polarization and CD103 expression depend on
TGF-β signalling27, 28. DCs and intestinal epithelial cells (IEL) are
the major source for TGF-β in the gut5. However, the relative
mRNA expressions of Tgf-β1, 2 and 3 in DCs and IELs as well as
serum concentrations for TGF-β1 and 2 were similar both in
Trpm7R/R and WT mice, indicating no primary defect in TGF-β
production or secretion by lack of TRPM7 kinase activity. Con-
versely, in vitro induction of CD103 by TGF-β in naive Trpm7R/R

CD4+ cells was impaired. This impairment was also evident at the
transcriptional level since Trpm7R/R CD4+ cells failed to upre-
gulate Itgae. In fact, according to SMAD dependence of Itgae
expression28, we could show a reduction of the phosphorylation
of the C-terminal SXS motif of SMAD2 but not of SMAD3 in
TGF-β1-stimulated Trpm7R/R CD4+ cells. Moreover, using ChIP
we demonstrated the defective binding of SMAD2 to the Itgae
promoter region in Trpm7R/R T cells upon TGF-β1 stimulation.
Interestingly, SMAD2 activation was suggested to exquisitely
regulate TH17 cell generation but to be dispensable for Treg cell
differentiation32, consistent with distinct control of T cell func-
tions by SMAD-dependent and -independent TGF-β signalling33.
However, this notion remains controversial in the literature, as
some studies report a dispensable function of SMAD2 in TH17
cell polarization34–37, suggesting the existence of compensatory
mechanisms under certain circumstances. As we have not eval-
uated all possible Ser/Thr phosphorylation sites on SMAD3, we
cannot exclude an effect of the TRPM7 kinase deletion on sites
other than the C-terminal SXS motif. However, for SMAD2, we
can exclude other direct phosphorylation sites, as the truncated
SMAD2 mutant did not have any phosphorylation by TRPM7
kinase in our in vitro kinase assay. Nonetheless, our results are in
line with a dispensable function of TRPM7 kinase activity in
TGF-β mediated differentiation of CD4+ cells into Treg cells.

TGF-β signalling exerts pleiotropic effects on cell physiology
via cross-talk with multiple signalling pathways. Imaging of TGF-
β1-activated SMAD signalling revealed selective inhibition of
SMAD2 phosphorylation by distinct tyrosine kinase inhibitors38.
TRPM7 kinase appears as a pharmacological target for inhibition
of TGF-β1-mediated SMAD2 phosphorylation in T cells, as it is
capable to directly phosphorylate SMAD2. In summary, our study
demonstrates that TRPM7 kinase contributes to TGF-β-induced
SMAD2 phosphorylation at Ser465/467 and translocation into

the nucleus. Lack of TRPM7 kinase activity results in impaired
transactivation of SMAD2 target genes, including Itgae (encoding
for CD103), Il-17 and Rorc, thus selectively limiting differentia-
tion of the T cell along the TH17, but not Treg cell, functional
program. The protection of Trpm7R/R mice from GVHD, we have
shown, unravels the clinical relevance of TRPM7 kinase as a
target for limiting TGF-β-dependent CD103 expression as a
pathogenetic mechanism in intestinal destruction during
GVHD27. Finally, our study demonstrates the importance of
developing pharmacological inhibitors for TRPM7 kinase activity
to prevent the devastating consequences of acute GVHD without
affecting the development of immunosuppressive Treg cells.

Methods
Mice and in vivo experiments. Trpm7R/R mice were obtained from RIKEN,
Japan21. Four- to eight-week-old male and female mice were used for all experi-
ments. For ex vivo and in vitro experiments mice were killed using CO2 and
terminated via cervical dislocation. All experiments involving animals at the
Ludwig-Maximilians-Universität München, Munich, Germany were performed in
accordance with the EU Animal Welfare Act and were approved by the District
Government of Upper Bavaria, Germany, on animal care (permit no. 55.2-1-54
−2532–134–13). The use of transgenic animals was approved by the District
Government of Upper Bavaria, protocol no. 821–8763.14.718/1210. For in vivo
experiments C57BL/6J, Trpm7R/R, BALB/c and Rag1−/−/Il2rg−/− mice were bred in
a specific pathogen-free facility at the Institute for Research in Biomedicine, Bel-
linzona, Switzerland. For adoptive transfer of T naive, CD4+CD8−CD62L+CD44
−CD25− cells were sorted at FACSAria (BD Biosciences) from pooled cell sus-
pensions of spleen, inguinal, axillary, brachial, cervical and mesenteric LNs of
C57BL/6J and Trpm7R/R mice. Eight-week-old Rag1−/−/Il2rg−/− mice were injected
with 1 × 106 naive T cells. Recipient mice were killed 4 weeks after reconstitution.
For GVHD experiments, lethally irradiated (9 Gy, Cs source) BALB/c (H-2d) mice
were reconstituted within 4–6 h by a single 0.2-ml intravenous inoculum con-
taining 10 × 106 B6 BMC alone or in combination with 10 × 106 C57BL/6J or
Trpm7R/R splenocytes. All animal experiments were performed in accordance with
the Swiss Federal Veterinary Office guidelines and authorized by the Animal
Studies Committee of Cantonal Veterinary with authorization numbers TI-10-2013
and TI-17-2015.

Cell isolation and primary cell culture. Lymphocytes infiltrating the intestinal
epithelium were isolated as follows: while the small intestine was flushed with PBS,
fat and Peyer’s patches were removed. The small intestine was divided long-
itudinally, cut into 2-mm sections and washed twice, in calcium- and magnesium-
free HBSS containing 2% fetal calf serum (FCS) (at 4 °C) to remove faeces. The
tissue was placed in 50 ml tubes, washed three times in HBSS containing 2% FCS at
4 °C, transferred to 25 cm tissue culture flasks and incubated at 37 °C in HBSS
containing 10% FCS, 0.2 mmol l−1 EDTA, 1 mmol l−1 DTT. After 20 min incuba-
tion, the flasks were shaken vigorously for 30 s, and the supernatant containing
IELs and the IEC was separated from the tissue fragments using a 40-μm nylon
filter. While the supernatant was collected and put on ice, the tissue fragments were
retuned to the flasks and the process was repeated. To isolate LPLs, the remaining
tissue was washed three times with RPMI 1640, and intestinal pieces were subse-
quently incubated with magnetic stirring for 30 min at 37 °C in cRPMI supple-
mented with 100 Uml−1 collagenase. The epithelial and lamina propria cell
suspensions were washed, suspended in RPMI 1640 at 4 °C and filtered. The cell
suspension was collected and suspended in 40% Percoll, which was layered on top
of 80% Percoll and centrifuged at 2000 r.p.m. for 20 min at RT. The IELs and LPLs
were collected from the interface between the Percoll gradients and prepared for
phenotypic analysis by flow cytometry. For mRNA extraction, IELs and LPLs were
purified by cell sorting as TCRβ+CD4+Ep-CAM− cells while IEC cells were sorted
as Ep-CAM+ cells. For isolation of thymocytes, thymi were homogenized and
washed in RPMI1640 medium containing 10% (v/v) FBS. For the isolation of CD4+

T cells, peripheral lymph nodes were collected, smashed using a 40-μm strain and
CD4+ T cells were sorted via magnetic-activated cell sorting (MACS) (CD4+ iso-
lation kit, Miltenyi Biotec). Purity was assessed via FACS to at least 96% CD4+

T cells before cells were subjected to experiments. For mast cell isolation, cells
obtained from the peritoneum of WT or Trpm7R/R mice were pelleted and
apportioned (Cellgro) into Petri dishes with poly-D lysine (PDL)-coated glass cover
slips. Cells were cultured in 2 ml DMEM containing 10% FBS (HyClone) and 1%
penicillin/streptomycin (Gibco) overnight in a humidified incubator at 37 °C and
5% CO2. For electrophysiological experiments, mast cells were identified visually
using light microscopy (phase contrast).

Cytokine assays. After blood collection through cardiac puncture using a collector
for serum separation and blood cells (Microvette, Sarstedt), samples were separated
by 10.000×g centrifugation for 5 min; serum was then stored at −80 °C. Collected
samples were prepared for the 23-cytokines assay (Bio-Rad) and TGFβ-1, 2, 3 assay
(R&D Systems) according to manufacturer’s instructions.
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Antibodies and flow cytometric analysis. The following mAbs were purchased
from BD Biosciences: allophycocyanin (APC)-conjugated anti-CD62l (clone:MEL-
14, cat.#: 17-0621-83, working dilution 1:200), Pacific Blue-conjugated anti-CD8β
(clone: H35-17.2, cat.#: 48-0083-80, working dilution 1:200), PERCP-
CYANINE5.5-conjugated anti-IL-17A (clone: 17B7, cat.#: 45-7177-82, working
dilution 1:100), fluorescein isothiocyanate (FITC)-conjugated anti-FOXP3 (clone:
FJK-16s, cat.#: 11-5773-82, working dilution 1:100), Pacific Blue-conjugated anti-
H-2KB (clone: AF6-88.5.5.3, cat.#: 48-5958-82, working dilution 1:200), APC-
conjugated anti-CD11C (clone: N418, cat.#: 17-0114−82, working solution 1:200).
The following mAbs were purchased from Biolegend (http://www.biolegend.com/):
PE-conjugated anti-CD44 (clone:IM7, cat.#: 103008, working dilution 1:200), PE/
Cy7-conjugated anti-CD25 (clone: PC61, cat.#: 102016 working dilution 1:200),
APC/Cy7-conjugated anti-CD4 (clone: RM4-5, cat.#: 100526, working dilution
1:200), FITC-conjugated anti-CD8α (clone: 53-6.7, cat.# 100706, working dilution
1:200), PE-conjugated anti-TCRβ (clone: H57-597, cat.#: 109208, working dilution
1:200), FITC-conjugated anti-TCRγδ (clone: GL3, cat.#: 118106, working dilution
1:200), PE-conjugated anti-CD103 (clone: 2E7, cat.#: 121406, working dilution
1:200), PE-conjugated anti-α4β7 (clone: DATK32, cat.#: 120606, working dilution
1:200), APC-conjugated anti-β7 (clone: FIB504, cat.#: 321208, working dilution
1:200), Pacific Blue-conjugated anti-MHC-II (clone: M5/114.15.2, cat.#: 107620,
working dilution 1:200), FITC-conjugated anti-Ep-CAM (clone: G8.8, cat.#:
118210, working dilution 1:200), PE-conjugated anti-IFN-γ (clone: XMG1.2, cat.#:
505808, working dilution 1:100). Samples were acquired on a LSRFortessa (BD
Biosciences) or Guava (Merck-Millipore) flow cytometer. Data were analysed using
FlowJo software (TreeStar, Ashland, OR), FACS Diva software (BD Biosciences) or
InCyte (Merck-Millipore), respectively.

Quantitative RT-PCR. Total RNA from FACS-sorted cells was precipitated in
Trizol (Invitrogen, ThermoFisher) and reverse transcribed to complementary DNA
(cDNA) using Random hexamers (Roche, cat.#: R 15504) and M-MLV reverse-
transcriptase (Invitrogen, cat.#: 28025−013). For quantification of transcripts,
mRNA samples were treated with 2 U per sample of DNase (Applied Biosystems).
Transcripts were quantified by real-time PCR on an ABI PRISM 7700 Sequence
Detector with predesigned TaqMan Gene Expression Assays and reagents
according to the manufacturerʼs instructions (https://www.lifetechnologies.com).
The following probes were used: Trpm7 (Mm00457998_m1), Tbx21
(Mm00450960_m1), Foxp3 (Mm00475162_m1), Rorc (Mm01261022_m1), Il17a
(Mm00439619_m1), Itgae (Mm00434443_m1), Tgfβ1 (Mm01178820_m1), Tgfβ2
(Mm00436955_m1), Tgfβ3 (Mm01307950_m1). All reactions were performed in
triplicates. The relative amounts of mRNAs were calculated by the ΔΔCT method.
18S and Hprt were used as internal housekeeping genes. For Itgae gene upregu-
lation, CD4+ T cells were treated with 5 ng ml−1 of TGF-β1 (R&D) for 24 h. Total
RNA was precipitated in Trizol (Invitrogen, ThermoFisher) and cDNA synthesis
was performed using SuperScript II RT (LifeTech, Invitrogen) and oligo-dT pri-
mers (18T, Metabion). Real-time-PCR was performed using a PrimePCR™ SYBR®

Green Assay for Itgae (Bio-Rad, qMmuCID0039603) and analysed using Light-
Cycler® 480 SYBR Green I Master (Roche). Hprt (fwd: CTCATGGACTGAT-
TATGGACAGG, rev: TTAATGTAATCCAGCAGGTCAGC, Metabion) was used
as a reference gene. Samples were detected in doublets and the mean CP (crossing
points) values were analysed as 2−ΔΔCP.

In vitro T cell polarization and integrin upregulation. CD4+CD8+CD62L+CD44
−CD25− naive T cells were sorted at FACSAria from pooled suspensions of spleen,
inguinal, axillary, brachial, cervical and mesenteric LNs of WT and Trpm7R/R mice.
Cells were seeded in a 96-well, flat-bottomed plate in RPMI supplemented with
10% foetal calf serum (FCS) and 1% penicillin and streptomycin. For T cell in vitro
polarization, Th1 cells were generated by addition of rmIL-12 at a concentration of
15 ng ml−1, hIL-2 30 Uml−1 and anti-IL-4 Ab (clone 11B11) at a concentration of
5 µg ml−1 into the culture. For the generation of Th17 cells naive T cells were
cultured with rmIL-6 at a concentration of 20 ng ml−1, rmTGF-β at a concentration
of 2 ng ml−1, anti-IFN-γ (clone XMG1.2) and anti-IL-4 Ab at a concentration of 5
µg ml−1. For the generation of Treg cells, naive T cells were cultured with rmTGF-β
at a concentration of 2 ng ml−1, 30 uml−1 hIL-2, anti-IFN-γ and anti-IL-4 Ab at a
concentration of 5 µg ml−1. For in vitro CD103 upregulation, T naive cells were
stimulated in presence or absence of rmTGF-β at a concentration of 1 ng ml−1.
After 4 days of stimulation, T cells were collected and stained with anti-CD103 and
anti-β7 mAbs.

Intracellular cytokine and transcription factor staining. For intracellular
staining of FOXP3, after surface antigens staining, cells were fixed and permea-
bilized using the Foxp3/transcription factor staining buffer set (eBioscience)
according to the manufacturer’s recommendations, followed by staining with anti-
FOXP3. For intracellular staining of IFN-γ and IL-17A, cells were stimulated for 4
h with PMA (100 nM, Sigma-Aldrich) and ionomycin (1 μM, Sigma-Aldrich).
Brefeldin A (BFA) was included during the last 4 h of activation to inhibit intra-
cellular transport. After surface antigens staining cells were fixed and permeabilized
using the BD Cytofix/cytoperm fixation/permeabilization solution Kit (BD Bios-
ciences) according to the manufacturer’s recommendations, followed by staining
with anti-IFN-γ and anti-IL-17A mAbs.

Immunohistochemistry and digital image analysis. To assess the number of
infiltrating T cells, 4 μm sections from each formalin-fixed paraffin embedded
small intestinal sample were immunostained with a primary goat polyclonal
antibody against CD3 epsilon antigen (Santa Cruz Biotechnology; #Sc-1127). A
biotinylated rabbit anti-goat IgG antibody (BA-5000, Vector Laboratories, Bur-
lingame, CA, USA) was added for 30 min and sections were then labelled by the
avidin-biotin-peroxidase (ABC) procedure with a commercial immunoperoxidase
kit (VECTASTAIN Elite ABC HRP Kit, PK-6100, Vector Laboratories, Burlingame,
CA, USA). The immunoreaction was visualized with 3,3′-diaminobenzidine (per-
oxidase DAB substrate Kit, VC-SK-4100-KI01, Vector Laboratories, Burlingame,
CA, USA) substrate and sections were counterstained with Mayer’s haematoxylin.
For each sample, serial sections incubated with a 10% solution of normal rabbit
serum served as negative controls. The number of CD3 epsilon+ cells and the area
of the intestinal mucosa were evaluated using the ImageJ analysis program (http://
rsb.info.nih.gov/ij/) in ×4200 microscopic fields. The number of T cells per mm2 of
intestinal mucosa was then calculated.

Transmission electron microscopy. Electron microscopy was preformed as fol-
lows: mice ileum and colon was washed with phosphate buffer (0.1 M; pH 7.2).
Tissue was fixed in 2.5% glutaraldehyde in PB for 3 h, followed by washing the
samples in phosphate buffer three times for 3 h. Samples were treated for 1.5 h with
1% osmium in H2O and increasing alcohol concentrations for dehydration. Finally
samples were embedded in EPON™ and propylenoxid (propylenoxide: EPON™ =
3:1, 1:1, 1:3; 60 min each) followed by pure EPON™ for 2 days by 60 °C. Ultrathin
sections were analysed in a Zeiss transmission electron microscope (EM902A).

Western blot analysis. CD4+ T cells were seeded in 24-well plates and stimulated
with 10 ng ml−1 IL-6 or 5 ng ml−1 TGF-β1 (PeproTech or R&D Systems) for the
indicated time frames. For detection of phosphorylated proteins following anti-
bodies were used: pSTAT3 (Tyr705, cat.#: 9131, Cell Signaling, molecular weight
(MW) 86 kDa, working dilution 1:2500), pSMAD2 (Ser465/467, cat.#: 138D4, Cell
Signaling, MW 60 kDa, working dilution 1:200) and pSMAD3 (Ser423/425, cat.#:
C25A9, Cell Signaling, MW 52 kDa, working dilution 1:200). Total proteins were
used as loading controls and stained for STAT3 (cat.#: 9132, Cell Signaling, MW
86 kDa, working dilution 1:5000) and SMAD2/3 (cat.#: D7G7, Cell Signaling, MW
60 kDa and 52 kDa, working dilution 1:1000). Cells were lysed with RIPA buffer.
Lysates were subjected to SDS-PAGE, and proteins were transferred to nitro-
cellulose by western blotting. The first antibody was incubated overnight at 4 °C.
After washing three times with TBS-T for 5 min, the membrane was incubated with
a HRP-conjugated secondary antibody diluted in TBS-T and incubated for 45–60
min at RT. Immune reactivity was quantified by densitometry, ratios between p-
SMAD2 or 3 and total SMAD2 or three signals, respectively, were calculated, and
TGF-β1-induced SMAD phosphorylation was normalized to that of unstimulated
cells. Data analysis was performed with the ImageJ analysis program (http://rsb.
info.nih.gov/ij/). For analysis of the intensity of TGF-β1-induced SMAD phos-
phorylation compared to untreated controls a one-way ANOVA was used. Values
of p< 0.05 (#) were considered significant. CD4+ T cells were seeded in 24-well
plates and stimulated with 10 ng ml−1 IL-6, 5 ng ml−1 TGF-β1 (PeproTech or R&D
Systems) and anti-CD3/anti-CD28-coated beads (Invitrogen) for 10 min39. For
detection of phosphorylated proteins following antibody was used: pSMAD2
(Ser245/250/255, no. 3104, Cell Signaling, MW 60 kDa, working dilution 1:200).
Total proteins were used as loading controls and stained for SMAD2 (D43B4, Cell
Signaling, MW 60 kDa, working dilution 1:1000). Cells were lysed with RIPA
buffer. Lysates were subjected to SDS-PAGE, and proteins were transferred to
nitrocellulose by western blotting. The first antibody was incubated overnight at 4 °
C. After washing three times with TBS-T for 5 min, the membrane was incubated
with an HRP-conjugated secondary antibody diluted in TBS-T and incubated for
45−60 min at RT.

In vitro kinase assay. Highly purified recombinant human SMAD2-GST, C-
terminally truncated SMAD2-GST and GST were purchased from SignalChem
(Richmond, BC, Canada, S11-30G-250, CUSTOM S11-30G-250, G52-30U-250).
The in vitro kinase assay was performed by Reaction Biology Corp. (Woodbridge,
CT, USA) following the RBC HotSpot Kinase Assay Protocol. RBC Standard
reaction buffer contained: 20 mM Hepes (pH 7.5), 10 mM MgCl2, 1 mM EGTA, 2
nM MnCl2, 0.02% Brij35, 0.02 mgml−1 BSA, 0.1 mM Na3VO4, 2 mM DTT, 1%
DMSO. Reactions were carried out at 4 μM ATP in duplicates and measured at 1 h
and 2 h, respectively. rhSMAD2-GST of 4 µM was used as substrate, and 4 µM rh-
trSMAD2-GST as well as the 4 µM GST-tag alone were used as control substrates,
while the TRPM7 kinase was titrated in a serial dilution starting at 50 nM. Kinase
alone was subtracted as background. RBC standard substrate (MBP) was used as a
positive and substrate alone as an additional negative control. Data acquired at 2 h
were converted to nM substrate phosphorylation after background subtraction,
averaged and plotted as mean values± s.e.m.

In situ proximity ligation assay. MACS-sorted CD4+ T cells from TRPM7R/R or
WT mice were seeded on fibronectin coated cover slips (Carl Roth GmbH + Co.
KG, cat.#: H873.2) in a six-well plate. After stimulation with 5 ng ml−1 TGF-β1
(R&D systems) for 10 min cells were fixed with 4% paraformaldehyde for 10 min

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01960-z

12 NATURE COMMUNICATIONS | 8:  1917 |DOI: 10.1038/s41467-017-01960-z |www.nature.com/naturecommunications

http://www.biolegend.com/
https://www.lifetechnologies.com
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
www.nature.com/naturecommunications


and permeabilised with 0.2% Triton X-100 in PBS for 7 min. Blocking and the
proximity ligation assay were performed with the DuoLink® In situ Red Starter kit
mouse/rabbit (Sigma-Aldrich, cat.#: DUO92101) according to the manufacturer’s
instructions (http://www.sigmaaldrich.com/technical-documents/protocols/
biology/duolink-fluorescence-user-manual.html). T cells were stained with anti-
TRPM7 (self made, Dr. Chubanov, working dilution 1:100) and anti-SMAD2
(Santa Cruz, cat.#: sc-101153, working dilution 1:100) for 1 h at room temperature.
DuoLink® In situ PLA® Probe anti-mouse PLUS and DuoLink® In situ PLA® Probe
anti-rabbit MINUS were used for labelling anti-SMAD2 and anti-TRPM7 anti-
bodies. Data acquisition was done on a Leica SP5 confocal microscope with a 63 ×
NA 1.4 PL APO objective (both Leica, Mannheim, Germany) by producing z-
stacks of five randomly selected fields. Analysis of the data was done by production
of maximum peak projections of the z-stacks and counting the PLA signals per cell
manually. The mean number of PLA signals per cell was calculated per field. For
comparison of two different sample groups, two-tailed unpaired Student’s t test was
performed in Prism 6 (GraphPad Software, La Jolla, CA, USA).

Chromatin immunoprecipitation. MACS-sorted CD4+ T cells from Trpm7R/R or
WT mice were treated with or without 5 ng ml−1 TGF-β1 (R&D systems) for 10
min. In total, seven mice per genotype were used. Cells were cross-linked with 1%
methanol-free formaldehyde and quenched with 0.125 M glycine. Nuclei were
pelleted and lysed for 10 min on ice. After washings, lysates were sonicated four
times for 30 s into DNA fragments of 200–2000 bp. Immunoprecipitation of the
sheared chromatin was performed using an anti-SMAD2 (Cell Signaling Tech-
nology, cat.#: 5339 S.) antibody coupled to Dynabeads Protein G overnight at 4 °C.
Sonicated chromatin of 1% was set aside as input without antibody. After washings
of immune complexes and elution of DNA of both input and ChIP samples, qRT-
PCR with specific primers for the Itgae (fwd: CCTCCACAGCCCTATGTGTT, rev:
GCCTCACAGGTAGGAACTGG) and the Gapdh (fwd: CCCTGCTTATC-
CAGTCCTAGCTCA AGG, rev: CTCGGGAAGCAGCATTCAGGTCTCTGG)
promoters for normalization was performed. For comparison of two different
sample groups, one-way ANOVA was performed in Prism 6 (GraphPad Software,
La Jolla, CA, USA).

Determination of magnesium and calcium. Content of main elements in serum
samples was determined by inductively coupled plasma mass spectrometry (ICP-
MS) by ALS Scandinavia (Sweden). Therefore, serum was collected using a col-
lector for serum separation and blood cells (Microvette, Sarstedt), samples were
separated by 10.000×g centrifugation for 5 min; serum was then stored at −80 °C.
Collected samples were shipped on dry ice for further analysis via ICP-MS.

Immunoprecipitation and western blotting. Spleens were collected, smashed
using a 100-μm strain, washed in PBS and subjected to red blood cell lysis. The red
blood cell lysis buffer contained in mM: 160 NH4Cl, 10 KHCO3, 0.1 EDTA. After
washing twice in PBS, splenocytes were lysed using a 1× lysis buffer containing:
0.5% (v/v), Igepal 0.5% (v/v), PMSF 1% (v/v), protease and phosphatase inhibitor 5
mM NaF. Lysates were incubated with a total TRPM7 antibody (ProScientifica,
working dilution 1:50) and rotated for 2 h at 4 °C. Afterwards, Protein G sepharose
beads (Dynabeads®, Invitrogen) equilibrated with lysis buffer were added at a
working ratio 1:18 and rotated overnight at 4 °C. Immunoprecipitated lysates were
subjected to SDS-PAGE, and proteins were transferred to nitrocellulose by western
blotting. Following antibodies were used for detection: total TRPM7 (ProScienti-
fica, working dilution 1:1000) pTRPM7Ser1511, working dilution 1:60). The first
antibody was incubated overnight at 4 °C. After washing three times with TBS-T
for 5 min, the membrane was incubated with a HRP-conjugated secondary anti-
body diluted in TBS-T and incubated for 45–60 min at R, and after subsequent
washing steps, the chemiluminescent signal was detected.

Generation of pTRPM7Ser1511-specific antibody. To generate a polyclonal
pTRPM7Ser1511-specific antibody, rabbits were immunized with a phosphorylated
peptide H2N-DSPEVD(p)SKAALLPC-NH2 coupled via its C-terminal cystein
residue to keyhole limpet hemacyanin (phospho-peptide immunization program
Eurogentec, Belgium). The generated serum was subjected to two rounds of peptide
affinity chromatography. First, a fraction of antibody was purified using the
phosphorylated peptide. Second, the isolated antibody was followed by an addi-
tional round of chromatography using a non-phosphorylated variant of the peptide
(H2N-DSPEVDSKAALLPC-NH2) in order to deplete a fraction of antibody with
cross-reactivity to a non-phosphorylated TRPM7. The final fraction of anti-
pTRPM7Ser1511 antibody was aliquoted and stored at −80 oC.

ATP detection. Detection of ATP was performed using a conventional lucifern/
luciferase assay, following manufacturer’s instructions (ATP Determination Kit,
Invitrogen, Molecular Probes). Luminescence was monitored at ~560 nm using a
microplate luminometer, FLUOstar OMEGA, by BMG.

Electrophysiology. Patch-clamp experiments in whole-cell configuration were
performed as follows: Currents were elicited by a ramp protocol from –100 mV to
+ 100mV over 50 ms acquired at 0.5 Hz and a holding potential of 0 mV. Inward

current amplitudes were extracted at –80 mV, outward currents at +80 mV and
plotted versus time. Data were normalized to cell size as pA pF−1. Capacitance was
measured using the automated capacitance cancellation function of the EPC-9/10
(HEKA, Lambrecht, Germany). Values over time were normalized to the cell size
measured immediately after whole-cell break-in. Standard extracellular solution
contained (in mM): 140 NaCl, 1 CaCl2, 2.8 KCl, 2 MgCl2, 10 HEPES-NaOH, 11
Gluc (pH 7.2, 300 mOsm). Nominally Mg2+-free extracellular solution contained
(in mM): 140 NaCl, 3 CaCl2, 2.8 KCl, 10 HEPES-NaOH, 11 Gluc (pH 7.2, 300
mOsm). Divalent-free extracellular solution contained (in mM): 140 NaCl, 2.8 KCl,
10 HEPES-NaOH, 0.5 mM EDTA, 11 Gluc (pH 7.2, 300 mOsm). Standard intra-
cellular solution contained (in mM): 120 Cs-glutamate, 8 NaCl, 10 HEPES, 10 Cs-
EGTA, 5 EDTA (pH 7.2, 300 mOsm). For MgCl2 dose response intracellular
solution contained (in mM): 120 Cs-glutamate, 8 NaCl, 10 Cs-BAPTA + appro-
priate amount of MgCl2 was added, as calculated with WebMaxC (http://www.
stanford.edu).

Calcium imaging. Intracellular calcium measurements were performed with
freshly isolated naive CD4+ T cells. Measurements of intracellular Ca2+ levels with
Fura-Red were made using dual excitation wavelengths of 420 and 470 nm (Invi-
trogen). CD4+ cells were loaded with 1 µM Fura-Red-AM in external solution for
30 min at room temperature. After incubation cells were centrifuged at 1.500 r.p.m.
for 5 min at room temperature and resuspended in external solution containing (in
mM) 140 NaCl, 2 CaCl2, 2.8 KCl, 1 MgCl2, 10 HEPES-NaOH, 11 Gluc (pH 7.2,
300 mOsm). Cells were transferred into a cell culture dish with glass bottom and
kept in the dark at room temperature for 20 min. Then the dish was positioned in
in the recording chamber. For basal Ca2+ concentrations, the mean of 5 ratio values
recorded within the first minute after establishing a baseline was calculated. Images
were analysed via the ZEN Software. Alternatively, naive CD4+ T cells were loaded
with 2 µM Fura-2-AM, 1% BSA and 0.02% Pluronic® F-127 in external solution for
15 min at room temperature in the dark. Cells were transferred into a cell culture
dish with glass bottom, and stimulated with plate-bound anti-CD3ε and anti-CD28
(5 and 2 µg ml−1, respectively). Images were analysed with TILLvisION software.

In vitro T cell proliferation. CD4+ naive T cells were seeded in a 96-well, flat-
bottomed plate in RPMI supplemented with 10% FCS and 1 % penicillin and
streptomycin. In proliferation assays, cells were labelled with the ThermoFisher
CellTrace violet (#C34557) and stimulated by plate-bound anti-CD3ε (2 μg ml−1)
mAb with or without co-immobilized anti-CD28 mAb (2 μg ml−1) (eBioscence).
CellTrace dilution was measured in truly live cells through the exclusion of dead
cells by electronic gate of Propidium Iodide negative cells. FACS acquisitions were
standardized by fixed numbers of calibration beads (BD Biosciences). Alternatively,
0.5 × 106 CD4+ T cells per ml were seeded into 96-round-bottom-well plates coated
with anti-CD3 (5 µg ml−1) as well as anti-CD28 (5 μg ml−1). Every day cells were
resuspended in medium and 50 μl were analysed via FACS analysis (Guava, Merck-
Millipore) using the ViaCount dye (Merck-Millipore) to count live cells.

Statistical analysis. Unless stated otherwise, a two-tailed unpaired Student’s t test
was used to determine the significance of differences between mean values
(GraphPad or IgorPro). Data are presented as mean values± s.e.m. of at least three
mice. Values of p < 0.05 were considered significant with *p< 0.05, **p< 0.01 and
***p< 0.001.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its supplementary information file.
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