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Objective: To provide a narrative review of the latest concepts and 
understanding of the pathophysiology of critical illness-related 
corticosteroid insufficiency (CIRCI).
Participants: A multi-specialty task force of international experts 
in critical care medicine and endocrinology and members of the 
Society of Critical Care Medicine and the European Society of 
Intensive Care Medicine.
Data Sources: Medline, Database of Abstracts of Reviews of 
Effects (DARE), Cochrane Central Register of Controlled Trials 
(CENTRAL) and the Cochrane Database of Systematic Reviews.
Results: Three major pathophysiologic events were considered 
to constitute CIRCI: dysregulation of the hypothalamic–pituitary–
adrenal (HPA) axis, altered cortisol metabolism, and tissue resis-
tance to glucocorticoids. The dysregulation of the HPA axis is 
complex, involving multidirectional crosstalk between the CRH/
ACTH pathways, autonomic nervous system, vasopressinergic 
system, and immune system. Recent studies have demonstrated 
that plasma clearance of cortisol is markedly reduced during criti-
cal illness, explained by suppressed expression and activity of 
the primary cortisol-metabolizing enzymes in the liver and kidney. 
Despite the elevated cortisol levels during critical illness, tissue 
resistance to glucocorticoids is believed to occur due to insuf-
ficient glucocorticoid alpha-mediated anti-inflammatory activity.
Conclusions: Novel insights into the pathophysiology of CIRCI 
add to the limitations of the current diagnostic tools to identify 
at-risk patients and may also impact how corticosteroids are used 
in patients with CIRCI. (Crit Care Med 2017; 45:2089–2098)
Key Words: Corticosteroid insufficiency; critical illness; sepsis; 
glucocorticoids; glucocorticoid receptor

INTRODUCTION
In 2008 an international multidisciplinary task force convened 
by the Society of Critical Care Medicine (SCCM) coined the 
term critical illness-related corticosteroid insufficiency (CIRCI) 
to describe impairment of the hypothalamic–pituitary–adre-
nal (HPA) axis during critical illness (1). CIRCI was defined 
as inadequate cellular corticosteroid activity for the severity of 
the patient’s critical illness, manifested by insufficient gluco-
corticoid–glucocorticoid receptor-mediated down regulation 
of pro-inflammatory transcription factors. CIRCI is thought 
to occur in several acute conditions including sepsis and septic 
shock, severe community-acquired pneumonia, acute respi-
ratory distress syndrome (ARDS), cardiac arrest, head injury, 
trauma, burns, and post-major surgery. This narrative review, 
performed by a multi-specialty task force of international 
experts and members of the SCCM and the European Society 

of Intensive Care Medicine (ESICM), focuses on the latest con-
cepts and understanding of the pathophysiology of CIRCI dur-
ing critical illness.

Hypotalamic Pituitary Adrenal Axis and the 
Physiological Response to Stress
Systemic inflammation–a central component of the innate 
immune system–is a highly organized response to infectious 
and non-infectious threats to homeostasis that consists of at 
least three major domains (1): the stress system mediated by 
the HPA axis and the locus ceruleus-norepinephrine/sympa-
thetic nervous system (2), the acute-phase reaction (3), and 
the target (vital organs) tissue defense response (2, 3). Whereas 
appropriately regulated inflammation–tailored to stimulus and 
time (4)–is beneficial, excessive or persistent systemic inflam-
mation incites tissue destruction and disease progression (5).

Overwhelming systemic inflammation that characterizes 
critical illness is partly driven by an imbalance between hyper-
activated inflammatory pathways such as the classical nuclear 
factor-kappa B (NF-kB) signaling system (6) and the less acti-
vated or dysregulated HPA-axis response (7). The activated 
glucocorticoid-glucocorticoid receptor-alpha (GC-GRα) 
complex plays a fundamental role in the maintenance of both 
resting and stress-related homeostasis and influences the phys-
iologic adaptive reaction of the organism against stressors (2). 
The activated GC-GRα complex exerts its activity at the cyto-
plasmic level and on nuclear deoxyribonucleic acid (nDNA) 
and mitochondrial DNA (mtDNA) (8) affecting thousands of 
genes involved in response to stress and non-stress states (9). 
Individual genetic variants of the glucocorticoid receptor may 
also affect both the basic cellular phenotypes, i.e., GR expres-
sion levels and the overall HPA axis stress response through 
either an altered GC response or sensitivity (10).

Cortisol Synthesis
The adrenal glands produce glucocorticoids (cortisol), 
mineralocorticoids (aldosterone), and adrenal androgens 
(dehydroepiandrosterone, DHEA) using cholesterol as a 
substrate, and upon stimulation by adrenocorticotropic 
hormone (ACTH), also known as corticotropin (Figure 1). 
ACTH is a short half-life, fast-acting 39-amino acid pep-
tide produced from the cleavage of a large precursor, pro-
opiomelanocortin. ACTH stimulatory activity is regulated 
by corticotropin releasing hormone (CRH) and to a lesser 
extent by arginine vasopressin (AVP), both acting syn-
ergistically. Steroidogenic cholesterol is stored in lipid 
droplets as cholesteryl esters. Adrenal mitochondria play 
a critical role in adrenocortical cell steroidogenesis, con-
verting intracellular cholesterol to cortisol. The final steps 
in glucocorticoid biosynthesis are catalyzed by two closely 
related mitochondrial P450-type enzymes: CYP11B1 and 
CYP11B2 (11). Cortisol is the major endogenous gluco-
corticoid secreted by the human adrenal cortex. Cortisol 
is released in a circadian rhythm: cortisol production is 
at its peak in the early hours of the morning and then 
secretion gradually declines over the course of the day. 
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Cortisol itself exerts inhibitory control on the pituitary 
and hypothalamus to regulate its release. The estimated 
daily production rate of cortisol is 27–37.5 μmol/day 
(5–7  mg/m2/day) (12). There is limited adrenal storage 
of cortisol. Under the stress of critical illness, the regula-
tion of cortisol production becomes much more complex 
involving multidirectional crosstalk between the CRH/
ACTH pathways, autonomic nervous system, vasopressin-
ergic system, and immune system (Figure 1). Acute stress 
induces rapid release of ACTH via CRH and AVP and loss 
of the circadian rhythm of cortisol secretion. In critically 
ill patients, increased cortisol levels do not appear to be 
due to increased adrenocortical sensitivity to ACTH (13). 
The dissociation of cortisol from ACTH could be due to 
direct production of cortisol from the adrenal glands or 
to reduced metabolism of cortisol and thus an increased 
systemic half-life. Cortisol production rates in critically 
ill patients were recently shown to be either unaltered or 
only slightly increased compared with matched control 
subjects tested in an ICU environment (14, 15).

Cortisol Transport and Metabolism
In plasma, a large proportion (80%–90%) of circulating corti-
sol is bound with high affinity to corticosteroid-binding glob-
ulin (CBG), with smaller (10%−15%) proportions bound with 
low affinity to albumin or present in the ‘free’ unbound form. 
The binding capacity of CBG is typically saturated at cortisol 
concentrations of 22−25 μg/dL. When cortisol levels are higher 
than 25 μg/dL, there is an increased proportion of albumin-
bound and free cortisol, whereas the amount of CBG-bound 
cortisol remains the same. Albumin and CBG are negative 
acute phase reactants and rapidly decrease in critical illness 
in proportion to the severity of illness (16). In septic patients, 
reduction in CBG levels correlates with plasma interleukin-6 
(IL-6) levels (17).

Cortisol is metabolized primarily in the liver and the kid-
neys. In the liver, the most important enzymes catalyzing the 
initial steps in cortisol metabolism are the 5 α/β-reductases, 
whereas in the kidney, cortisol is broken down to the inac-
tive metabolite cortisone by the 11β-hydroxysteroid dehy-
drogenase (11β-HSD) type 2 enzyme (14). Some cortisol can 

Figure 1. Glucocorticoid synthesis at rest and during stress. At rest, glucocorticoids (e.g., cortisol) are produced from the zona fasciculata of the adrenal 
cortex upon stimulation by adrenocorticotropic hormone (ACTH) released in the blood from the anterior pituitary gland. Both corticotropin-releasing 
hormone (CRH) and arginine vasopressin (AVP), synthesized in the hypothalamus, contribute to the synthesis and release of ACTH by pituitary cells. 
During stress, the synthesis of ACTH is additionally stimulated by norepinephrine, mainly produced in the locus ceruleus. At the level of inflamed tissues, 
terminal nerve endings of afferent fibers of the autonomic nervous system (ANS) have receptors for damage-associated molecular patterns (DAMPs) 
and pathogen-associated molecular patterns (PAMPs) allowing them to sense the threat and activate the noradrenergic/CRH system. These DAMPs 
and PAMPs can also directly stimulate adrenal cortex cells that possess Toll-like receptors (TLR), resulting in ACTH-independent cortisol synthesis. In 
addition, paracrine routes allow the medulla to also stimulate glucocorticoid synthesis independently of ACTH.
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be regenerated from cortisone in extra-adrenal tissues (liver, 
adipose tissue, skeletal muscles) through the activity of the 
11β-HSD1 enzyme. The adverse metabolic complications 
associated with corticosteroid excess involve the key metabolic 
tissues (liver, adipose tissue, and skeletal muscle) which have 
comparatively high 11β-HSD1 activity.

In stressed conditions, the increase in cortisol level can 
lead to an increase in the free fraction in the circulation. 
Additionally, plasma CBG levels can decrease through 
reduced liver synthesis and increased peripheral cleavage by 
activated neutrophil elastases. These effects act to increase 
the amount of cortisol delivered to the tissues. During stress 
the metabolism of cortisol can also undergo significant 
changes. The expression and activity of 5-reductases within 
the liver and probably other tissues is decreased in response 
to inflammation (14). Renal 11β-HSD2 is also decreased 
in response to inflammation, while the expression of 11β-
HSD1 is increased in some tissues (18). Up regulation of 
11β-HSD1 activity is modulated by inflammatory cytokines 
(tumor necrosis factor-alpha [TNF-α], IL-1β). These effects 
would be expected to increase the cortisol action at the level 
of specific tissues and also increase the half-life of circulat-
ing cortisol (18, 19).

Cellular Cortisol Signaling
Cortisol is a lipophilic hormone that enters cells passively 
and binds to specific cytoplasmic receptors, or to membrane 
sites. There are two types of glucocorticoid receptors (GR). 
The type 1 receptor is more commonly referred to as the 
mineralocorticoid receptor (MR) and the type 2 receptor as 
the classical GR. Both the GR and the MR can bind aldoste-
rone and cortisol. In many tissues the ability of the MR to 
bind cortisol is reduced by the expression of the 11β-HSD2 
enzyme and the conversion to inactive cortisone. The MR has 
a higher affinity for cortisol and aldosterone than the GR and 
is thought to be important for signaling at low corticoste-
roid concentrations. Although the MR is involved in some 
inflammatory responses, the classic GR is thought to be more 
important in mediating the glucocorticoid responses to stress 
and inflammation. Several transcriptional and translational 
isoforms of the GR exist, which appear to vary in their tis-
sue distribution and gene-specific effects. Our current under-
standing of the GR's mechanism of action is mainly obtained 
from research on the almost ubiquitous and most abundant 
full-length GRα isoform (20).

In the absence of glucocorticoids, the GR is primarily pres-
ent in the cytoplasm as part of a multiprotein complex with 
chaperone proteins, heat shock proteins, and immunophilins 
(FKBP51 and FKBP52). Upon binding of glucocorticoid, the 
GR undergoes a conformational change, dissociates from the 
chaperone proteins, and enters the nucleus and mitochon-
dria, where it binds to positive (transactivation) or negative 
(cis-repression) specific DNA regions termed glucocorticoid 
responsive elements (GRE) to regulate transcription and 
translation of target genes in a cell- and gene-specific manner 
(21, 22) (Figure 2). The glucocorticoid receptor can inhibit 

the expression of pro-inflammatory genes independently of 
DNA binding by physically interacting (via tethering) with 
the transcription factor p65, a subunit of nuclear factor κB, an 
effect referred to as transrepression. This interaction inhibits 
p65–p50 heterodimer translocation into and action at the 
nucleus (21). Alternatively, in transactivation, GR binding to 
GRE in the promoter regions of target genes is followed by 
recruitment of other proteins such as co-activators, resulting 
in increased pro-inflammatory gene transcription.

Glucocorticoids can induce some anti-inflammatory 
effects through non-genomic effects (Figure 2). Specifically, 
membrane-bound GR can activate kinase pathways within 
minutes. The activation of the mitogen-activated protein 
kinase (MAPK) pathway results in the inhibition of cytosolic 
phospholipase A2α, whereas activated phosphatidylinositol 
3-kinase leads to the induction of endothelial nitric oxide 
synthetase (eNOS) and the subsequent production of nitric 
oxide (21). Endothelial GR is a critical regulator of NO syn-
thesis in sepsis (23). In experimental lipopolysaccharide (LPS) 
models, tissue-specific deletion of the endothelial GR results 
in prolonged activation of NF-kB with increased expression 
of eNOS and inducible nitric oxide synthase (iNOS), TNF-α, 
and IL-6 (23). Importantly, the presence of endothelial GR is 
required for dexamethasone to rescue the animals from lipo-
polysaccharide (LPS)-induced morbidity and mortality (24). 
Glucocorticoids may also impair T-cell receptor signaling 
through non-genomic inhibition of FYN oncogene-related 
kinase and lymphocyte-specific protein tyrosine kinase by the 
glucocorticoid receptor (21).

In addition to the wild-type glucocorticoid receptor 
GRα, two splice variants involving the hormone-binding 
domain exist, namely GRβ and GR-P (also known as GRδ) 
(25, 26). GRβ differs from the GRα at the C terminus, 
resulting in a lack of binding to GCs, constitutive local-
ization in the nucleus, and an inability to transactivate a 
GC-responsive reporter gene. However, it acts as a domi-
nant-negative inhibitor of GRα genomic transactivation 
and transrepression when co-expressed with GRα; imbal-
ance between GR-α and GR-β expression is associated with 
GC insensitivity (26). Cell-specific glucocorticoid respon-
siveness also involves differential expression of co-receptor 
proteins functioning as co-activators and co-repressors of 
transcription. Also, differences in chromatin structure and 
DNA methylation status of GR-target genes determine cell 
specific cortisol effects (27). Besides classical genomic and 
rapid GC-induced non-genomic ligand-dependent steroid 
receptor actions and crosstalk, there is increasing evidence 
that the unliganded GR can modulate cell signaling in the 
absence of glucocorticoids, adding another level of com-
plexity (20).

In sepsis, glucocorticoids may decrease HLA-DR expres-
sion on circulating monocytes at a transcriptional level via 
a decrease in the class II transactivator A transcription (28). 
Another study found that hydrocortisone treatment reduced 
the levels of anti-inflammatory cytokines such as soluble TNF 
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receptors I and II and IL-10, and has only limited effects on 
HLA-DR expression by circulating monocytes (29).

Dysfunction of the HPA Axis During Critical Illness
Many of the responses normally considered adaptive may be 
inadequate or counterproductive during severe stress states. 
Depending on the population of patients studied and the 
diagnostic criteria, dysfunction of the HPA axis has been esti-
mated to occur at rates from 10%−20% in critically ill medical 
patients to as high as 60% in patients with septic shock (1).

Evidence from the sepsis (30−34), ARDS (7, 35, 36), and 
trauma (37, 38) literature suggests that degree of elevation 
in inflammatory cytokines (e.g., TNF, IL-1β, IL-6) on ICU 
admission and during ICU stay correlates with disease severity 
and hospital mortality, and that persistent elevation of cyto-
kines at hospital discharge is associated with adverse long-term 
outcomes (39).

Cytokine-Induced Activation of the HPA Axis
Inflammatory cytokines including TNF, IL-1 and IL-6 have 
been shown to activate the HPA axis, especially during sep-
sis. However, these cytokines do not exert an equivalent 
effect on CRH release. IL-1 injection is associated with a 
strong and sustained activation of the HPA axis, while 
IL-6 and TNF induce weak and transient hypothalamic 
responses, and IL-2 and interferon-alpha have no effect 
(40). The route of cytokine administration (intravenous or 
intraperitoneal) also influences their stimulatory effects on 
the hypothalamus (41).

It is also likely that cytokines can exert a direct, ACTH-
independent effect on adrenal cortisol synthesis (42). The 
presence of TNF and of its receptors within the adrenal glands 
suggests that this cytokine plays a role in adrenal function, even 
though experiments found variably stimulatory (43, 44) or 
inhibitory (45, 46) effects of TNF on steroidogenesis. Likewise, 

Figure 2. Glucocorticoid synthesis and signalling. Glucocorticoids (e.g., cortisol) are synthesized from cholesterol in the mitochondria by two P450-
type enzymes, CYP11B1 and CYPB11B2, and may exert genomic and non-genomic effects. Glucocorticoids diffuse through cell membranes and bind 
with glucocorticoid receptors (GR, classic GR and MR, mineralocorticoid receptor). Glucocorticoid receptors reside in the cytoplasm in a multiprotein 
complex with chaperone proteins, heat shock proteins, and immunophilins. The classic GR (specifically GR-α) is the major receptor involved in 
mediating the glucocorticoid responses to stress and inflammation. Upon binding of cortisol, the GR undergoes a conformational change that allows it 
to dissociate from the chaperone proteins and translocate into the nucleus and the mitochondria, where it binds to glucocorticoid response elements 
(GRE) to activate (transactivation) or repress (cis-repression) pro-inflammatory gene expression of various transcription factors (TFs) such as nuclear 
factor-kappa B (NF-KΒ) and activator protein-1 (AP-1).
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IL-1 and its receptor are also produced in the adrenal glands 
and contribute to steroidogenesis at least partly by regulat-
ing prostaglandin pathways (47). Toll-like receptors (TLR), 
mainly TLR2 and TLR4, are expressed in the adrenal glands 
and play a critical role in the local immune-endocrine crosstalk 
in LPS-challenged rodents (48, 49). Further experiments using 
genetically manipulated mice suggest that immune cells and 
not steroid-producing cells are key regulators of the immune-
endocrine local interaction (49).

Impairment of Adrenal Cortisol Synthesis
Damage to Neuroendocrine Cells. Sepsis is infrequently asso-
ciated with necrosis or hemorrhage of components of the HPA 
axis. As a result of the limited venous drainage of the adre-
nal glands, sepsis-associated massive increase in arterial blood 
flow to these glands results in enlarged glands (50). Adrenal 
necrosis and hemorrhage as a consequence of sepsis has been 
known for more than a century (51). Predisposing factors of 
the so-called Waterhouse-Friderichsen syndrome include renal 
failure, shock, disseminated intravascular coagulation, and 
treatment with anticoagulants or tyrosine kinase inhibitors. 
Ischemic lesions and hemorrhage have also been described 
within the hypothalamus or pituitary gland at postmortem 
examination in septic shock (52).

Altered CRH/ACTH Synthesis. Hypothalamic/pituitary 
gland stimulation by cytokines, particularly IL-1, induces a 
biphasic response with initial proportional increase followed 
by progressive decline in anterior pituitary ACTH concentra-
tions (53, 54). In animal models (55) and in humans (56), sepsis 
is associated with marked overexpression of iNOS in hypotha-
lamic nuclei that is partly triggered by TNF and IL-1. Subse-
quent abundant release of NO may cause apoptosis of neurons 
and glial cells in the neighborhood. Sepsis is also associated 
with decreased ACTH synthesis, though its secretagogues CRH 
and vasopressin remained unaltered (57). Thus, the suppres-
sion in ACTH synthesis following sepsis may be mediated by 
NO (58). In addition, feedback inhibition exerted by elevated 
circulating free cortisol, driven by ACTH-independent mecha-
nisms and suppressed cortisol breakdown, can suppress ACTH 
(14, 15, 59).

ACTH synthesis can also be inhibited by several thera-
peutic agents such as glucocorticoids, opioid analgesics, azole 
antifungals (e.g., ketoconazole) or psychoactive drugs (60). In 
animals, depending on the dose, timing and duration, opioids 
have been shown to variably stimulate or inhibit the CRH/
ACTH axis, whereas in humans they predominantly inhibit it 
(61). Both endogenous and exogenous glucocorticoids exert 
negative feedback control on the HPA axis by suppressing 
hypothalamic CRH production and pituitary ACTH secre-
tion. This suppression can render the adrenal glands unable 
to generate sufficient cortisol after glucocorticoid treatment 
is stopped. Abrupt cessation, or too rapid withdrawal, of glu-
cocorticoid treatment may then cause symptoms of adrenal 
insufficiency (1, 21). In non-ICU patients, even after a few days 
of glucocorticoid treatment, removal without tapering leads to 
adrenal suppression (measured with corticotropin test) in 45% 

of patients with gradual recovery over a period of 14 days (62). 
Ample experimental and clinical evidence (29–36) shows that 
premature discontinuation of glucocorticoids in patients with 
severe sepsis or ARDS frequently (25%−40%) leads to rebound 
systemic inflammation and clinical relapse (hemodynamic 
deterioration, recrudescence of ARDS, or worsening multiple 
organ dysfunction). Experimental animal sepsis models have 
demonstrated an early marked increase in ACTH levels that 
returns to baseline values at around 72 hours (63). Compared 
with healthy volunteers, clinical studies have found ACTH 
levels to be significantly lower in critically ill septic patients 
(14, 64, 65). Decreased ACTH levels are observed during the 
first week of ICU stay (14, 15). In septic patients, reduction 
in inflammatory cytokine levels correlates with increases in 
ACTH levels by ICU day 7 to day 10 (21). Altered ACTH syn-
thesis in response to metyrapone was observed in roughly half 
of patients with septic shock and very occasionally in critically 
ill patients without sepsis (64). The reduced ACTH secretion 
could also be secondary to changes in the feedback regulation 
of the HPA axis, as described below. Prolonged reduction of 
ACTH signaling within adrenocortical cells may result in adre-
nal atrophy (59).

Altered Adrenal Steroidogenesis. The adrenal storage of 
cortisol is very limited. Thus, an adequate adrenal response to 
stress relies almost entirely on cortisol synthesis. The HPA axis 
response to sepsis has not been well defined. There is some 
evidence that cortisol production rate is somewhat increased 
in critically ill patients with systemic inflammatory response 
syndrome (14). As noted earlier, about half of patients with 
septic shock have decreased cortisol synthesis as assessed by 
response to the metyrapone test (64). Following administra-
tion of metyrapone, 60% of patients with septic shock had 
11-deoxycortisol concentrations of less than 7 μg/dL, sug-
gesting decreased corticosteroid synthesis by adrenocortical 
cells. The alteration may occur at various steps in the cortisol 
synthesis chain. Histological examination of the adrenal cor-
tex of both animals and humans with sepsis found marked 
depletion in lipid droplets, suggesting deficiency in esteri-
fied cholesterol storage (66). This sepsis-induced loss in lipid 
droplets is likely mediated by annexin A1 and formyl peptide 
receptors (67). During critical illness, both increased plasma 
ACTH concentrations and depletion in adrenal cholesterol 
stores upregulate adrenal scavenger receptor class B type 1 
(SR-B1), an HDL receptor, which captures esterified choles-
terol from blood (68). SR-B1-mediated cholesterol uptake 
is considered as an essential protective mechanism against 
endotoxin (69). In one study, sepsis induced-deficiency in 
SR-B1 expression by the adrenal cortex was associated with 
increased mortality (70).

A number of environmental factors may also have substantial 
inhibitory effects on adrenal steroidogenesis. Steroidogenesis 
may be inhibited at various enzymatic steps by drugs, includ-
ing P-450 aromatase, hydroxysteroid-dehydrogenase, or mito-
chondrial cytochrome P-450-dependent enzymes (60). In 
critically ill patients undergoing rapid sequence intubation, the 
use of etomidate, a drug known to inhibit the last enzymatic 
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step in cortisol synthesis, increased the risk of adrenal insuffi-
ciency between 4 to 6 hours (OR 19.98; 95% CI 3.95 to 101.11) 
and at 12 hours (OR 2.37; 95% CI 1.61 to 3.47) post-dosing 
(71). This effect was associated with worsening in organ dys-
function but the ultimate effect on mortality remains unclear. 
Analgesia and sedation may also affect HPA-axis response in 
critical illness. Opioids administered to opioid-naive subjects 
rapidly and profoundly inhibit both stress-related cortisol 
production and cortisol response to cosyntropin stimulation, 
while chronic opioid consumers occasionally manifest adre-
nal crises, phenomena apparently induced by inhibition of 
the HPA axis at multiple sites (72). Benzodiazepines, similarly, 
quickly induce diminished cortisol formation by inhibiting 
activity at multiple central and peripheral sites in the HPA axis, 
including that of adrenal microsomal 17- and 21-hydroxylase 
activity as well as 11-β-hydroxylase activity in adrenal mito-
chondria (73) Finally, experimental studies have shown that 
inflammatory mediators such as corticostatins may bind to 
ACTH receptors in the adrenal cortex, thus preventing ACTH 
stimulation of cortisol synthesis (74).

Altered Extra-Adrenal Corticosteroid Metabolism. There 
is evidence for altered activity of corticosteroid-metaboliz-
ing enzymes during inflammation and critical illness. These 
changes can influence local tissue action of glucocorticoids and 
impact the activity of the HPA axis. Even though daytime corti-
sol production rate is increased in sepsis, the absolute increase 
appears much less than previously thought. Also, nocturnal 
cortisol production is not different from that in healthy sub-
jects (15) despite the level of cortisol in the circulation increas-
ing. Several studies have also demonstrated that the half-life 
of cortisol is dramatically increased during severe sepsis and 
other critical illnesses (14, 15). All of these findings suggest that 
reduced cortisol breakdown may be a major feature of sepsis. 
Experiments involving a range of in vivo and ex vivo techniques 
showed that the expression and activity of the glucocorticoid-
inactivating 5-reductase enzymes are decreased  (14). Addi-
tional studies demonstrate that reduced metabolism of cortisol 
impacted the pulsatile release of ACTH  (15). Post-mortem 
studies of patients who died after prolonged sepsis demonstrate 
reduced adrenal cortical size and changes in adrenal morphol-
ogy in keeping with reduced exposure of the adrenal cortex to 
ACTH (59). These results suggest that some of the long-term 
changes in the HPA axis associated with critical illness are due 
to altered metabolism of cortisol that leads to reduced capacity 
for future cortisol secretion in response to stress. Other studies 
examining endocrine testing during prolonged critical illness 
may need re-evaluation in the light of this altered physiology.

Tissue Resistance to Glucocorticoids
Besides the availability of cortisol, the sensitivity of target 
tissues to cortisol is important in the regulation of corti-
sol bioactivity. Intracellular glucocorticoid resistance refers 
to inadequate glucocorticoid receptor alpha (GR-α) activ-
ity despite seemingly adequate plasma cortisol concentra-
tions (75). Since the GR-α ultimately controls GC-mediated 
activity, any condition that affects its binding affinity, 

concentration, transport to the nucleus, and interactions 
with GRE (nuclear and mitochondrial) or other relevant 
transcription factors (NF-kB, AP-1) and co-regulators can 
eventually affect the response of cells to glucocorticoids 
(75). Tissue resistance to glucocorticoids has been impli-
cated in chronic inflammatory diseases such as chronic 
obstructive pulmonary disease, severe asthma, systemic 
lupus erythematosus, ulcerative colitis, and rheumatoid 
arthritis (76). Glucocorticoid resistance is also recognized 
as a potential complication of critical illness, with most of 
the evidence originating from the sepsis and ARDS clini-
cal and experimental literature (75–81). Critical illness is 
associated with reduced GR-α density and transcription (7, 
25, 82, 83) and increased GR-β (dominant negative activity 
on GR-induced transcription) (80, 83, 84). These changes 
are considered maladaptive, since GR-α up regulation was 
shown to augment the effects of available glucocorticoids 
(81). Clinical studies in patients with septic shock (79, 80) 
and ARDS (7) have provided evidence of an association 
between the degree of intracellular glucocorticoid resis-
tance, disease severity, and mortality.

Ex vivo experiments suggest that, in ARDS, insufficient 
GC-GRα-mediated activity is a central mechanism for the 
upregulation of NF-kB activity (7, 81). Plasma samples 
from patients with declining inflammatory cytokine levels 
(and thus a state of regulated systemic inflammation) over 
time elicited a progressive increase in GC-GRα-mediated 
activity (GRα binding to NF-kB and to glucocorticoid 
response elements on DNA, stimulation of inhibitory pro-
tein IκBα and of IL-10 transcription), and a correspond-
ing reduction in NF-kB nuclear binding, and transcription 
of TNF-α and IL-1β. In contrast, plasma samples from 
patients with sustained elevation in inflammatory cyto-
kine levels elicited only modest longitudinal increases in 
GC-GRα-mediated activity and a progressive increase 
in NF-kB nuclear binding over time that was most strik-
ing in non-survivors (suggesting a dysregulated, NF-kB-
driven response). Analysis of lung tissue obtained by open 
lung biopsy demonstrated that the degree of NF-kB and 
GRα activation was associated with histological progres-
sion of ARDS, with positive correlation between severity 
of fibroproliferation and nuclear uptake of NF-kB and a 
lower ratio of GRα: NF-kB nuclear uptake (7). Similarly, 
in experimental ARDS, lung tissue demonstrated reduced 
GRα expression and increased GRβ expression, leading to 
decreased GRα nuclear translocation (84).

The effect of exogenous glucocorticoids on intracellular 
glucocorticoid resistance was studied in both circulating and 
tissue cells. In experimental ARDS, low-dose glucocorticoid 
treatment compared with placebo restored GRα number and 
function with resolution of pulmonary inflammation (7). 
Similarly, in an ex-vivo ARDS study, prolonged methylpred-
nisolone treatment–contrary to placebo–was associated with 
upregulation in GRα number, GRα binding to NF-kB, GRα 
nuclear translocation leading to reduction in NF-kB DNA-
binding and transcription of inflammatory cytokines (81). 
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Treatment with glucocorticoids led to a change in the lon-
gitudinal direction of systemic inflammation from dysregu-
lated (NF-kB-driven response, maladaptive lung repair) to 
regulated (GRα-driven response, adaptive lung repair), with 
significant reduction in indices of alveolar-capillary mem-
brane permeability and markers of inflammation, hemosta-
sis, and tissue repair.

Sepsis is characterized by decreased GR-α in circulating 
cells, in liver and muscle (25, 82, 83). In addition, there is 
decreased GR-α transcription in circulating cells and lymph 
node/spleen, in liver and kidney, and lung tissue (77). Sepsis 
is also characterized by an increased expression of the GR 
isoform GR-β in circulating cells, resulting in an imbalance 
between GRα and GRβ (80, 83). All these changes are likely 
to contribute to corticosteroid resistance at a tissue level. 
Tissue resistance to corticosteroid is highly variable and 
correlates with severity of illness and mortality (85).

SUMMARY
Three major pathophysiologic events account for CIRCI: dys-
regulation of the HPA axis, altered cortisol metabolism, and 
tissue resistance to corticosteroids (Table 1). During critical 

illness, the regulation of cortisol production becomes much 
more complex, involving multidirectional crosstalk between 
the CRH/ACTH pathways, autonomic nervous system, vaso-
pressinergic system, and immune system. Recent studies have 
shown that plasma clearance of cortisol is markedly reduced 
during critical illness, explained by suppressed expression and 
activity of the main cortisol-metabolizing enzymes in liver 
and kidney. Additionally, cortisol production rate in critically 
ill patients is only moderately increased to less than double 
that of matched healthy subjects. In the face of low plasma 
ACTH concentrations, these data suggest that other factors 
drive hypercortisolism during critical illness, which may 
suppress ACTH by feedback inhibition. Finally, intracellular 
glucocorticoid resistance from insufficient GR-α-mediated 
anti-inflammatory activity (reduced GR-α density and tran-
scription) and an increased expression of GR-β in circulating 
cells resulting in an imbalance between GRα and GRβ can be 
found in critically ill patients despite seemingly adequate cir-
culating cortisol levels. These new insights add to the limita-
tions of the current diagnostic tools to identify patients at risk 
for CIRCI and may also impact how corticosteroids are used 
in patients with CIRCI.

TABLE 1. Main Mechanisms of Critical Illness-Related Corticosteroid Insufficiency

General defect Main mechanisms Key factors

Decrease in cortisol 
production

  

 Altered adrenal synthesis of 
cortisol

Necrosis/hemorrhage Acute kidney failure; hypo-coagulation; disseminated intravascular 
coagulation; cardiovascular collapse; tyrosine kinase inhibitors

Decreased availability of 
esterified cholesterol

Depletion in adrenal storage regulated by annexin A1–formyl 
peptide receptors

Down regulated scavenger receptor-B1

Inhibition of steroidogenesis Immune cells/Toll-like receptors/cytokines

Drugs (e.g., sedatives, corticosteroids)

ACTH-like molecules (e.g., corticostatins)

 Altered synthesis of CRH/ 
ACTH

Necrosis/hemorrhage Cardiovascular collapse; disseminated intravascular coagulation; 
treatment with vasopressor agents

Inhibition of ACTH synthesis Glial cells/nitric oxide mediated neuronal apoptosis

Increased negative feedback from circulating cortisol following 
up regulation of ACTH-independent mechanisms of cortisol 
synthesis

Drugs (e.g., sedatives, anti-infective, psychoactive agents)

Inappropriate cessation of glucocorticoid treatment

Alteration of cortisol 
metabolism

Decreased cortisol transport Down regulation of liver synthesis of cortisol-binding globulins and 
albumin

Reduced cortisol breakdown Decreased expression and activity of the glucocorticoid-inactivat-
ing 5-reductase enzymes in the liver with putative role of bile 
acids; Decreased expression and activity of the hydroxysteroid 
dehydrogenase in the kidney

Target tissue resistance to 
cortisol

Inadequate glucocorticoid 
receptor alpha (GR-α) 
activity

Multifactorial etiology including reduced GR-α density and 
transcription and excessive NF-kappa β activation
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