SITUATION THEORY
AND ITS APPLICATIONS
Volume 1

edited by
Robin Cooper, Kuniaki Mukai, and John Perry
CSLI was founded early in 1983 by researchers from Stanford University, SRI International, and Xerox PARC to further research and development of integrated theories of language, information, and computation. CSLI headquarters and the publication offices are located at the Stanford site.

Copyright ©1990

Center for the Study of Language and Information
Leland Stanford Junior University

Printed in the United States

98 97 96 95 94 93 92 91 90 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Situation theory and its applications / edited by Robin Cooper, Kuniaki Mukai, and John Perry.

Includes bibliographical references and index.

ISBN 0–937073–55–5 (v. 1)
ISBN 0–937073–54–7 (pbk. : v. 1)

BC5.S57 1990

160--dc20 90-82189

90-82189

CIP
Contents

Preface vii
Contributors ix

Part I Situation Theory
1 Replacement Systems and the Axiomatization of Situation Theory 3
Peter Aczel
2 Information, Infons, and Inference 33
Jon Barwise and John Etchemendy
3 Infons and Types in an Information-Based Logic 79
Keith Devlin
4 On the Logic of Situation Theory 97
Tim Fernando
5 Partial Sets 117
Michael W. Mislove, Lawrence S. Moss, and Frank J. Oles
6 An Illative Theory of Relations 133
Gordon Plotkin
7 Perspectives in Situation Theory 147
Jerry Seligman
8 Parametric Types and Propositions in First-Order Situation Theory 193
Dag Westerståhl

Part II Logical Applications 231
9 Dewey on Defeasibility 233
Thomas Burke
vi / CONTENTS

10 Three Indexical Solutions to the Liar Paradox 269
ROBERT KOONS

11 The Complexity of Paradox 297
WILLIAM C. ROUNDS

Part III Linguistic Applications 313

12 Situating Word Meaning 315
NICK BRAISBY

13 Information in the Early Stages of Language Acquisition 343
ROBIN COOPER

14 Locations Now and Then 355
JUDITH MERRIAM CROW

15 Argument Roles and Anaphora 379
ELISABET ENGDAHL

16 Some Puzzles About Pronouns 395
JEAN MARK GAWRON AND STANLEY PETERS

17 Out of the Mouths of Babes 433
ELIZABETH MACKEN

18 Situations, Games, and Ambiguity 449
PRASHANT PARIKH

19 Conditionals and Unconditionals in Universal Grammar and Situation Semantics 471
DIETMAR ZAEFFERER

Name Index 493

Subject Index 497
Although conditional sentences are important in all languages, and although their 'logic' has been thoroughly, if inconclusively, investigated by philosophers, our knowledge and understanding of them in the languages of the world is very poor. (Palmer 1986, 188)

Introduction

I don't think the situation in the theory of conditionals is as bad as characterized by Palmer in the above quotation. In a companion paper to the present one (Zaefferer 1990) I have tried to show that cross-linguistic comparison of the constructions that encode conditional functions, together with the assumption that other functions encoded by the same or similar constructions tend to be structurally related, gives good support for those logical analyses of the natural language conditionals that treat them as encoding some kind of restricted modal function. In doing this I have argued that both the research in typology and linguistic universals on the one hand, and formal semantics and language-oriented logics on the other, will profit if they start communicating with one another. Whereas the other paper emphasizes the typological data, while presenting the theory only in rough outline, the present paper will just summarize the typological findings and then spell out the core of the theory.1 But it begins with some terminological clarifications and methodological remarks that may prove helpful.

1In developing it, I have profited from discussions with and comments from Godehard Link, Hans Rott, Barbara Partee, John Perry, and an anonymous referee.
Terminological Clarifications

First: What do I understand by a conditional? A conditional or more explicitly a *conditional form* is a grammatical structure or construction that encodes a conditional function as its primary purpose. And what is a conditional function? A *conditional function* is something that conditionalizes any proposition \(q \), i.e., that converts \(q \) into the proposition that something, normally the holding of some given proposition \(p \), is in a way sufficient for the holding of \(q \).

I will call the proposition that is to be conditionalized the *consequent*, the conditionalizing proposition the *antecedent*, and the result of the conditionalization the conditionalized proposition or *c-proposition*, reserving these Latin terms for the semantic level. On the syntactic level, I will use the Greek terms *apodosis* and *protasis*: ‘apodosis’ for the unmodified (but sometimes marked) superordinate linguistic form (main clause without subordinate clause), ‘protasis’ for the modifying subordinate form (clause), and *c-construction* for the combination of the two (main clause together with subordinate clause).

Please note that, taken this way, most of the time the apodosis encodes just the consequent, but the protasis does not only encode the antecedent, but also the conditional relation it stands in with respect to the consequent, in other words it normally encodes the whole conditional function that takes the consequent as an argument. So normally the protasis equals the conditional form or, shorter, the conditional. The division of labor among the three linguistic forms varies however from language to language and from construction to construction. Note further that in addition both protasis and apodosis can explicitly encode quantification over various instantiations of the consequent with respect to various instantiations of the antecedent.

Second: What is an unconditional? An unconditional or more explicitly an *unconditional form* is a grammatical structure or construction that encodes an unconditional function as its primary purpose. And what is an unconditional function? An *unconditional function* is something that deconditionalizes any proposition \(q \), i.e., that converts \(q \) into the proposition that the holding of any one of a given set of propositions \(P \) is in a way sufficient for the holding of \(q \), where \(P \) exhausts the set of options that are taken into consideration at the present state of the discourse, in other words the proposition that the holding of \(q \) is unconditional on the question which one of the members of \(P \) happens to be true, where it is implicated, if not tautological, that at least one of them in fact is true.

Sentences (1) and (2) are examples of an English conditional and unconditional construction, respectively.

(1) If a kangaroo loses its tail, it topples over.
(2) Whether you like it or not, I won’t permit smoking here.
Third: What do I understand by universal grammar? By a universal grammar in the wide sense I want to understand the union of the descriptions of all natural human languages, and by a universal grammar in the narrow sense its intersection, i.e., its greatest common denominator. Of course, at the present state of the art in descriptive linguistics, universal grammar in the wide sense is far from being complete even for the contemporary languages, but that does not mean that universal grammar in the narrow sense cannot be approaching a state of relative stability at least in certain domains (although surprises are always possible).

Last: What do I understand by situation semantics? By situation semantics I understand a semantics with the following features:

(a) it is strongly intensional, i.e., it does not reduce intensions to parameterized extensions, but takes them as primitives;
(b) it takes partiality serious, i.e., it accounts for the fact that normally what we talk about is not a complete world, but some portion thereof;
(c) it takes indexicality serious, i.e., it accounts for the fact that natural languages owe their structure to the need for efficient, not for maximally implicit and safe, communication, and that they therefore tend to encode only what is left open by the utterance situation.

Methodological Remarks

The starting point of my investigations was the intuition that the notion of a background, which plays a key role in Barwise's 1986 paper on conditionals, needs more structuring if it is to help in an account of both conditionals and unconditionals. This intuition stemmed from the observation that unconditionals tend to be encoded by a certain class of interrogative sentences, and that sentences of this kind share the property of preparing the grounds for the subsequent discourse in a certain way.

Before I specify what I mean by that, I would like to leave for the following section the domain of abstract considerations and to summarize the cross-linguistic overview of the structural domain of the conditional forms with their relatives and of the conceptual field of the conditional functions with their relatives that I have presented in Zaefferer (1990).

Why? Because it is a well-known universal tendency that polysemy is much more widespread than homonymy, i.e., identical forms tend to encode systematically related concepts rather than being the result of accidental historical convergence of semantically unrelated signs. And this rule can be generalized:

(P1) Identical or related forms tend to encode related concepts, where relatedness of form is defined as phonological and structural similarity, and this in turn as number of common features, and where relatedness
of concepts is defined as either similarity again (cf. metaphors) or as contiguity, especially in the subconcept-superconcept hierarchy (cf. metonymy).

Conceptual relatedness need not be universal, but there must be a core domain of universally related concepts in the conceptual fields of all linguistic communities, else mutual understanding and translation would be much harder than it is. Which conceptual fields are in this universal domain, and what is their universal structure? If our principle (P1) is correct, then cross-linguistically recurring patterns of relatedness of forms indicate relatedness of the encoded concepts and make the latter good candidates for universally related concepts. Let me state this as principle (P2):

(P2) Cross-linguistically recurring patterns of formal and conceptual relatedness indicate universality of the conceptual relations.

Concepts like the ones encoded by logical constants, and the relations among them are of course top candidates for universal conceptual structures (van Benthem 1990), but it is also important to see how logical concepts link up with non-logical ones, and here recurring relatedness patterns in both form and function offer an important window on the common denominator of human conceptual systems.

Therefore in order to understand fully what conditionalization in natural languages is, it is helpful, I submit, to look at it in the context of universally related concepts. So the working hypothesis for the following overview is a specialization of principle (P1):

(P1c) Relatives of conditional forms tend to encode concepts that are relatives of conditional functions.

1 Conditional and Related Forms and Functions in Universal Grammar

1.1 Conditional Forms in English

Conditional functions are proposition modifiers, consequently, conditional forms are sentence adverbials. Therefore, like other sentence adverbials, they can be of one of the following types:

(a) Lexical adverbials, i.e., adverbs;

To cite one example: In Western Europe, the concepts 'heart' and 'positive emotion' are related concepts, in Japan, the same holds for 'belly' and 'positive emotion'.

The existence of coordinated conditional clauses as in 'Pay him well and he will do anything for you' and 'You close the door behind you and you feel arrested' (describing a room) seems to be at variance with this statement, but it can be argued that the combination of an imperative-first conjunct with an indicative-second conjunct in fact turns the former into an adverbial, and that in the other case it is not the primary function of the first conjunct to conditionalize the second one.
(b) Phrasal adverbials, i.e., prepositional phrases and other sub-Clausal constructions; or
(c) Sentential adverbials, i.e., adverbial clauses.

Lexical conditionals in English are restricted to a few words. Let's examine three examples:

(1) Then we are really in trouble.
(2) Mathematical problems are sometimes very hard to solve.
(3) Swimming is not always easy.

To see what makes then, sometimes, and always lexical conditionals, consider the following three sentences:

(4) Under these circumstances we are really in trouble.
(5) Mathematical problems are in some cases very hard to solve.
(6) Swimming is not under all conditions easy.

And if these examples of phrasal conditionals are not convincing either, consider the following clausal ones:

(7) If all our money is lost we are really in trouble.
(8) Mathematical problems are very hard to solve when they are posed by a malevolent expert.
(9) Swimming is not easy if you haven't practiced for a long while.

Now it is easy to see that not only (7)–(9), but also (1)–(6) involve genuine conditionals. First imagine a context like the one created by (10):

(10) I'm afraid all our money is lost.

Clearly, in such a context, (1), (4) and (7) are local paraphrases of each other. Furthermore, putting special contexts aside, it is obvious that (2) and (5) follow from (8), as well as (3) and (6) follow from (9), and it possible to cook up clausal if-paraphrases also for examples (2) and (3).

Now let's have a closer look at the lexical conditionals. All of them are structure words, i.e., they encode structural, and not lexical meaning. Then is an anaphoric pro-form that refers to a previously mentioned proposition and puts it into the role of an antecedent, i.e., a form that encodes a condition. Its meaning can therefore be analyzed into two parts: the anaphorical pointer at some given proposition, and the two-place conditional function, i.e., the function that takes this proposition and converts it into a one-place conditional function.

Sometimes and always, on the other hand, do not refer at all, they are adverbs of quantification that in our examples quantify not over times, but over conditions. Therefore their meaning can be analyzed as consisting of two different parts, a quantifier and a sortal indication of what is quantified over, namely conditions ("times" or "ways").
All examples for *phrasal conditionals* given above were prepositional phrases with the same anaphoric and quantificational properties as just discussed in the context of the lexical conditionals, except that they are more specific than these since they distinguish between cases, conditions, and circumstances. But like the lexical conditionals, they do not spell out the conditions they are alluding at, and this does not come as a surprise, since conditions are propositions in a special role, and propositions are normally encoded by clauses, so the normal, full and independent expression of a condition is a clausal conditional.

Clausal conditionals are exemplified in (7)–(9) above. In (7) the protasis is ‘If all our money is lost’, expressing the conditional function with the antecedent that all our money is lost. The apodosis is ‘we are really in trouble’, expressing the consequent proposition that we are really in trouble. (7) itself is the c-construction, and the c-proposition expressed by it is the proposition that the truth of the antecedent, namely that all our money is lost, is sufficient for or requires the truth of the consequent, i.e., that we are really in trouble. In other words whatever circumstances might make it true that all our money is lost also make it true that we are really in trouble. And similarly for (8) and (9).

We haven’t looked yet at clausal counterparts for (2) and (3), the quantified examples, but they are easy to construct, cf. (11) and (12).

(11) Sometimes if you want to take a subway train it is already full.
(12) If something is very expensive, it is not always also very good.

The examples show that both quantifying protases and quantifying apodoses exist. The semantic effect is in both cases the same, since what is quantified over are conditions, i.e., circumstances that are sufficient for the truth of the antecedent, and the quantification scope is the consequent. Thus the c-proposition expressed by (11) is the proposition that in some cases the truth of the antecedent, namely that some person wants to take the subway train x, suffices also for the truth of the consequent, i.e., that x is already full. And the c-proposition expressed by (12) is the proposition that the truth of the antecedent, namely that some thing y is very expensive, does not in all cases suffice for the truth of the consequent, i.e., that y is very good.

So we have to distinguish between bare and quantifying c-constructions and accordingly between bare and quantifying c-propositions.

1.2 Conditional and Related Forms with their Functions Across Languages

So far we have looked only at markers for protasis clauses that happened to be particles or subordinating conjunctions like *if*, or *in case*, but it is well known that there are more means for marking clauses as protases, or
more generally as c-constructions, in the languages of the world (cf. Comrie 1986, Danielsen 1968), and also in English and German.

They can be arranged in the following four groups:

(a) Morphological conditional markers
 i. Conditional verbal mood affixes
 ii. Conditional clausal function affixes

(b) Lexical conditional markers, such as subordinating particles

(c) Phrasal conditional markers, such as prepositional phrases or modifications of some complementizer

(d) Structural conditional markers, such as marked constituent order

We next look at the relatives of the conditional forms, including the same forms with different readings, and at their functions. If (Plc) above is correct, this will amount to giving an overview of those concepts that are tendentially most closely related to the conditional function.

(a) Formal relatives of the morphological conditional markers with their functions
 i. Verb inflection: Other verbal moods, aspect, time reference
 ii. Clausal topic markers: Topicality

(b) Formal relatives of the lexical conditional markers:
 i. Interrogative subordinators: Interrogative sentence mood
 ii. Temporal subordinators: Time reference
 iii. Local subordinators: Spatial location
 iv. Causal subordinators: Causal connectedness
 v. Concessive subordinators: Marked (unusual) co-occurrence

(c) Formal relatives of the phrasal conditional markers
 Prepositional phrases: spatial, temporal, causal and concessive specification, restriction of the validity of a claim to certain aspects of its topic situation, as in (*):

 (*) In certain respects, this has been an extraordinary meeting.

(d) Formal relatives of the structural conditional markers
 Marked constituent order: sentence mood, especially interrogative and imperative

This is considerable evidence that the concepts of verbal and sentential mood, especially interrogativity and imperativity, aspect, topicality, temporal and spatial location, causal connection, and marked co-occurrence are relatives of the notion of conditionality. This is especially true with respect to temporal location, more precisely co-occurrence, which is a typical companion of conditionality. The relation to interrogativity is also quite obvious since both interrogative and conditional utterances raise issues, and the same holds for clausal topics.
1.3 Summary

Summing up the results of our attempt in Section 1 to place conditionals into the context of their conceptual relatives across languages, we can say that we have found good evidence for the following assumptions:

(a) Conditionalization is a modal concept, i.e., a conditionalized proposition is a modalized proposition. Hence conditionals are modal operators. Just as you can say 'possibly' and 'necessarily', you can say in a way 'conditionally', 'unconditionally', and 'p-conditionally.'

(b) To conditionalize a proposition is to localize it (in a metaphorical sense) in a hypothetical domain and thereby to relativize the validity of the consequent.

(c) The kind of modality expressed is according to the quantifier in the explicitly quantifying conditionals (just as their temporal and local relatives), and it is some kind of accompaniment with bare conditionals, whose precise nature cannot determined from the data and remains to be specified.

It is interesting to note that the research on conditionals in logically oriented formal semantics in the last twenty years came up with several accounts that can be interpreted as different attempts at spelling out one or the other specification of exactly this idea, although most of their authors did their in-depth-analyses without looking at languages other than their own.

2 A Situation Semantics for Conditionals and Unconditionals

2.1 The Inadequacy of Material Implication and Some Proposals for How to Overcome It

Several years ago, at the 1986 CLS meeting, Angelika Kratzer told the sad story of the decline of the Gricean account in the analysis of natural language conditionals (Kratzer 1986). The Gricean account tries to stick to material implication by explaining away its well-known problems with Grice's well-known implicatures, and Kratzer argues that this does not work. All her arguments have to do with quantification and modality and are therefore in line with our cross-linguistic evidence that conditionalization is a modal concept. It is interesting to note in passing that she does not mention a very simple way to show that modality is involved, an account of which can be found in Link (1979) and elsewhere. It goes as follows. From the assumption that the natural conditional construction encodes the material implication and that the 'it is not the case'-construction encodes weak negation, it follows that (1) and (2) below are paraphrases of each other (the corresponding formulae are logically equivalent). But they are not paraphrases. (1) follows from (2), but not vice versa.
(1) It is not the case that it thunders if it lightens.

(2) It lightens and it doesn’t thunder.

What does follow from (1), and indeed seems a good paraphrase of it, is (3), and this shows that (1) contains a hidden generalizing modal element under the negation operator.

(3) It’s possible that both it lightens and it doesn’t thunder.

Therefore what at first glance looks like a good paraphrase for the conditional construction in the ‘that’-clause of (1), namely (4), turns out to be an implicit way of saying what is more explicitly said by (5):

(4) Lightening doesn’t occur without thundering.

(5) Lightening doesn’t possibly occur without thundering.

Example (5) in turn invites paraphrases like (6) or (7), and there we are right at the heart of a modern formal account of conditionals.

(6) Any lightening situation comes with a situation where it thunders.

(7) Any case of lightening is accompanied by a case of thundering.

One important step in the right direction was Lewis’s treatment (1975) of adverbs of quantification as quantifiers over cases. Then Angelika Kratzer (1978, 1981), drawing on Lewis’s and other work, developed a unified theory of modality, that included not only a treatment of deontic and doxastic modal verbs, but also indicative and subjunctive conditionals. Lewis (1973) had treated the latter in a very similar fashion, introducing the notion of a variably strict conditional. Irene Heim (1982), working in parallel with Hans Kamp, embedded the conditionals into an incremental semantics, and Jon Barwise (1986) rethought the old story in terms of strong intensionality, i.e., without possible worlds but, like Kratzer, with the important notion of background as a relativization device.

Backgrounds can of course be compared with epistemic states, which are at the core of conditional logics like Gärdenfors’s, but at least one important difference has to be born in mind: As Barwise has argued, I think convincingly, the speaker might not know all the relevant background conditions. However, if one rethinks belief change as incremental (or better step-by-step) specification of the described situation, theories of epistemic dynamics can be brought to bear in the development of situation semantics, and that is exactly what I am going to propose.

Gärdenfors’s logic for conditionals is based on the Ramsey test, which says that a c-construction is an element of a given epistemic state K just in case its apodosis is an element of the epistemic state that is the result of revising K to contain the protasis. This is what the following formula says:

(R) \[A > B \in K \iff B \in K_A \]

Recently, Gärdenfors (1988, chap. 7) has come to doubt the role of the Ramsey test as a basic ingredient of conditionals, since in non-trivial cases,
it contradicts some monotonicity assumptions. But Hans Rott (1989) has argued that monotonicity is questionable anyway and that the incompatibility results should therefore not be turned against the Ramsey test. Since the Ramsey test-based conditional relation holds between any two sentences \(A \) and \(B \) that are already in \(K \), which doesn’t seem to be desirable, Rott proposes to replace it by a relation that is based on what he calls the strong Ramsey test. It requires not only the presence of \(B \) in the \(A \)-revision of \(K \), but also its absence in the non-\(A \)-revision of \(K \). This is formally expressed in (SR):

\[(SR) \quad A \supset B \in K \iff B \in K_A \& B \not\in K_{-A}\]

The strong Ramsey test shows clearly the modal or dispositional character of conditionals, for it relates ‘if \(A \), then \(B \)’ with two mutually exclusive alternative revisions of \(K \).

I think that the intention behind the strengthening of the Ramsey test is correct, but that it results in an overkill. Remember that according to the original Ramsey test both ‘if \(A \) then \(B \)’ and ‘if \(B \) then \(A \)’ are in \(K \), once both ‘\(A \)’ and ‘\(B \)’ are in \(K \). That certainly does not seem to be intuitively warranted. But now with the strong Ramsey test we exclude the possibility that both ‘if \(A \) then \(B \)’ and ‘if not-\(A \) then \(B \)’ are in \(K \), which doesn’t seem to be intuitively adequate either, especially since the conjunction of the latter two seems to be a good paraphrase for a special case of our unconditionals, namely ‘whether \(A \) or not-\(A \), \(B \)’.

So it looks like we may be better off if we give up epistemic state revisions altogether in favor of something else, which could be called situation specification updates. Here is how such an approach can be conceived.

2.2 Situation Specification Updates and an Update Semantics for Conditionals

The following picture of a typologically backed account of conditionals and related constructions integrates features from all the approaches mentioned in the last section. Its main innovation is a distinction between that characterization of the described situation that is actually accepted, and those characterizations of the same or some related situations that are only taken into consideration. This differentiation seems to be needed if one wants to account for both the similarities and the differences between conditionals and their relatives, especially unconditionals, but its introduction has been motivated in the first place by the desire to account for non-declarative sentences. Interrogatives for instance in their normal use don’t contribute to the accepted description of the intended topic situation, but only to the stack of descriptions that are thematized.

I call this approach update semantics because progress in discourse is conceived of as constant updating at both the discourse level, i.e., the de-
velopment of the discourse situation(s), and the discourse content level, i.e., the characterization of the described situation(s). Every update takes place with respect to a background that has been created by the preceding discourse, if any, or else by the start-up assumptions.

The factual discourse background contains the actual discourse situation including its history, i.e., (at least) the situations that are made real by the preceding discourse, as subsituations, together with some characterization of it; the actual discourse options are those possible continuations of the actual discourse situation that are open to the participants. E.g., if Max utters to Mia first "It's getting dark." and then "What time is it?", then normally that creates first a factual discourse background containing a situation of the type Max asserting towards Mia that it is getting dark and a set of actual discourse options containing for Mia among others the option of commenting on that, and then a factual discourse background containing in addition a situation of the type Max asking Mia for the time and a set of actual discourse options containing for Mia among others the option of answering the question and the option of rejecting it.

Now before I go on to say something about the factual and the virtual content background, I have to answer three questions:

(a) What corresponds to a belief revision in update semantics?
(b) How does this notion of background relate to Barwise's notion of background?
(c) How do the answers to these two questions relate to the Austinian conception of a proposition?

The answer to the first question and to part of the last one is this: A proposition p is always about a situation s_p, which I will call the intended topic situation of p; and it says of this s_p that it is of a type t_p, which I will call the characterizing situation type of p, or simply the type of p. Formally, a proposition p is an ordered triple (s_p, sup, t_p), written $(s_p sup t_p)$, where sup is the supports-relation. This makes sense since situation types are not distinguished from informational units or infons. A proposition p is true just in case s_p supports t_p.

Now the update semantical counterpart of a belief change in epistemic dynamics is in the simplest case (and only this case will be considered here) an additional characterization of the same intended topic situation (expansion). So the Austinian notion of a proposition is dynamicized into an Austinian picture of growing discourse content. Once the end of a discourse stretch is reached, this is of course indistinguishable from the old picture. But the dynamic picture helps also to state identity criteria for discourse stretches: The end of a stretch of discourse is reached once the intended topic situation is changed. E.g., Max's two utterances cited above belong to the same stretch of discourse since they are about the same intended topic
situation, namely the factual discourse situation. An utterance of ‘Joe is probably still asleep’ would change the topic situation, if it is known to Max and Mia that Joe lives in Hawaii.

How does this picture go together with Barwise's notion of a background? A discourse cannot start off from zero, i.e., without any characterization of what the intended topic situation is and what it looks like, but it has to start off from some mostly quite general initial characteristics, which come from the pre-discourse situation and which I would like to call the initialization of a discourse content. So the content of a discourse at any of its states is the result of a sequence of updates of its initialization. Barwise's examples are compatible with the view that what he has in mind when he speaks of backgrounds for conditionals is exactly what I call the initialization of a discourse content. One of his main points, that backgrounds need not be (fully) known to discourse participants, can be argued analogously with respect to content initializations.

If this is correct, then my notion of a factual content background differs from Barwise's insofar as it does not only refer to the initialization of a discourse content, but also to its state at the moment when a new discourse contribution is made, and the two coincide only in the case of the very first contribution to a discourse. But maybe I am missing here what Barwise had in mind and the two notions coincide entirely.

The default initialization of a standard discourse (as opposed to its content) could be spelled out as ‘Normal circumstances obtain’. This excludes spatial separation of the discourse participants as well as emergency situations etc. Cooperative discourse participants are obliged to update this initialization explicitly if it is not obvious that it is wrong.

Having said this I can say what the factual content background is. It is the Austinian proposition characterizing the intended topic situation as being of that type that is the result of changing the discourse initialization by the preceding discourse contributions and that is accepted as factual by the discourse participants. By contrast, the virtual content background is a set of alternatives, of ways the intended topic situation and some related situations could be and that are thematized. The set of all these issues, as I will call them with a term borrowed from Perry, exhausts the alternatives of the factual proposition that are taken into consideration at the present state of the discourse. So issues are propositions, that need neither be asserted nor accepted as true, and a content background can be modeled as a triple \((p, I, \leq_I) \) with \(p \in Prop \), \(I \in 2^{Prop} \), and \(\leq_I \) a pre-order, i.e., a reflexive and transitive relation, on \(I \), where \(p \) is the accepted proposition alias actual content background, \(I \) is the set of thematic issues alias virtual content background, and \(\leq_I \) induces a saliency ranking on them with normally, but not necessarily, one topmost element.

Every assertive discourse contribution updates first the virtual content
background and only if it is accepted is it copied to the factual content background. If it is rejected or retracted, it stays in the virtual part of the background or is even deleted from there.

Formally, this means that the update-function, which is 2-place, taking content backgrounds and discourse contributions to content backgrounds (update: $B \times C \rightarrow B$), needs contributions from all discourse participants (including silence), before it affects the factual discourse background.

In the above example, Max’s first discourse contribution has added to the virtual content background and then, because Mia didn’t object, to the factual content background, a characterization by the type ‘it is getting late’:

(a) $\text{update}(((s^{\text{sup}}, I, \leq_I), \text{Max says to Mia } (s^{\text{sup}} \tau)), (s^{\text{sup}} \sigma), I', \leq_{I'})$

where s is the discourse situation, σ the initialization type, I and \leq_I the initial issues with their pre-order, and $\tau = \langle \text{getting-late} \rangle$;

$I' = I \cup \{(s^{\text{sup}} \sigma \land \tau)\};$ and $\leq_{I'} = \leq_I \cup \{(s^{\text{sup}} \sigma), (s^{\text{sup}} \sigma \land \tau)\}$

(where $(s^{\text{sup}} \sigma \land \tau), (s^{\text{sup}} \sigma) \notin \leq_{I'}$).

(b) $\text{update}(((s^{\text{sup}} \sigma), I', \leq_{I'}), \text{Mia accepts}) = ((s^{\text{sup}} \sigma \land \tau), I', \leq_{I'})$.

Max’s second discourse contribution has not changed the factual content background, but has changed the virtual content background by adding an issue whose type subsumes the parametric type ‘it is x o’clock’.

(c) $\text{update}(((s^{\text{sup}} \sigma \land \tau), I', \leq_{I'}), \text{Max says to Mia } (s^{\text{sup}} \rho))$

$= ((s^{\text{sup}} \sigma \land \tau), I'', \leq_{I''})$,

where $\rho = \langle [x, \text{o’clock}] \rangle$,

$I'' = I' \cup \{(s^{\text{sup}} \sigma \land \tau \land \rho)\}$,

and $\leq_{I''} = \leq_{I'} \cup \{(s^{\text{sup}} \sigma \land \tau), (s^{\text{sup}} \sigma \land \tau \land \rho)\}$

(where $(s^{\text{sup}} \sigma \land \tau \land \rho), (s^{\text{sup}} \sigma \land \tau) \notin \leq_{I''}$).

The factual content background is modeled by an Austinian proposition with a parameter for the intended topic situation and a possibly parametric type for its characterization. A discourse will be called true just in case the result of anchoring the former parameter to the factual intended topic situation s, and of anchoring all parameters in the type to constituents of s is a true proposition. The set of propositions that forms the virtual content background of a discourse does not play a direct role in its truth conditions, only indirectly via the build-up of the factual background.

With this basic picture of update semantics in mind, how can we capture the semantics of conditionals? In other words, how can we now make formal sense of intuitions like the one expressed in sentence (7) (which is repeated below)? Especially, what do ‘Any case’ and ‘accompany’ mean in that context?
Any case of lightening is accompanied by a case of thundering. I think, the lesson to be learned from Ramsey and Gärdenfors is that conditional propositions are about updates and that therefore updating by a contribution with a conditional propositional content is some sort of meta-update that concerns other updates, be they in the future or in the past. So what we need in order to model that idea is quantification over situations and corresponding anchors.

Here is the formal setup:

Situations and relations with their argument roles are taken as primitives. Arguments may be primitive or defined entities. Types or infons are defined as follows:

Basic infons: If \(R \) is a relation and \(a \) is a (possibly empty) function from the argument roles of \(R \) to its arguments, then \(\langle a, R \rangle \) is a basic infon. Nullary basic infons are written simply as \(\langle i \rangle \). Sometimes, if \(a(r_0) = x_0, \ldots, a(r_1) = x_n, \langle x_0, \ldots, x_n, R \rangle \) is used instead of \(\langle a, R \rangle \).

Infons: If \(\sigma, \tau \) are infons, \(x \) is a parameter, and \(\Sigma \) a set of infons, then all of the following are infons as well:

(a) \(\neg \sigma \)
(b) \(\sigma \land \tau \)
(c) \(\exists x \sigma \)
(d) \(\text{if} \sigma(\tau) \)
(e) \(x\text{-ever} \sigma(\tau) \)
(f) \(\text{whether} \ Sigma(\tau) \)

Anchoring infons in situations: Let \(s \) be a situation and \(\sigma \) an infon. Then \(f \) is an \(s \)-anchor for \(\sigma \) iff \(f \) is a function from the parameters of \(\sigma \) in the constituents of \(s \).

Deciding and supporting infons: A situation \(s \) together with an infon \(\sigma \) can be conceived of as an issue, which is decided just in case \(s \) is rich enough to contain all constituents of \(\sigma \) including its relations. In that case we say \(s \) decides \(\sigma \), or shorter, \(s \text{ dec } \sigma \). If \(s \) decides \(\sigma \) positively we say \(s \text{ supports } \sigma \), or shorter, \(s \text{ sup } \sigma \). If \(s \) decides \(\sigma \) then either \(s \text{ supports } \sigma \) or \(s \text{ supports } \neg \sigma \), but not both.

Restricted parameters: If \(x \) is a parameter and \(\sigma \) an infon that is parametric in \(x \), then \(x[\sigma] \) is a restricted parameter. If \(\tau \) is a parametric object that is parametric in \(x[\sigma] \), then for every situation \(s \) and any \(s \)-anchor \(f \) for \(\tau \) it holds that \(s \text{ dec } \tau[f] \) only if \(s \text{ sup } \sigma[f] \).

\((D1) \) Truth condition for contents with factual propositions involving basic or existentially quantified infons:

\[\langle (s \text{ sup } \sigma), I, \leq_{\ell} \rangle \]

(or equivalently \(\langle (s \text{ sup } \exists x \sigma), I, \leq_{\ell} \rangle \)) is true iff

\[\exists f [f \in s\text{-anchors}(\sigma) : s \text{ sup } \sigma[f]] \]

(D2) Truth condition for contents with factual propositions involving negative infons:
\[\langle (s \sup \neg \sigma), I, \leq I \rangle \]
is true iff
\[\neg \exists f [f \in s\text{-anchors}(\sigma) \& s \text{ dec } \sigma[f]] : s \sup \sigma[f]. \]

(D3) Truth condition for contents with factual propositions involving conjoined infons:
\[\langle (s \sup \sigma \wedge \tau), I, \leq I \rangle \]
is true iff both
\[\langle (s \sup \sigma), I, \leq I \rangle \text{ and } \langle (s \sup \tau), I, \leq I \rangle \]
are true.

So much for the basic set-up; but what do we have to do in order to interpret issues with infons of the critical form (d), i.e., conditionals?

First, we have to model cases not as tuples of participants, as Lewis (1975) did (since, e.g., raining is nullary\(^4\)), but as situations, which in turn are conceived of as supporting situation types or infons.

Second, we have to specify the kind of update that is made if an assertion of a conditional issue (or other speech act with a c-propositional content) is contributed to the discourse. We said that we have to quantify over situations and corresponding anchors in order to spell out the 'any case' and to then say what we mean by 'accompany'. I propose to model the 'any' with the help of a function ‘i-frame’ that maps the topic situation \(s_p\) and the set of alternative situations \(I\) to a subset \(AS\) of the situations in \(I\) that includes \(s_p\),\(^5\) and to limit quantification to \(AS\). The latter subset of \(I\) will be called the \(i\)-frame of \(s_p\) under \(I\) or the set of \(s_p\)-alternatives under \(I\). A second restriction comes of course from the obvious requirement that alternative situations have to support the antecedent infon. But now to say that for each such \(s\) there must be an \(s'\) anywhere in the world under consideration that supports the consequent (cf. Barwise 1989, 274) would certainly miss the intuition behind the notion of accompaniment. My counterproposal, inspired by Kratzer's “accidental negation” (1989, 646) is to further require that the alternative situation be rich enough to decide the consequent infon. One could speak thus of locally (i.e., in the intended situation frame) strict implication. This amounts to the following definition (‘\(f \in s\text{-anchors}(\sigma)\)’ is to be read as ‘\(f\) is an \(s\)-anchor for \(\sigma\)’):

(D4) Truth condition for contents with conditional propositions:
\[\langle (s \sup \text{ if } \sigma(\tau)), I, \leq I \rangle \]

\(^4\)Location is not an argument role of raining; on the contrary, rain situations are possible arguments of being located at.

\(^5\)‘i-’ stands for indicative. The corresponding ‘s-’ for subjunctive would not have to meet this requirement. But this will remain my only remark about subjunctive conditionals in this paper.
is true iff
\[\forall s' \forall f [s' \in i\text{-frame}(s, I) \& f \in s'\text{-anchors}(if \sigma(\tau)) \& s' \sup \sigma[f] \& s' \text{ dec } \tau[f]] : s' \sup \tau[f]. \]

A content with the proposition that \(s \) supports a conditional infon as factual part and with \(I \) and a corresponding pre-ordering as virtual part is true just in case for all situations \(s' \) in the i-frame of \(s \) under \(I \) and all \(s'\text{-anchors} f \) for the c-infon such that \(s' \) both (a) supports the \(f\text{-anchored antecedent infon} \) and (b) decides the \(f\text{-anchored consequent infon} \), it holds that \(s' \) supports the \(f\text{-anchored consequent infon} \), i.e., that it decides it positively. This rules out that situations that fail to support the consequent infon simply because they are not rich enough to even decide it make a c-proposition false. Our initial example in this section,

(1) It is not the case that it thunders if it lightens.

may serve as a good illustration, since scenes, i.e., purely visual situations, would verify (1) without requirement (b), because they do not include the acoustic aspects of a situation.

Suppose Max adds to his above-mentioned monologue: "If it is six o'clock, then Joe is getting up now in Hawaii," his assertion is accepted, Mia says: "It is six o'clock," and this is accepted as well. The effect is that the intended topic situation is widened (accommodation) to include not just Max's and Mia's discourse situation but also what Joe is actually doing in Hawaii. Thus the truth of the resulting accepted content will also depend on Joe. That is my basic picture of the effect of updating the content by adding a conditional issue.

Before going on to the last section I will add one remark. It has the purpose to point out that according to this picture, the difference between a straight and a conditional proposition has two aspects: First it is the difference between implicit and explicit antecedents. Remember that in our picture of a proposition, any proposition \(q \) asserted in a discourse is implicitly conditional on the initialization from which the discourse started. A conditional proposition \(if \ p \ then \ q \) therefore explicitly re-relativizes the implicitly conditional \(q \). Second, there is the difference between those propositions that quantify over topic situations and those that don't. Conditional propositions are one kind that do, but so are epistemic and deontic and habitual propositions, that are standardly called modal propositions. So we have formally captured the typologically motivated finding that conditionality is a modal concept too.

2.3 Two Puzzles and their Treatment in Update Semantics

With this picture of conditionalization as restriction by locally strict implication in mind let us attack two puzzles.
Modus-Ponens Conditionals

The \textit{first} one has to do with what I call modus-ponens conditionals, namely conditionals that are asserted in a discourse situation where the truth of the antecedent is in the factual content background.6 The puzzle is one for the Gricean account: With material implication this is equivalent with an assertion of the consequent, so why do people bother to utter a whole conditional? Are they just talkative, violating the maxim of quantity? I think not. I think they are saying something different, in fact, something more.

Suppose we are talking about some work you did with a computer, and you have just told me by uttering (8) that you didn't save before quitting.

\begin{quote}
(8) I didn't save before quitting.
\end{quote}

I believe you, and the factual content background is correspondingly updated. Then I say (9):

\begin{quote}
(9) If you didn't save before quitting, then the file is lost.
\end{quote}

According to my analysis this is not locally equivalent with (10) (as the material implication analysis would predict, since p entails $((p \rightarrow q) \leftrightarrow q)$), but logically stronger. That is, (9) entails (10) in such a context, but not vice versa.

\begin{quote}
(10) The file is lost.
\end{quote}

What (9) says on that background in addition to what (10) says is that your failing to save before quitting does not just happen to come along with the file being lost, but that it requires it, in other words that any relevant case of the former comes with a case of the latter. And this means that in a situation where you quit three times without saving, three flies must be lost in order to make (9) true. By contrast, if in that same situation only the most salient file is lost, then (10) would come out true, whereas (9) would be false.

So far for the first puzzle, the non-redundancy of modus-ponens conditional utterances. The difference between (9) and (10) is modeled in update semantics by different updates that result in propositions with different truth conditions. There remains one problem I have not addressed so far: How does modus ponens work at all? If the factual background situation supports the antecedent infor, then clearly there is an s' in the i-frame of s, namely s itself, and a corresponding f such that s supports the antecedent infor, but it may still fail to support the consequent infor simply because it fails to include all the relevant constituents. Here I think we need some sort of accommodation: if the topic situation is too “thin”

6Here I disagree with Hans Rott, who claims that “ifs are accepted only if the antecedent is not accepted” (1986, 356) and therefore has to deny the very existence of modus-ponens conditionals.
to decide the consequent infon, it is pragmatically enriched to do so (as in the Max, Mia, and Joe story above), and then the consequent follows. This means, given our definition of a stretch of discourse through identity of topic situation, that sometimes, the acceptance of a proposition with a content that entails the antecedent of an accepted c-proposition induces the beginning of an new stretch of discourse.

Unconditionals

The second puzzle is posed by an apparent counterexample to my claim that conditionals restrict or relativize the validity of the consequent. There is a class of seemingly conditional constructions that do exactly the opposite: Instead of making a claim depend on some circumstance and therefore in an intuitive sense weakening it (except in the special case of modus-ponens conditionals just discussed), they strengthen it in the same intuitive sense by claiming that its holds independent of the choice from some alternatively conceivable circumstances. And with this, as is easy to see, I am coming back to the unconditionals, because they are the construction type I am talking about here.

Barwise (1986) has drawn attention to the fact that a conditional like (11) presupposes normal background conditions to obtain such as that there is no pollen around that makes Claire rub her eyes and so on.\(^7\)

(11) If Claire rubs her eyes, then she is sleepy.

But human languages allow us to get rid of these background assumptions (or at least some of them\(^8\)), for instance by saying (12) instead of (11):

(12) Whatever the circumstances, if Claire rubs her eyes, then she is sleepy.

So normal conditionals impose further conditions on backgrounds that are restricted anyway, but clauses like ‘Whatever . . .’ are able to remove background restrictions and thereby strengthen the claim they modify. That’s why I have come to call them “unconditionals.” Further examples are (13) and (14):

(13) Wherever you go, I will find you.

(14) Whether you like it or not, your talk was simply boring.

\(^7\) Sentence (11) could be paraphrased as ‘Under default circumstances, if Claire rubs her eyes, then she is sleepy’, if the latter way of phrasing it would not invite the inference that non-default circumstances are taken into consideration, which is exactly what the Barwise example wants to rule out.

\(^8\) This specification has been inspired by the following remark of an anonymous referee: “Precisely what seems to be eliminated . . . is various conditions we might be aware of as possibilities but not those we are not aware of.” I doubt he would come through with this line of defense in a court trial where a crucially unconditional promise is at stake, but there are certainly contexts where the ‘whatever’ is interpreted more generously, i.e., in a more restricted way.
Interestingly enough, unconditionals seem to be encoded in most languages by interrogative clauses, more precisely by alternative and constituent interrogatives. How come? Interrogatives of this kind define sets of issues (by enumeration or by parametric characterization) as representing exhaustively the range of options that are currently taken into consideration. And this exhaustiveness is exactly what causes the unconditionalization effect: If all options that come into question require q, then q, unless you are unlucky enough to not even have taken into consideration what really is the case, i.e., unless your frame is entirely mistaken.

Standard conditionals on the other hand, even if they are of a disjunctive or generalizing (i.e., existentially quantified) form, do not implicate that they exhaust what comes into question, therefore they don’t have in general the strengthening effect. Let us discuss first the disjunctive type and compare (15) with (16):

(15) If you take the plane to Antwerp, the trip will take three hours; if you take the car or go by train, it will take ten hours.

(16) ?If you take the plane to Antwerp, the trip will take three hours; whether you take the car or go by train, it will take ten hours.

Example (16) doesn’t sound as correct as (15), because it presents going by car or by train as the only options under consideration where taking the plane is in the set of thematic issues. This can be only accepted if we suppose that after the first part of the sentence, the thematic issues are redefined, and this hypothesis is corroborated by the observation that the acceptability of (16) increases with the length of a pause after its first half.

Generalizing unconditionals behave analogically. Compare (17) and (18):

(17) Whatever she wears, Amanda looks pretty.

(18) If she wears something, Amanda looks pretty.

Why does (17) sound like a compliment, whereas (18) sounds like a macho-joke that amounts to quite the contrary? Because (17) invites to take only situations into consideration, where Amanda is dressed, (18) does not carry such a restriction and in fact makes us think of the cases where she is not, inviting the inference that then she does not look pretty.

This suggests the following definitions:

(D5) Truth condition for contents with disjunctive unconditional propositions:

\[(s \supset \text{whether } \Sigma(\tau)), I, \leq I\]

is true iff

\[\text{Hans Rott (p.c.) suggests that in effect they implicate the contrary.}\]

\[\text{The following examples are repeated from Zaefferer (1987).}\]
∀s′∀f[s′ ∈ i-frame(s, I) & f ∈ s′-anchors(whether Σ(τ))] &
∃σ ∈ Σ : s′ sup σ[f] & s′ dec τ[f] : s′ sup τ[f].

A content with the proposition that s supports a disjunctive unconditional infon as factual part and with I and a corresponding pre-ordering as virtual part is true just in case for all situations s′ in the i-frame of s under I and all s′-anchors f for the whole infon such that s′ both (a) supports one of the f-anchored antecedent infons and (b) decides the f-anchored consequent infon, it holds that s′ supports the f-anchored consequent infon.

(D6) Appropriateness condition for contributions involving disjunctive unconditionals:
A discourse contribution with propositional content
(s sup whether Σ(τ))
is appropriate on a virtual background ⟨I, ≤I⟩ iff
∀s′∀f[s′ ∈ i-frame(s, I) & f ∈ s′-anchors(whether Σ(τ))] :
∃σ ∈ Σ : s′ sup σ[f].

(D7) Truth condition for contents with generalizing unconditional propositions:
((s sup x-ever σ(τ)), I, ≤I)
is true iff
∀s′∀f[s′ ∈ i-frame(s, I) & f ∈ s′-anchors(x-ever σ(τ)) &
s′ sup (∃xσ)[f] & s′ dec τ[f] : s′ sup τ[f].

A content with the proposition that s supports an unconditional infon that generalizes over x as factual part, and with I and a corresponding pre-ordering as virtual part is true just in case for all situations s′ in the i-frame of s under I and all s′-anchors f for the whole infon such that s′ both (a) supports the f-anchored existential x-closure of the antecedent infon and (b) decides the f-anchored consequent infon, it holds that s′ supports the f-anchored consequent infon, i.e., that it decides it positively.

(D8) Appropriateness condition for contributions involving generalizing unconditionals:
A discourse contribution with propositional content
(s sup x-ever σ(τ))
is appropriate on a virtual background ⟨I, ≤I⟩ iff
∀s′∀f[s′ ∈ i-frame(s, I) & f ∈ s′-anchors(x-ever σ(τ))] :
s′ sup (∃xσ)[f].

So the rule is: If the antecedent of a c-proposition exhausts the indicative frame of the current topic situation, then an unconditional is appropriate, if not, a regular conditional. In each case it should be encoded accordingly, if the language allows for distinct encoding.

It remains to supplement our definition (D4) by a corresponding appropriateness condition:
(D9) Appropriateness condition for contributions involving standard conditionals:
A discourse contribution with propositional content
\((s \sup if \sigma(\tau))\)
is appropriate on a virtual background \(\langle I, \leq_i \rangle\) iff
\[\neg \forall s' \forall f [s' \in \text{i-frame}(s, I) \& f \in s'\text{-anchors}(if\sigma(\tau))]: s' \sup \sigma[f].\]

So it turned out that although intuitively the difference between unconditionals and conditionals seems to be striking at times, it lies only in the appropriateness conditions of their utterance. They are the reason why the truth conditions of the resulting updated backgrounds are different (entailing versus not entailing the consequent), although the truth conditions of the proposition involved in the update are not.

Unconditionals as Indefinite Modus-Ponens Conditionals

We have claimed that conditional propositions are about updates and that therefore updating by a c-proposition is some sort of meta-update that concerns other updates, be they in the future or in the past. Now we can use this general picture in order to differentiate between standard conditionals, modus-ponens conditionals, and unconditionals. It turns out that the latter two are closely related. If we update with respect to a background that supports already the antecedent infon, then we have a modus-ponens conditional, and the consequent follows immediately. If we update with respect to a background that supports at least one of the enumerated antecedent infons, or at least one instantiation of the parametric antecedent infon, then we have an unconditional, and the consequent follows again. Standard conditionals, by contrast, are used in updates about future updates or about updates that are presently not accepted, so the consequent does not follow.

Finally, if we now look back at the initial distinction between lexical, phrasal and clausal conditionals with our semantic differentiations in mind, it turns out that not only non-argument alternative and constituent interrogatives, but that also some of the supposed lexical and phrasal conditionals are in reality unconditionals, namely non-temporal *always* and *never*, as well as phrases like *in any case*, or *under all circumstances*, in short all those where exhaustiveness is built into the lexical or phrasal meaning.

References

Name Index

Abramsky, S. 35
Arrow, K. 449
Austin, J. L. 297

Balbes, R. 58
Barsalou, L. W. 325, 339
Bateson, G. 254
Bowerman, M. 344, 351
Braisby, N. 254, 319
Bresnan, J. 254
Brookes, S. D. 298
Burte, T. 283, 291–293

Carello, C. 249, 259
Clark, H. H. 318, 339
Cocchiarella, N. 235
Cohen, B. 320
Cohen, G. 324
Colban, E. 357–362, 366
Colmerauer, A. 301
Comrie, B. 477
Cooper, R. 147, 261, 344, 346, 356, 373, 375, 379, 380, 398, 421
Coss, R. G. 257

Creary, L. 363, 368, 372
Cresswell, M. J. 321
Crow, J. M. 356, 368, 372
Culicover, P. 351
Curry, H. B. 133
Danielsen, N. 477
Dewey, J. 233, 235
Dowty, D. 359, 381–382
Dretske, F. 37, 85, 90, 151, 152, 154, 166, 169, 170
Dwinger, P. 58
Etchendy, J. 34, 45, 100, 233, 261, 118, 269, 274, 283, 297, 356, 360, 433, 456

Feferman, S. 133
Fenstad, J. E. 200, 356, 380
Fernando, T. 6
Flagg, R. 133
Fodor, J. A. 321
Frege, G. 240

Gaifman, H. 269, 272, 284, 286
Gärdenfors, P. 479
Gawron, M. 193, 214, 363, 368, 372, 379, 380, 384, 397
Geach, P. 418
Gibson, J. J. 249, 250, 252
Ginsberg, M. L. 233, 255
Grice, H. P. 478
Gupta, A. 235

Halvorsen, P.-K. 356, 380
Heim, I. R. 421, 479
Hellen, L. 381

493
Hindley, J. R. 133
Hinrichs, E. W. 359, 375
Hull, C. L. 321

Israel, D. 34, 79, 233, 234, 193, 195, 436

Jackendoff, R. 381, 386, 387
Johnstone, P. T. 34, 75

Kamp, H. 479
Kanellakis, P. 298
Kaplan, D. 353
Kaplan, R. 254
Kasper, R. 254
Katagiri, Y. 388
Kiparsky, P. 379, 387
Kratzer, A. 478, 479, 485
Kreps, D. 455, 456
Kripke, S. 111, 115, 276, 282, 293, 297, 319, 337

Ladusaw, B. 379
Lakoff, G. 318, 333, 334, 339
Landman, F. 118
Langholm, T. 380, 356
Larson, R. 373
Lewis, D. 479, 485
Link, G. 471, 478

Macken, E. 315, 333, 334, 339
Martin, D. A. 295
McClelland, J. L. 254
Medin, D. L. 321, 322, 323, 336
Mendler, P. F. 25, 133
Mervis, C. B. 321
Michaels, C. 249, 259
Minsky, M. 254
Mönning, U. 379
Montague, R. 351, 353, 398
Murphy, G. L. 320, 321, 322, 323, 336
Myhill, J. 133

Narasimhan, R. 449
Nerbonne, J. 235, 363, 368, 372
Nunberg, G. D. 318

Osherson, D. N. 254, 255, 321, 322
Owings, D. H. 257

Palmer, F. 471
Parikh, R. 449
Parsons, C. 271
Partee, B. 399, 471
Peirce, C. S. 235
Pesetsky, D. 385, 391
Peters, 193, 214, 233, 372, 380, 384, 397
Phillips, D. 233
Pinker, S. 351
Plotkin, G. 108, 133, 134, 138, 139, 141, 142, 200, 202, 204, 212, 214, 215
Pollard, C. 77, 254, 379, 381, 387, 388
Postal, P. 385–387
Pustejovsky, J. 391
Putnam, H. 317, 318, 319, 321, 324, 331, 337
Quine, W. V. 317, 353, 397
Reichenbach, H. 375
Reinhart, T. 384, 419
Rosch, E. H. 321, 323
Ross, J. R. 395
Rott, H. 471, 480, 487
Rounds, W. 254, 298
Rowe, M. 257
Rumelhart, D. E. 254

Sag, I. 254, 381, 387, 388, 399, 421
Sanfilippo, A. 379
Schank, R. 254
Schiffer, S. 449
Scott, D. 77
Searle, J. R. 90
Seldin, J. P. 133
Seligman, J. 328
Sells, S. 388, 419
Shannon, C. 169
Smith, B. 233
Smith, J. M. 133
Smolka, S. 298
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smyth, M.</td>
<td>35</td>
</tr>
<tr>
<td>Stacchetti</td>
<td>449</td>
</tr>
<tr>
<td>Suchman, L.</td>
<td>237, 238, 254</td>
</tr>
<tr>
<td>Suppes</td>
<td>433</td>
</tr>
<tr>
<td>Tutiya</td>
<td>433</td>
</tr>
<tr>
<td>Van Benthem, J.</td>
<td>143, 261, 356, 380, 474</td>
</tr>
<tr>
<td>Vickers, S.</td>
<td>34, 75</td>
</tr>
<tr>
<td>Vygotsky, L. S.</td>
<td>321</td>
</tr>
<tr>
<td>Wattenmaker, W. D.</td>
<td>322</td>
</tr>
<tr>
<td>Westerståhl, D.</td>
<td>3, 6</td>
</tr>
<tr>
<td>Wexler, K.</td>
<td>351</td>
</tr>
<tr>
<td>Wilkins, W.</td>
<td>381</td>
</tr>
<tr>
<td>Williams, E.</td>
<td>399, 421</td>
</tr>
<tr>
<td>Wilson, R.</td>
<td>455, 456</td>
</tr>
<tr>
<td>Wittgenstein, L.</td>
<td>316, 334, 337, 338, 344</td>
</tr>
<tr>
<td>Zaefferer, D.</td>
<td>471, 473, 489</td>
</tr>
<tr>
<td>Zaenen, A.</td>
<td>379, 390</td>
</tr>
</tbody>
</table>
Subject Index

\(A\)-decoration 12
\(A\)-graph 12
absorption principle 413, 416
abstraction 141
 axioms 226
 lemma 226
 object-type 89
 operator 3
 parameter 88, 89
 situation-type 88
accommodation 487
action 237, 261
 mode 235–239, 242, 252–256
 rational 469
actual discourse options 481
adjuncts 361
affordance 250–256
 perceived 257
Alexandrov topology 51
ambiguity 317, 318, 449, 450, 453, 454, 467
anaphora 368
 bound 384; see also reflexives
anaphoric pronoun 404
 dependency 411
 readings 400
ancestor 61
 strong 63
anchor 83, 84, 86, 87, 165, 193, 206, 407
antecedent 472
anticipation 236
anti-founded (af) 6, 11
anti-foundation axiom (AFA) 101, 216, 277
 -universe 6
apodosis 472
appropriateness 397
 conditions 82
 for abstracted types 209
 for basic types 203, 204
 of parameters 197
argument role 82, 93, 98, 379, 381, 407
 lexicalization of 382
 types of 380, 383, 384, 388, 391
argument selection 382, 388, 392
arity 134, 137, 138, 140, 143, 145
aspect 389–391
assignment 97, 98, 138, 140, 144
 as list 202
assume 60, 62
attitude 388, 390
autonomous syntax 401
Background 473
 conditions 165, 328, 330, 332, 336–337
 factual content 482
 factual discourse 481
 perspective 168
situation 328, 329, 330, 332
 type 165
 virtual content 482
balanced infon algebra 39, 53
binding theory 395, 401, 402, 403, 407
Boolean algebra 36, 39, 43
C-command 419
c-construction 472
c-proposition 472
carries relation 247, 256, 264, 436
cc-sets 48
 open set of 51
channel conditions 170
circumstances 404, 407, 409, 412, 425
of utterance 398, 404, 409, 410
type of 408
classification 152
clausal conditionals 476, 491
closable weak model 300
closed coherent sets 47
of infons 48
closed in U 28
closure infon algebras 52
closure operator 49
closure property 48
coherence 322, 323, 324, 329, 336, 338, 339
coherent set of infons 48
communication 348–353, 449–469
compatible sets 50
complemented infons 54
complete infon algebra 39
components 3, 4, 7, 16
compositional meaning 409
computational complexity 297
concepts 315, 316, 320, 321, 322, 323, 324, 334, 338, 339, 340
condition 84, 88, 89
conditional 471
constraints 165, 321, 328–337
form 472
function 472
lexical 475, 491
probability 170
standard 489, 491
clausal 476, 491
modus-ponens 487, 491
conjunction 85
conjunctive information 50
consequence graph, single-valued 65
consequent 472
constituent 16
constraints 152, 244, 248, 256, 257, 259, 264, 266, 391
attunement to 154, 257, 259, 264
conditional 165, 321, 328–337
family of 335–340
necessary 359
parametric 165
structural 380, 388, 391
content 409, 412, 415
intentional 90–91
skeletal 409
context 244
control 390
core facts 324
core meaning 317, 325, 326, 335, 339
covariance 411, 424
crossover principle 387
De Morgan laws 57
decision relation 143
defeasibility 233, 264
definability 133
deictic pronoun 395, 404
denial negation 273
descendant 61
described object (of a noun phrase) 426
determiner 262
comparative 264
deterministic constraint 48, 49
infon algebras 53
directed graph 61
disambiguation 449, 450, 454, 455, 466, 467, 468
discourse content, initialization 482
disjunction 85, 86, 90
disjunctive unconditionals 490
displayable primitive infons 77
distributive lattice 36, 37, 39
distributive law 38
donkey anaphora 418, 419
downward information flow lemma 65
DPI 77
duality 56
operator 56
theorem 12
dynamic inference 154
Ecological psychology 249
efficiency (of language) 353
elliptical verb phrase 408
environment (for a parametric infon) 345–349
equilibrium 237, 463–466
"E-Type" analysis 421
experience 236, 245, 252
experiencer 383–390
extensional equivalence 212
extensional semantics 235, 252, 261, 264

Fact 133, 137–145, 237–238, 244
core 324
facticity 153, 166, 172
factual content background 482
causal discourse background 481
family of constraints 335–340
family resemblance 316, 334, 337, 338, 340
field of a proposition 305
final coalgebra theorem 25
final füll algebra 12, 22
finite observations, logic of 75
fixed point theorem 215
flow graph, labeled 62
form 4, 7
system over a class X 7
frame 75, 254, 256
i 485
Frege structures 134, 137, 142
full situation 159

Game 337–338, 449–469
Gamma 50
generalized quantifier 234, 261, 365, 415, 422, 426, 489
generators and relations 75
given 60, 62
globalism 150
grammar 347, 348, 350
grounding 89

Heterogeneous inference 33
Heyting algebra 36, 38, 43
complete 52, 75
homomorphism 12, 24
Humean perspective 159, 176
Hume's property 159, 178

Idempotent closure operator 49
IFG 61
i-frame 485
illative logic 133–134, 142–145
image closed 8
image perspective 162
increasing closure operator 49

INDEPENDENT-PAR 423, 424
indexical expressions 270
individual 80–82, 88, 91–93, 245, 252
individuation 181
scheme of 81, 84, 86, 94
inference 249, 251, 257, 261, 264, 449, 451, 467–469
defeasible 233, 264–265
dynamic 154
rule-governed 266
infor 36, 79, 80, 82, 83, 84, 85, 86, 87, 94, 97, 98, 238, 246, 484
basic 46, 98, 186, 189
complemented 54
compound 98
displayable primitive 77
dual 57
as item of information 89
saturated 98
infor algebra 39, 75
closure 75
deterministic-constraint 53
strongly balanced 40
information 79–94
carried 251, 258
conjunctive 50
content 156
flow 153, 170, 173, 177, 180
flow graphs 61, 62
material 246
procedural 246
processing 250
state 343–353
structural 87, 89, 94
system 77
theory of 79, 90
informational perspective 169
initial algebra 22
theorem 24
full 12
initialization of a discourse content 482
inquiry 236, 245, 267
phase of 245, 266
intensional logic 133
intensional semantics 261, 264
intention 452–455, 460, 466–468
intentional content 90–91
intentionality 236
interrogative 477, 489
invariance 380, 392
involves 37, 152
issue 187
Join 37
judgment 237–245
Kind 234, 239–243, 249, 254, 261
Kleene truth tables 276
Labeled flow graph 62
language acquisition 343, 350–353
lazy pronominalization 420
lexical adverb 356
lexical conditional 475, 491
lexical doubles 383, 384, 386
liar paradox 269, 297
linguistic universal 392, 471
localism 150
localization theorem 308
location 355, 356
spatial 81–83, 91–92
temporal 81–83, 91–92
locative 356–359
logic,
classical 176
Deweyan 233, 236, 243, 266
illative 133–134, 142–145
intensional 133
modal 179
of finite observations 34
situated 80
three-valued 134, 143–145
logical fixed-point 141–145
logical perspective 175
Meaning 409
composition 409
core 317, 325, 326, 335, 339
relational 409
meet 37
merge 60, 63
mind 236
minimality conditions 82, 83
modal logic 179
mode of action 235–239, 242, 252–256
models of situation theory 216
modus-ponens conditional 487, 491
monotone 23, 49, 138, 139, 142, 145
Montague grammar 351
Naturalism 236
necessary constraint 359
negation 247
operator (on infons) 88
non-well-founded set theory 271
NP-closure 422
NP-complete 297, 299
Object 81, 82, 83, 87, 88, 91, 92, 93, 94, 184, 382
logical 382
oblique 361
selection 384
structured 3–7, 18, 20
object-type abstraction 89
oblique object 361
Ω-algebra 20
ontology 3–11, 18, 29, 30
homomorphism 29
operation 25
U, normal 14
open set of cc-sets 51
optimality 454, 455, 462, 465, 466
organism/environment system 237
Paradox, intrinsic 297
paradox, liar 269, 297
parameter 81–89, 194
basic 83
double role of 194, 198
occurrence of 205
restricted 84, 213, 397, 406
symbol for 202
parameterized universe 196
parametric constraint 165
partial model 274, 284
partiality 117
participant 388
part-of 187
perception 249–250, 257–259
direct 251, 259
erroneous 259, 265
peripheral word meaning 317, 326, 339
persistence 82, 83, 190, 247
perspective 151, 388
 image 162
 Humean 159, 176
 informational 169
 internal 388–390
 logical 175
 shift 161, 163, 185
 speaker’s 388
 static 159, 173, 176
 sub- 160
phase of inquiry 245, 266
phrasal conditional 476, 491
pictures 258
plans 236
p-maximal 307
point of view 388
pointers 272
pointer-semantics 284
polarity 97, 99, 247
possible worlds 236–237
pragmatics 233
pragmatism 235, 253
precedes 152
predicates, psychological 384–391
predication 140, 141
prediction 182, 258
prepositional phrases 356
progenitor 63
progressive 389
projections 440
pronoun,
 anaphoric 404
 bound 384, 386
 covaries 407
 deictic 385, 404
 reciprocal 385
property 185, 243, 252, 261
proposition 36, 44, 89–94, 99, 133,
 235, 238–244, 270
 Austinian 270, 274, 284, 297
 a propositions for 204
 c- 472
 classical 297
 existential 239, 242, 245
 Russellian 297
 universal 239, 242, 248, 256
propositional content 412
protasis 472
proto roles 381
protoset 119
prototype 255, 321–325
 concept 254
 theory 315–316, 321–325, 329,
 334–340
 pseudo-complement 38, 52
Quality 234–235, 239–243, 250, 252,
 254
quantification 412
 scope of 384–385
 quantificational force 412, 426
 quantified noun phrase 417
Ramsey test 479
rationality 451, 453, 467–469
realism 237
receiver 169
recognize as possible 60, 63
referential act 405
reflexives,
 interpretation of 384, 386
 syntactic constraints on 384, 386
REFREL 411
relation 81, 82, 86, 97, 134, 140, 141,
 143, 145, 438
 classification of 379, 388, 392
 compound 99
relational meaning 409
relative complement 52
relative pseudo-complement 38, 42
replacement system 3–11, 195
 special 14
representation theorem for form systems 5, 26
representation theorem for replacement systems 11
resource situation 86, 87, 328, 331,
 332, 410, 426
restricted parameter 84, 397, 406
restricted variable 406
restriction operator 214
restriction theorem 305
Rieger’s theorem 19
Russell type 197, 211
Saturated infon 98
scene 151
scheme of individuation 81, 84, 86, 94
scope 363
 quantifier 384–385
scope, reversal of 385
SCOPES-OVER 412
Scott information systems 77
second order logic properties 19
semantic rule 408, 409
semantics,
 Austinian 270
 extensional 235, 252, 261, 264
 intensional 261, 264
 situation 473
sequent 134, 137–145
set,
 non-well-founded 117, 271
 partial 117
set-based class operation 23
set-continuous class operation 23
shift 163
shifted perspective 163
signal 169
signature 4, 9, 20
single-valued consequence graph 65
situated logic 80
situation 39, 81, 91–98, 133, 141,
 234–237, 243, 252
 domain 152
 full 159
 schemata 356, 357
 semantics 473
situation theory 3, 6, 16, 18, 79, 80,
 85, 88, 91, 94
 axioms for 202
 first-order 199, 201
 models of 216
situation-type 88, 93
 abstraction 88
skeletal content 409
sloppy reading 414
snipping lemma 64
sortal predicate 235
source 169
space-time 355, 356
spatial location 81–83, 91–92
special replacement systems 14
stabilization 236
standard conditional 489, 491
standard functors 24
 strongly 25
state of affairs 133, 134, 139, 141,
 355, 356, 376
static perspective 159, 173, 176
stative 389
stereotype 254
stimulus 383, 387, 391
Stone algebra 55
strategy 450–451, 454, 459, 463–465
strict/sloppy readings 399
 ambiguous 400
strong ancestor 63
strong shift 163, 166
strongly balanced infon algebra 40, 75
strongly standard functors 25
structural constraints 380, 388, 391
structural information 87, 89, 94
structured object 3–7, 18, 20
subject 382
 logical 382
 selection 384
subjectivism 237
sub-ontology 29
sub-perspective 160
sub-powerclass 8
substitution 16, 206–208
substitutional recursive definition 101
subsume 60, 63
support-map 98
supports relation 82, 85, 86, 89, 247,
 264, 436
Swedish 386
Temporal location 81–83, 91–92
term algebra 21
thematic roles 351
 definitions of 381
 hierarchy of 387
thing 243, 245
three-valued logic 134, 144–145
topological system 35, 75
topology 42
T-parameters 83
tree algebra 21
truth 266
 of parametric propositions 200, 204–206
 undefinability of 215
truth-teller 275
type 79–85, 88, 91–99, 244, 484
 abstraction 88, 210
 basic 83, 203
typology 471

U-algebra 10
U-replacement system 18
unarticulated constituents 266, 349, 440
uncertainty 236
unconditional 472, 488, 491
 disjunctive 490
 form 472
 function 472
 generalizing 489
undefinability 141
uniformity 80–83, 89–94, 184, 376
universal grammar 473
universal quantification, bounded 87
universe 4, 6, 18, 20
 of discourse 239
update-function 483
update semantics 480
upward information flow lemma 64
utterance 80, 88–91

Vagueness 317, 318
variable binding 3
variable with restrictions 406
virtual content background 482
VP ellipsis 372, 421

Warranted assertibility 233, 264, 266
weak model, closable 300
well-founded (wf) 6, 11
witnessing function 306
word meaning 315–340
world 46

X-bounded ontology 11, 26
xerox principle 37, 154, 166, 172