
Prognostic relevance of MOG antibodies
in children with an acquired demyelinating
syndrome

ABSTRACT

Objective: To assess the prognostic value of MOG antibodies (abs) in the differential diagnosis of
acquired demyelinating syndromes (ADS).

Methods: Clinical course, MRI, MOG-abs, AQP4-abs, and CSF cells and oligoclonal bands (OCB) in
children with ADS and 24 months of follow-up were reviewed in this observational prospective
multicenter hospital-based study.

Results: Two hundred ten children with ADS were included and diagnosed with acute dissemi-
nated encephalomyelitis (ADEM) (n 5 60), neuromyelitis optica spectrum disorder (NMOSD)
(n 5 12), clinically isolated syndrome (CIS) (n 5 101), and multiple sclerosis (MS) (n 5 37) after
the first episode. MOG-abs were predominantly found in ADEM (57%) and less frequently in
NMOSD (25%), CIS (25%), or MS (8%). Increased MOG-ab titers were associated with younger
age (p 5 0.0001), diagnosis of ADEM (p 5 0.005), increased CSF cell counts (p 5 0.011), and
negative OCB (p 5 0.012). At 24-month follow-up, 96 children had no further relapses. Thirty-
five children developed recurrent non-MS episodes (63% MOG-, 17% AQP4-abs at onset).
Seventy-nine children developed MS (4% MOG-abs at onset). Recurrent non-MS episodes were
associated with high MOG-ab titers (p 5 0.0003) and older age at onset (p 5 0.024). MS was
predicted by MS-like MRI (p , 0.0001) and OCB (p 5 0.007). An MOG-ab cutoff titer $1:1,280
predicted a non-MS course with a sensitivity of 47% and a specificity of 100% and a recurrent
non-MS course with a sensitivity of 46% and a specificity of 86%.

Conclusions: Our results show that the presence of MOG-abs strongly depends on the age at dis-
ease onset and that high MOG-ab titers were associated with a recurrent non-MS disease course.
Neurology® 2017;89:900–908

GLOSSARY
abs 5 antibodies; ADEM 5 acute disseminated encephalomyelitis; ADEMON 5 acute disseminated encephalomyelitis with
optic neuritis; ADS 5 acquired demyelinating syndromes; CIS 5 clinically isolated syndrome; EDSS 5 expanded disability
score; FLAIR5 fluid-attenuated inversion recovery; LETM5 longitudinal extensive transverse myelitis;MDEM5multiphasic
acute disseminated encephalomyelitis; MOG 5 myelin oligodendrocyte glycoprotein; MS 5 multiple sclerosis; NMOSD 5
neuromyelitis optica spectrum disorder; OCB 5 oligoclonal bands; ON 5 optic neuritis; OND 5 other neurologic diseases;
TM 5 transverse myelitis.

The differential diagnosis of children with acquired demyelinating syndromes (ADS) encom-
passes monophasic diseases such as acute disseminated encephalomyelitis (ADEM), clinically
isolated syndromes (CIS), or potentially relapsing forms such as multiple sclerosis (MS). Early
diagnosis is important because of other disorders mimicking a first episode of ADS and differ-
ent treatment options. In this context, antibodies (abs) to myelin oligodendrocyte glycopro-
tein (MOG) have regained attention. Serum MOG-abs can be detected in children with
monophasic ADEM with MOG-abs that drop to undetectable levels.1–3 MOG-abs have
further been detected in aquaporin (AQP)-4-ab–seronegative NMOSD, recurrent optic
neuritis (ON), transverse myelitis (TM),4–7 and multiphasic acute disseminated encephalo-
myelitis (MDEM), but less frequently in adults with these disorders.2,8–10 Two recent studies
revealed that MOG-abs are nearly exclusively detectable in children with monophasic or
relapsing events other than MS.11,12
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In the current study, we investigated the
prevalence and predictive value of MOG-abs
in children with a first ADS in combination
with clinical and MRI features at onset and
outcome after 2 years.

METHODS Between 2009 and 2014, serum samples of 302

children with a suspected ADS were sent to us from 60 different

medical centers in Germany, Austria, Italy, Switzerland, Turkey,

and Canada for testing of MOG- and AQP4-abs and included in

an ongoing prospective study. Two hundred ten children with

a data set including a diagnosis of ADS, clinical presentation, CSF

studies (cell count, oligoclonal bands [OCB]), cerebral MRI from

the first episode, MOG- and AQP4-ab status up to 3 months

after first episode, treatment history, final diagnosis, and clinical

outcome with an expanded disability score (EDSS) after at least

24 months were selected. Clinical data at onset and follow-up

were obtained in the majority of cases with a standardized

questionnaire or a medical discharge summary from the referring

physician.

Ninety-two children were excluded for the following reasons:

(1) 2 children with ADEM died at disease onset; (2) 14 children

were diagnosed with other neurologic diseases (OND) (e.g., lim-

bic encephalitis); (3) 11 children presented as having ADS but

were later diagnosed with OND; (4) in 23 patients, the initial

serum sample was not taken during the first 3 months; (5) in 2

children, necessary data from disease onset were not available;

(6) 40 children were lost to follow-up (figure 1). Based on the

initial clinical information, radiologic evaluation and AQP4-ab

status children were assigned to one of the following diagnoses

based on the International Paediatric MS Study Group

(IPMSSG) recommendations13: (1) 60 patients with ADEM;

(2) 101 patients with CIS divided further into 6 subcategories

(isolated ON, n5 42; bilateral ON, n5 6; transverse myelitis, n

5 20; brainstem, n5 7; cerebral, n5 11; polysymptomatic, n5

15); (3) 37 patients were diagnosed withMS because of radiologic

evidence of dissemination in space and time14; (4) 12 patients

with NMOSD15 (figure 1 and table e-1 at Neurology.org). MRI

studies were assessed by at least 2 reviewers unaware of the clinical

presentation and MOG-ab status (M.B., T.G., and G.K.) includ-

ing the following sequences: cranial MRI of all patients in T2-,

fluid-attenuated inversion recovery (FLAIR)-axial, T2-sagittal,

T1-axial with contrast-medium sequences in addition to spinal

T2- and T1-sagittal with contrast-medium sequences available

from 160/210 children. Clinical follow-up including EDSS, pres-

ence of cognitive dysfunction (e.g., attentional problems), or epi-

lepsy was obtained through medical records or a standardized

questionnaire at least after 24 months. Demographic and clinical

findings of 63/210 children from this cohort were reported

already in 4 studies focusing on the presence of MOG-abs in

NMOSD (n5 27 and n5 3016), ADEM (n5 281), andMDEM

(n 5 310). We decided to include these children because of new

clinical data (e.g., further relapses and additional serum samples).

Standard protocol approvals, registrations, and patient
consents. The study was approved by the Ethics Committee of

the Medical University of Innsbruck, Austria (study number

AN4059). All caregivers provided written informed consent.

Antibody assays. Serum samples were analyzed for the presence

of MOG- and AQP4-abs by live cell-based immunofluorescence

assays as described previously.8 MOG-abs were tested using full-

length MOG (a-1 isoform) and IgG (heavy and light chains,

Dianova)-specific secondary abs. Screening was performed at

dilutions of 1:20 and 1:40 by at least 2 independent clinically

blinded investigators (K.S., S.M., and M.R.), and positive serum

samples were further diluted in 2-fold increments to determine

the end-point titers. Titer levels of $1:160 were classified as

MOG-ab positive as described previously.8 Using heavy chain–

specific secondary abs for IgM, IgG (Dianova), and IgG1

(Invitrogen), we excluded an isolated IgM reactivity in borderline

(1:160 and 1:320) seropositive samples. Two hundred eighteen

follow-up samples from 126/210 patients taken at least 6 months

after the initial event were analyzed for MOG-abs.

Statistical analysis. Statistical analysis was performed using

IBM SPSS, release 22.0 (IBM Corporation). Primary outcome

was the final classification after 24 months into 3 categories:

monophasic, recurrent non-MS demyelinating episodes, or MS.

The association of MOG-ab titers with clinical and immunologic

parameters at onset was analyzed by ordinary regression analysis

using the enter model with all parameters entered at the first step.

The prognostic relevance of biomarkers, clinical or demographic

parameters for the final classification after 24 months (mono-

phasic, recurrent non-MS, or MS), was tested by multinominal

logistic regression analysis with all parameters entered at the first

step. Furthermore, the association of demographic, clinical, and

immunologic parameters with the disease course after 24 months

was analyzed using univariate statistical tests (x2 test, Fisher exact

test, Kruskal-Wallis test, 1-way analysis of variance, and Wil-

coxon signed-rank test).

RESULTS Patients. Children with ADS and a com-
plete data set were included (figure 1). The cohort
of 210 children consisted of 120 female and 90 male
patients with a median age at onset of 12.0 years
(range 0.5–17). Sixty patients were diagnosed with
ADEM, 101 with CIS, and 12 with NMOSD.
Thirty-seven patients with CIS had radiologic evi-
dence of dissemination in space and time and were
thus diagnosed with MS (figure 1 and table e-1). After
24 months, the final diagnosis remained ADEM in
46/60 children. Fourteen of 60 children had further
events and were diagnosed with NMOSD (n 5 1),
MS (n 5 2), MDEM (n 5 8), or acute disseminated
encephalomyelitis with optic neuritis (ADEMON)
(n 5 3). Fifty-four of 101 children with CIS had
further demyelinating episodes: 11 children with ON
had further episodes of ON and were diagnosed with
recurrent ON. Three children with ON or longitu-
dinal extensive transverse myelitis (LETM) had
additional episodes of ON or LETM, increasing the
number of children with NMOSD to 16 after 2 years.
Forty children with CIS were diagnosed with MS due
to clinical relapses (n5 35) or new FLAIR/T2 lesions
on follow-up MRI (n 5 5) (figure 1).

Comparison of clinical and immunologic features

according to MOG-ab status at baseline. Serum MOG-abs
with a titer $1:160 were detected in 65/210 (31%)
patients with a median titer of 1:1,280 (range 1:160–
1:40,960). Patients with high MOG-ab titers had
a lower age at onset (Spearman r 5 20.416, p ,

0.0001). Accordingly, MOG-ab titers were highest in
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children younger than 5 years and lower in older chil-
dren (figure 2).

MOG-ab titers were highest in children with
ADEM (figure 2). Because previous studies have ana-
lyzed smaller patient cohorts using explorative statistical
methods, we decided to analyze the association of
MOG-ab titer levels (0–80, 160–640, and $1:1,280)
using a multivariate model (table 1). High MOG-ab
titers were associated with younger age (p5 0.00001),
diagnosis of ADEM (p5 0.005), absence of OCB (p5
0.012), and higher CSF cell counts (p 5 0.011). By
contrast, diagnosis of CIS with MS-like MRI or MS
was associated with MOG-ab seronegativity or low
titers. MOG-ab–positive children with CIS and MS-
atypical MRI exclusively presented with ON (n 5 18)
or TM (n 5 7) (table 1).

Prognostic parameters for a final diagnosis of MS or

other forms of recurrent demyelinating syndromes after

24 months. Next, we studied the prognostic value of
baseline markers for final disease classification in the
entire MOG-ab–positive and MOG-ab–negative
cohort (table 2 and table e-2). After 24 months, 96
children still had a monophasic diseases course (42%
MOG-abs at onset), 35 children developed further
demyelinating episodes other than MS (63% MOG-
abs and 17% AQP4-abs at onset), and 79 children
were diagnosed with MS (4% MOG-abs at onset).

Multinominal logistic regression analysis indicated
that a recurrent non-MS course was predicted by
higher MOG-ab titers (p 5 0.0003) and older age
at onset (p 5 0.024) compared with the monophasic
group (table 2). By contrast, MS was predicted by an

Figure 1 Pediatric patients with assigned diagnosis after the first event and after at least 24 months

Initial diagnoses of ADEM, NMOSD, CIS, and MS changed during follow-up of at least 24 months to monophasic diseases (n 5 96), recurrent non-MS
diseases (n5 35), or MS (n5 79). Patients with a recurrent non-MS disease course more often were seropositive for MOG-abs (n5 22/35) compared with a
monophasic disease course (n 5 40/96) or MS (n 5 3/79). *92/302 patients were excluded because of the following reasons: (1) death at first episode
(n5 2); (2) other inflammatory neurologic disease at onset (n5 14); (3) ADS at onset, final diagnosis OND (n5 11); (4) no serum sample within first 3 months
(n5 23); (5) incomplete data set (n5 2); and (6) lost to follow-up (n5 40). Blue arrows: monophasic disease course; red arrows: recurrent disease course. abs
5 antibodies; ADEM 5 acute disseminated encephalomyelitis; ADEMON 5 acute disseminated encephalomyelitis with optic neuritis; ADS 5 acute
demyelinating syndrome; AQP4 5 aquaporin-4; CIS 5 clinically isolated syndrome; Dx 5 diagnoses; MDEM 5 multiphasic disseminated encephalomyelitis;
MOG 5 myelin oligodendrocyte glycoprotein; MS 5 multiple sclerosis; n 5 number; NMOSD 5 neuromyelitis optica spectrum disorder; ON 5 optic neuritis;
OND 5 other neurologic disease; rec 5 recurrent.
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MS-like MRI (p5 43 1029) and OCB at onset (p5
0.007) compared with the monophasic group with no
significant role of MOG-abs. Of note, 28/35 (80%)
patients with a recurrent non-MS course had abs to
either MOG (63%) or AQP4 (17%), and 27/35
(77%) patients were females (table 2). Thus, patients
with a higher age (median 10 years), female sex,
MOG- or AQP4-abs, and MS-atypical MRI at onset
have a high risk of developing a non–MS-like recur-
rent disease course independent from the initial diag-
nosis. Furthermore, these patients had a higher risk
for ON during the course of disease (26/35, 74%)
compared with patients with a monophasic disease
course (34/96, 35%) or MS (19/79, 24%). After 24
months, no significant difference in the EDSS or
other clinical residuals was noted between the differ-
ent groups (tables e-2 and e-4). Patients in the MOG-
ab-negative recurrent non-MS group (most of them
with NMOSD with AQP4-abs) and in the group
with MOG-ab titers $1,280 had the shortest time
to relapse. Fourteen of 35 (40%) patients in the recur-
rent non-MS group were treated with IV immuno-
globulin (n 5 3), rituximab (n 5 3, AQP4-positive
NMOSD), or azathioprine (n 5 4) compared with
3/96 (3%) in the monophasic group or 60/79 (76%)
in the MS group.

Finally, we analyzed whether different MOG-ab
cutoff titer levels provided prognostic information
on the disease course after 2 years. Although our cur-
rently used MOG-ab cutoff value of $1:160 had the
highest sensitivity for predicting a non-MS course or
a recurrent non-MS course after 2 years, the corre-
sponding specificities were modest (table 3). By con-
trast, a cutoff value of $1:1,280 had a lower
sensitivity for predicting a non-MS course or a recur-
rent non-MS course, but the corresponding specific-
ities were much better.

Disease course of MOG-ab–seropositive patients over

24-month follow-up. Forty of 65 (61%) MOG-ab–
seropositive children had a monophasic disease course.
Twenty-two children (34%) developed a recurrent non-
MS disease course and only 3 children (5%) were
diagnosed with MS (table e-3). MOG-ab–positive pa-
tients with a recurrent non-MS disease course were
diagnosed with MDEM or ADEM-ON (n 5 11),
followed by recurrent ON (n5 8) and NMOSD (n5
3). Sixteen of 22 (73%) patients with a recurrent disease
course had ON at beginning or during follow-up
compared with 13/40 (32%) patients with a mono-
phasic disease and 2/3 (66%) with MS. Twenty-one of
22 MOG-ab–positive patients with a recurrent non-MS

Figure 2 Association of MOG-ab titers with age at onset (A), assigned diagnosis (B), and clinical course at
follow-up (C, D)

ADEM 5 acute disseminated encephalomyelitis; CIS 5 clinically isolated syndrome; MOG 5 myelin oligodendrocyte glyco-
protein; MS 5 multiple sclerosis; NMOSD 5 neuromyelitis optica spectrum disorder.
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disease course had a clinical relapse after 6 months (1–13
months) and 2.2 relapses (1–5 relapses) in the first 2
years, which was not different compared with other
recurrent groups (table e-3). Of note, an MS-like MRI
(e.g., lesions perpendicular to the long axis of the corpus
callosum) was absent in the monophasic and recurrent
non-MS patients.14 MOG-ab titers at presentation were
similar in MOG-ab–positive children with a mono-
phasic vs a recurrent non-MS disease course and lower
in patients with MS.

Correlation of MOG-ab follow-up titers with the clinical

disease course. Finally, we analyzed 218 follow-up
serum samples from 75/145 (52%) MOG-ab–
negative patients and 51/65 (78%) MOG-ab–
positive patients (cutoff $1:160). MOG-ab-negative
patients did not develop MOG-abs over time.
Overall, 36/51 (71%) MOG-ab–positive patients still
had MOG-abs at final follow-up with an overall

decline of the median titer from 1:1,280 (range 160–
40,960) at onset to 1:160 (range 0–5,120). MOG-
abs titers dropped from onset to follow-up in all
groups, with the strongest effect seen in the mono-
phasic and MS groups, but remained highest in the
recurrent non-MS group (figure 2). When using
a cutoff value of $1:1,280 as calculated above, 33/
126 (26%) patients were MOG-ab positive at onset,
but only 7/126 (6%) still had MOG-abs at follow-up.
Nineteen of 48 monophasic patients had MOG-abs
$1:1,280 at onset, but only 1 patient (2%) had
persisting abs, whereas 15/26 patients with a recur-
rent non-MS course had MOG-abs at onset (58%), 6
of them (23%) with persisting abs. None of the 52
patients with MS had MOG-abs $1:1,280 at onset
or follow-up.

DISCUSSION We report the frequency of serum
MOG-abs in a cohort of 210 children presenting
with ADS prospectively followed for at least 2 years.
We confirm previous findings such as the presence of
MOG-abs in one-third of all children with ADS and
that MOG-abs are associated with a non–MS-like
disease course.11,12 As in previous studies, we observed
a strong correlation between age and MOG-ab sero-
positivity at disease onset,3,8,11,12,17,18 revealing that, in
particular, children younger than 10 years with an
acute non–MS-like episode harbor MOG-abs (table
e-4). Furthermore, we show that a subgroup of chil-
dren continued to have further demyelinating epi-
sodes such as recurrent ON, MDEM, ADEMON, or
NMOSD characterized by the presence of MOG-abs
and less often AQP4-abs, higher age at onset, and
female predominance. Recurrent episodes in most
cases were accompanied by ON, occurred in the
context of persisting, high-titer MOG-abs, and in the
first year after the initial event. The characteristics of
this subgroup of patients are similar to those recently
reported in adult MOG-ab–positive patients.19,20 To
evaluate what characterizes children with MOG-abs
who develop a relapsing non-MS-like disease course,
we compared them with children with a monophasic
disease course. The initial features of both groups had
notable differences: children with monophasic disease
course were younger, more often males, and less often
had involvement of optic nerves. At initial pre-
sentation, antibody titers in children with transient
MOG-abs were similar to those with persistent
MOG-abs but declined in the following months.
Taking all aspects into account, 2 subgroups with
MOG-abs emerge, as already suggested in a smaller
cohort of pediatric patients17: One subgroup charac-
terized by children with a median age at onset of 4.5
years and equal sex distribution is primarily diagnosed
with ADEM and less often with CIS associated with
a monophasic course and transient MOG-abs; the

Table 1 Demographic and clinical parameters at sampling associated with
serum MOG-ab titers in 210 pediatric patients with acquired
demyelinating diseases

MOG-ab neg
(0–1:80)

MOG-ab pos
(1:160–640)

MOG-ab pos
(‡1:1,280) p Value

No. of cases 145 24 41

Females, n (%) 85 (59) 11 (46) 24 (58) 0.353

Age, ya 13 (1–17) 9 (3–15) 5 (0–17) 0.00001

Diagnosis, n (%)b 0.005

ADEM 26 (18) 7 (29) 27 (66)

NMOSD 9 (6) 2 (8) 1 (2)

CIS 1 atypical MRI 39 (27)c 12 (50)d 13 (32)e

CIS 1 MS-like MRI 37 (25)f 0 (0) 0 (0)

MS 34 (23) 3 (12) 0 (0)

Polysymptomatic, n (%) 87 (60) 12 (50) 30 (73) 0.136

Optic neuritis, n (%) 48 (33) 12 (50) 12 (29) 0.096

AQP4-abs, n (%) 6 (4) 0 (0) 0 (0) 0.999

CSF OCB, n (%)g 77 (53) 5 (21) 2 (5) 0.012

CSF cells/mLh 8 (0–138) 7 (0–338) 22 (0–336) 0.011

Abbreviations: ab 5 antibody; ADEM 5 acute disseminated encephalomyelitis; AQP-4 5

aquaporin-4; CIS 5 clinically isolated syndrome; MOG 5 myelin oligodendrocyte glycopro-
tein; MS 5multiple sclerosis; neg 5 seronegative; NMOSD 5 neuromyelitis optica spectrum
disorder; OCB 5 oligoclonal IgG bands; ON 5 optic neuritis; pos 5 seropositive; TM 5 trans-
verse myelitis.
Groups were statistically compared using ordinal regression analysis with all parameters
entered at the first step (enter method). R2 5 0.378 (Cox and Snell), 0.468 (Nagelkerke),
0.289 (McFadden); model x2 5 99.73; p 5 5 3 10218.
aMedian (range).
bDiagnosis at onset and MRI at onset were analyzed together because they were highly
correlated, and MRI was used to establish the diagnosis of MS.
cSymptoms: brainstem (1), ON (24), polysymptomatic (3), and TM (11).
dSymptoms: ON (8) and TM (4).
e Symptoms: ON (10) and TM (3).
f Symptoms: brainstem (6), cerebral (11), ON (6), polysymptomatic (12), and TM (2).
gSix missing cases were included in the analysis with values entered as samples means.
hSixteen missing cases were included in the analysis with values entered as samples means
(data shown as median with range).
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second subgroup consists of children who are older at
onset (median 8 years) and predominantly females.
ON at onset or later is common, and they are pri-
marily diagnosed with ADEM or CIS but develop
a relapsing non-MS course such as MDEM,
ADEMON, NMOSD, or recurrent ON with per-
sistent MOG-abs. Furthermore, our results suggest
that patients with a recurrent non-MS disease course
have higher MOG-ab titers at onset compared with
patients with a monophasic course or MS and that
persisting MOG-abs are predominantly present in
pediatric patients with recurrent non-MS disease
course. We conclude that persisting high-titer MOG-
abs are associated with a risk of relapse but not the
sole presence at onset. Our results also suggest that
a cutoff higher than previously anticipated, e.g.,
$1,280, could be used to increase the specificity for
a non-MS disease course. However, because this leads
to a decrease in sensitivity improvement of MOG-ab
testing, using more specific assays as recently pub-
lished is needed.21 The presence of MOG-abs has also
been described in adult patients with MS with

a relapsing course involving the brainstem, spinal
cord, and poor response to MS therapies. MOG-abs
in this subgroup were present over a long time with
fluctuation and reappearance of MOG-abs. The au-
thors concluded that patients with MS with MOG-
abs represent a distinct phenotype benefiting from
different treatment strategies.22 This is in line with
biopsy findings in adults with fulminant episodes and
MOG-abs revealing a lesion pattern reminiscent of
MS type 2 with demyelination and presence of
complement activation.23–25 Our observations are
further supported by a recent study involving 50
adults with a history of ON and/or TM: Every fourth
MOG-ab–positive patient with ON or myelitis had
clinicoradiologic findings of MS, suggesting a pheno-
type overlap between patients with seropositive
NMOSD and those with seropositive MS.19 Three
children in our cohort had MS and MOG-abs (figure
e-1). Two children with an MS-like MRI and positive
OCB were diagnosed already at age 4 and 8 years.
One had an isolated ON and the other patient
a right-sided hemiplegia. The third patient was 14

Table 2 Predictive factors at disease onset for a recurrent non-MS disease course or MS after 24 months in
210 pediatric patients with acquired demyelinating diseases

Monophasic Recurrent non-MS MS

No. of cases, n (%) 96 (45.7) 35 (16.7) 79 (37.6)

Females, n (%) 47 (49); reference 27 (77); p 5 0.102 46 (58); p 5 0.551

Age at onset, ya 7 (0.5–17); reference 10 (2–17); p 5 0.024,
OR 5 1.17 (1.02, 1.34)

14 (1–17); p 5 0.070

MOG-abs at onset, n (%)

Negative (0–1:80), n (%) 56 (58) 13 (37) 76 (96)

Positive (1:160–640), n (%) 15 (16) 6 (17) 3 (4)

Positive (‡1:1,280) 25 (26); reference 16 (46); p 5 0.0003,
OR 5 4.02 (1.90, 8.49)

0 (0); p 5 0.194

AQP4-abs at onset, n (%) 0 (0); reference 6 (17); p 5 0.993 0 (0); p 5 0.999

CSF OCB at onset, n (%)b 15 (16); reference 3 (9); p 5 0.396 66 (84); p 5 0.007,
OR 5 6.69 (1.70, 26.34)

CSF cells/mL at onsetc 10 (0–338) 17 (0–232); p 5 0.187 12 (0–70); p 5 0.982

MS-typical MRI at onset, n (%) 4 (4); reference 0 (0); p 5 0.975 71 (90); p 5 4 3 1029,
OR 5 63.04 (15.86, 250.52)

Polysymptomatic onset, n (%) 62 (65); reference 20 (57); p 5 0.448 47 (60); p 5 0.686

Optic neuritis at onset, n (%) 34 (35); reference 20 (57); p 5 0.203 18 (23); p 5 0.126

Abbreviations: abs 5 antibodies; ADEM 5 acute disseminated encephalomyelitis; AQP-4 5 aquaporin-4; CIS 5 clinically
isolated syndrome; MOG 5 myelin oligodendrocyte glycoprotein; MS 5 multiple sclerosis; NMOSD 5 neuromyelitis optica
spectrum disorder; OCB 5 IgG bands; ON 5 optic neuritis; OR 5 odds ratio with 95% CI; TM 5 transverse myelitis.
Groups were statistically compared using multinominal logistic regression analysis with all parameters entered at the first step
(enter method). R2 5 0.705 (Cox and Snell), 0.809 (Nagelkerke), 0.596 (McFadden); model x2 5 256.28; p 5 4 3 10244.
Diagnosis at baseline: monophasic 5 46 ADEM, 3 NMOSD, and 47 CIS (28 ON, 15 TM, 1 cerebral, and 3 polysymptomatic)
patients; recurrent non-MS 5 12 ADEM, 9 NMOSD, and 14 CIS (13 ON and 1 TM); MS 5 2 ADEM, 40 CIS (7 ON, 4 TM, 10
cerebral, 12 polysymptomatic, and 7 brainstem), and 37 MS.
Diagnosis at final follow-up: monophasic5 46 ADEM, 3 NMOSD, and 47 CIS patients; recurrent non-MS5 13 NMOSD, 11
recurrent ON, and 11 MDEM/ADEM-ON patients.
aMedian (range).
b Six missing cases were included in the analysis with values entered as samples means.
c Sixteen missing cases were included in the analysis with values entered as samples means (data shown as median with
range).
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years old with sensory disturbances in his legs due to
TM. The 2 younger patients had frequent episodes
not involving the brainstem or myelon. All patients
are currently treated with MS therapies and MOG-
abs dropping to undetectable levels over time. Chil-
dren with persistent MOG-abs in our study had more
episodes with ON compared with children with
absent or transient MOG-abs as previously re-
ported.5,6,11,26,27 ON with MOG-abs has distinct
features separating it from other diseases such as
bilateral involvement, rapid visual impairment

combined with good recovery after steroid treatment,
and optic disc swelling.26,28–30 Several limitations need
to be addressed: MRI studies were performed on
scanners with different field strengths, potentially
leading to different results. Serologic follow-up was
not available from a large part of initially MOG-ab–
negative children, as well as from MOG-ab–positive
patients without relapses. With a higher number of
follow-up serum samples, further conclusions, i.e.,
regarding the correlation between disease activity and
MOG-ab titers, would have been possible. We also

Table 3 Prognostic significance of MOG-ab titer levels on the disease course after 24 months (monophasic,
recurrent non-MS, and MS)

MOG-ab titer level at baseline—cutoff values

‡1:160 ‡1:320 ‡1:640 ‡1:1,280

Number, n (%) 65 (31) 59 (28) 52 (25) 41 (19)

Age, ya 6 (0–17) 6 (0–17) 5 (0–17) 5 (0–17)

Diagnosis at onset, n (%)

ADEM (60) 34 (57) 33 (55) 30 (50) 27 (45)

NMOSD (12) 3 (25) 3 (25) 2 (17) 1 (8)

CIS (101) 25 (25) 21 (21) 19 (19) 13 (13)

MS (37) 3 (8) 2 (5) 1 (3) 0 (0)

Disease course (monophasic,
recurrent non-MS, MS) after
2 y, n (%)

Monophasic (96) 40 (42) 36 (37) 33 (34) 25 (26)

ADEM (46) 22 (48) 21 (46) 20 (43) 18 (39)

CIS (47) 15 (32) 12 (25) 11 (23) 6 (13)

NMOSD (3) 3 (100) 3 (100) 2 (67) 1 (33)

Recurrent non-MS (35) 22 (63) 21 (60) 18 (51) 16 (46)

MDEM/ADEM-ON (11) 11 (100) 11 (100) 9 (82) 8 (73)

NMOSD (13) 3 (23) 3 (23) 3 (23) 3 (23)

Recurrent ON (11) 8 (73) 7 (64) 6 (54) 5 (45)

MS (79) 3 (4) 2 (2) 1 (1) 0 (0)

Prediction of a non-MS
disease course (monophasic
or recurrent) after 2 y

Sensitivity (95% CI) 0.473 (0.390, 0.558) 0.435 (0.353, 0.521) 0.389 (0.310, 0.475) 0.313 (0.240, 0.397)

Specificity (95% CI) 0.962 (0.894, 0.990) 0.975 (0.912, 0.996) 0.987 (0.932, 0.999) 1.0 (0.954, 1.0)

pb ,0.0001 ,0.0001 ,0.0001 ,0.0001

Prediction of a recurrent
non-MS disease course
after 2 y

Sensitivity (95% CI) 0.629 (0.463, 0.768) 0.6 (0.436, 0.744) 0.514 (0.356, 0.670) 0.457 (0.305, 0.618)

Specificity (95% CI) 0.754 (0.685, 0.812) 0.783 (0.716, 0.837) 0.806 (0.741, 0.857) 0.857 (0.780, 0.901)

pb ,0.0001 ,0.0001 0.0002 ,0.0001

Abbreviations: abs 5 antibodies; ADEM 5 acute disseminated encephalomyelitis; ADEMON 5 acute disseminated enceph-
alomyelitis with optic neuritis; CIS 5 clinically isolated syndrome; MDEM 5 multiphasic disseminated encephalomyelitis;
MOG 5 myelin oligodendrocyte glycoprotein; MS 5 multiple sclerosis; NMOSD 5 neuromyelitis optica spectrum disorder;
OCB 5 IgG bands; ON 5 optic neuritis.
aMedian (range).
bCalculated using the Fisher exact test.
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have to mention that 63 children of our cohort were
reported in previous studies, potentially leading to
a selection bias. Nevertheless, the proportion of
MOG-ab–positive children was similar to other re-
ported cohorts.11,12

Since a previous publication indicated that MOG-
ab reactivity in patients with MS might be caused by
IgM abs detected by IgG heavy 1 light chain (H 1

L) reactive secondary abs, whereas IgG1 reactive sec-
ondary abs are more specific,21 we tested a subset of
our samples with different secondary abs (table e-5).
Although IgM abs were present in some of these
samples, all were also IgG1 reactive. This finding is
consistent with the work of Waters et al.,21 who
showed that almost all IgG1-reactive samples also
have MOG-antibody titers $1:160 when measured
using the (H 1 L) assay.

MOG-abs are present in a substantial number of
very young children with ADS and are associated with
a monophasic disease course in the context of declin-
ing antibody levels. High and persisting MOG-abs on
the other hand are associated with a recurrent disease
course other than MS. Collaborative studies are
needed to better define this group of diseases with
the common denominator MOG-abs.
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