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Brief Introduction to Atherosclerosis
Atherosclerosis is a chronic inflammatory disease of the artery 
wall. The resulting clinical events are the leading cause of 
death worldwide.1 The factors contributing to atherosclerosis 
are multifaceted, encompassing environmental and genetic 
risk factors, perturbed cholesterol homeostasis, and a lingering 
immune response that all influence atherogenesis, plaque pro-
gression, vascular dysfunction, and ultimately plaque rupture 
or erosion, the proximal causes of major adverse cardiovas-
cular events.2–5 Dyslipidemia and endothelial dysfunction pro-
mote the increased influx and retention of lipoprotein particles 
including low-density lipoprotein (LDL).6 Adhesion molecules 
are expressed by activated endothelial cells (EC) preferentially 
at sites of disturbed blood flow.7,8 Furthermore, the modifi-
cation of retained lipoproteins (eg, oxidation) can induce a 
low-grade immune response involving activation of ECs.5,6 
Adhering leukocytes, predominately inflammatory monocytes, 
transmigrate into the subendothelial space, and contribute to 
the proinflammatory micromilieu by secretion of chemokines 
that further increase recruitment of monocytes, neutrophils, 
and lymphocytes from the circulation.9 Some monocytes dif-
ferentiate into macrophages that scavenge the trapped lipopro-
tein particles and transform into foam cells. In addition to their 
recruitment, macrophages can also undergo local proliferation. 
Yet, their egress may be prevented by retention signals, thus 
also contributing to growth of the atherosclerotic lesion.10,11 As 
the capacity to clear or store lipids is exceeded in these cells, 

they can undergo apoptosis. When the uptake of apoptotic cells 
(efferocytosis) fails these cells undergo secondary necrosis 
and form the acellular necrotic core of atherosclerotic lesions. 
Retained lipoprotein particles such as LDL undergo oxidation 
and other modifications. This makes them ligands for scav-
enger receptors like CD36, scavenger receptor-A, scavenger 
receptor-B, and toll-like receptors, which activate various pro-
inflammatory signaling pathways that induce costimulatory 
molecules. Modified LDL presents lipid neoepitopes, the role 
of which in atherogenesis is poorly understood.12,13
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Dendritic cells (DC) are key players in bridging innate and 

adaptive immunity. Lymph node and spleen DCs are most capa-
ble in presenting antigen to naive T cells. A network of vascular 
DCs is found in the arterial intima of healthy individuals and 
the frequency of DCs in arteries increases further during the 
course of atherosclerosis.6,14 DCs can also take up lipids and 
contribute to foam cell formation.15,16 Although foam cells seem 
not to leave the progressive atherosclerotic lesion, monocyte-
derived DCs are able to leave atherosclerotic lesions in regres-
sion.17 Most monocyte-derived cells in atherosclerotic lesions 
express high levels of major histocompatibility complex class II 
(MHC-II), which is required for presentation of peptide antigens 
to CD4+ T cells. These mechanisms provide the basis for activa-
tion of T cells in atherosclerotic lesions and recall responses to 
both, model antigens and atherosclerosis antigens, which have 
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been demonstrated in mouse arteries using multiphoton imag-
ing.18,19 B cells found in the adventitia also express MHC-II.20,21 
In general, B cells can process soluble and membrane-associ-
ated antigen after their antigenic activation via the B-cell recep-
tor. In vivo imaging demonstrated CCR7-dependent migration 
of antigen-specific B cells22 to the B-cell T-cell boundary in 
lymph nodes after antigen-encounter where these cells engaged 
in interactions with antigen-specific T cells for up to 60 min-
utes.23 B cells are important antigen-presenting cells, but less 
able to present antigen to naive T cells than DCs.24 The reconsti-
tution of µmt−/− mice lacking B cells with B cells derived from 
MhcII−/− mice resulted in an impaired antigen-specific T-cell 
response, demonstrating that antigen presentation by B cells 
contributes to T-cell activation.25 The B-cell–specific deletion 
of MHC-II did not alter numbers of T cells, but reduced the fre-
quency of activated CD4+ and CD8+ T cells in a mouse model 
of lupus, which was accompanied by amelioration of disease 
and improved kidney function.26 Similarly, mice were protected 
from experimental autoimmune encephalitis and displayed 
reduced Th1 and Th17 responses when B cells were devoid of 
MHC-II expression.27 However, the role of antigen presentation 
by B cells in atherosclerosis is unknown.

Antibodies specific for plaque-restricted antigens such 
as oxidized LDL were detected in human atherosclerotic 
plaques.13 Further antigens detected by antibodies in athero-
sclerosis are HSP60 and HSP65.28 Lipid peroxidation-derived 
neoepitopes are found on the surface of oxidized LDL.29 
Spectratyping analysis of the T-cell receptor (TCR) repertoire 
in atherosclerotic lesions revealed a limited variety of TCRs, 
which is the hallmark of an oligoclonal T-cell response.30 
Unfortunately, TCR spectratyping allows no conclusions about 
the nature of the antigenic epitopes. The presence of oligoclo-
nal T cells in atherosclerotic lesions indicates the presence of 
an adaptive immune response mounted against atherosclerosis-
relevant antigens. Such a response usually requires the migra-
tion of antigen-presenting cells (APC) such as DCs carrying 

plaque-derived antigens to lymph nodes although direct proof 
for such activity in atherosclerosis is still missing. DCs can 
foster the development of atherosclerosis by modulating the 
differentiation of effector T cells.18 Furthermore, ex vivo aorta 
cultures demonstrated substantial interactions between anti-
gen-loaded DC and antigen-specific T cells within the aortic 
lesion.19 Recent evidence suggests peptide moieties of apoB
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as major atherosclerosis-specific antigens that are MHC-II 
restricted.31–33 To produce an effective immune response, CD4+ 
T cells must recognize antigens in the presence of costimula-
tory signals, which are the subject of this review.

CD4+ T Cells in Atherosclerosis
Most lymphocytes in murine atherosclerotic lesions are CD4+ T 
cells, whereas human atherosclerotic lesions have equal numbers 
of CD4+ and CD8+ T cells.34,35 Many lesional CD4+ T cells secrete 
interferon γ, and mice deficient for the Th1 lineage transcription 
factor T-bet or the Th1 cytokine interferon γ display reduced ath-
erosclerotic development.36,37 Many of these cells express both 
T-bet and low levels of the transcription factor Foxp3, suggesting 
that these cells may derive from regulatory T cells (Tregs).38,39 
The contribution of Th2 cells in atherogenesis is unclear. The 
key cytokines produced by Th2 cells are interleukin (IL)-4, IL-5, 
IL-10, and IL-13, all of which can contribute to atheroprotec-
tion.40,41 However, depending on the atherosclerotic mouse model 
studied, IL-4 either enhanced or decreased atherosclerotic lesion 
formation.40,42 Similarly, the role of Th17 cells in atherosclerosis 
is controversial, as some studies ascribe Th17 cells a proathero-
genic function, whereas others suggest an atheroprotective role 
for IL-17, the hallmark cytokine of Th17 cells.43–46

Tregs, a subset of CD4+ T cells, suppress the proliferation of 
effector CD4+ T cells in response to antigen presentation. Tregs are 
subdivided into natural Tregs and induced Tregs. Natural Tregs are 
generated in the thymus by selection against self-antigens if the 
signal strength provided by the TCR is low to intermediate,47,48 
whereas induced Tregs are generated in response to transforming 
growth factor β in the periphery.49 Tregs are potent antiathero-
genic cells and exert their function by multiple effector mecha-
nisms,50 most prominently by secretion of the anti-inflammatory 
cytokines IL-10 and transforming growth factor β. Deficiency of 
these cytokines either systemically or in T cells was shown to be 
proatherogenic.51,52 The adoptive transfer of Tregs ameliorated 
atherosclerosis,53 whereas depletion of Tregs exacerbated athero-
sclerosis.54 However, this was accompanied by altered liver lipid 
metabolism, which makes the data difficult to interpret.54 In vitro, 
both differentiation of Th17 cells and Tregs from naive T cells 
require the cytokine transforming growth factor β. Atherosclerotic 
lesions of hyperlipidemic Ldlr−/− mice demonstrated a significant 
loss of Tregs at advanced stages of atherosclerosis.55 Additionally, 
emerging data suggest that Tregs may convert to Th17 cells in mice 
and humans as atherosclerosis progresses.38,39,56–58 Tregs in athero-
sclerotic lesions also can acquire a Th1-like phenotype associated 
with interferon γ production and loss of suppressive capacity.31,32 
However, more study is needed to provide conclusive evidence 
and underlying mechanisms of Treg plasticity in atherosclerosis.

Costimulatory Pathways in Atherosclerosis
A functional T-cell response requires not only recognition 
of MHC–antigen complexes via the antigen-specific TCR 
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but also the integration of costimulatory signals exceeding a 
certain threshold.59 These signals are important during differ-
ent stages of a T-cell response including clonal expansion, 
skewing toward T-cell effector phenotypes and enhancing 
T-cell survival in primary and secondary immune reactions. 
Two main families of costimulatory molecules are instrumen-
tal for these processes: the immunoglobulin (Ig)-like CD28 
family and the tumor necrosis factor receptor superfamily 
(TNFRSF; Figure). In general, the expression and function-
ality of costimulatory and coinhibitory is conserved between 
mice and humans. Important examples of functional differ-
ences between species will be given below.60

CD28–CD80/CD86
CD28 on naive T cells binds to CD80 and CD86 on APCs. 
Although CD80 is constitutively expressed on many APCs, 
CD86 is strongly induced by inflammatory stimuli such as 
Toll-like receptor agonists derived from pathogens (eg, lipo-
polysaccharide).61 Interactions of CD28 with CD80/CD86 are 
essential to induce a T-cell response including proliferation 

of effector cells and memory formation. Of note, almost 
all murine CD4+ and CD8+ T cells express CD28, whereas 
only 80% of human CD4+ T cells and 50% of CD8+ T cells 
express CD28.62 The absence of CD28 stimulation during an 
antigen-specific stimulus renders T cells anergic, leading to 
irreversible unresponsiveness to their cognate antigen.63 The 
activation of T cells occurs physiologically only when the T 
cell receives a TCR and costimulatory signal. Superagonistic 
CD28 antibodies were thought to have beneficial effects and 
advanced to clinical trials, but they caused a severe cytokine 
storm in healthy volunteers, probably by the activation of 
tissue memory CD4+ T cells.64 This cytotoxic effect was not 
apparent in rodents where a Treg response was favored after 
transient lymphocytosis.65 The expression of CD80 and CD86 
is increased on monocyte-derived DC of patients with cardio-
vascular disease.66 Expression of CD80 and CD86 strongly 
correlates with lesional inflammation and plaque vulnerabil-
ity.67,68 Similarly, atherosclerotic lesions of hypercholesterol-
emic mice exhibited T cells, DC, and macrophages expressing 
CD28 and CD80/CD86, respectively.69

Figure. Antigen presenting cell (APC; top) interacting with a T cell (bottom). Antigenic peptide (red) is presented in the major 
histocompatibility complex (MHC; tan) to the T-cell receptor (TCR; α and β chains in shades of brown). The signal is transduced 
through the CD3 complex (γ, δ, ε, and ξ subunits). This can result either in T-cell activation, leading to differentiation to an 
effector T cell (Th1, Th2, Th17, TFH) or inhibition, leading to a regulatory T cell (Treg or Tr1), or tolerance. The accessory 
molecule (red) CD4 is required for interaction with MHC-II, CD8 for MHC-I. In general, activating costimulators tend to 
be proatherogenic (left; red rectangle), and inhibitory signals tend to be antiatherogenic (right; green rectangle).
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Combined deficiency of CD80 and CD86 in atheroscle-
rotic Ldlr−/− mice reduced atherosclerotic burden, which was 
accompanied by decreased abundance of MHC-II–expressing 
APC in atherosclerotic lesions and a reduced Th1 response.69 
However, lethally-irradiated Ldlr−/− mice transplanted with 
Cd28−/− or Cd80−/−Cd86−/− bone marrow developed 2-fold 
larger lesions compared with control mice transplanted with 
wild-type bone marrow. This accelerated lesion development 
was likely caused by impaired Treg development and uncon-
trolled T-cell effector response.53 Another costimulatory 
molecule of the CD28 superfamily is CD83. DC in human 
atherosclerotic lesions express CD83 and the content of 
CD83+ mature DC increased significantly in unstable plaques 
as compared with stable ones.70,71 CD83 regulates B-cell 
activation and germinal center responses,72 as well as CD4+ 
T-cell development.73,74 Although expressed by activated 
APCs, the costimulatory function of CD83 seems to be dis-
pensable for murine T-cell activation while CD83-stimulated 
human monocytes suppressed T cell responses.75,76 However, 
the role and function of CD83 in cardiovascular disease is to 
date unidentified.

Tumor Necrosis Factor Superfamily 
and TNFRSF Members
CD40–CD40L
CD40 (TNFRSF5) expression was first discovered on APC, 
especially B cells.77 However, a plethora of immune and 
nonimmune cells expresses CD40 with different functions 
exerted on activation by its ligand CD40L (CD154, tumor 
necrosis factor superfamily [TNFSF] 5).78,79 The costimula-
tory CD40–CD40L axis is an important master regulator of 
immune processes. Among others, germinal center formation 
and especially Ig class switching in B cells is highly depen-
dent on CD40L expression by T cells. DCs receiving CD40L-
mediated signals are more potent in antigen presentation and 
inducing a T-cell response..80–83 CD40 is mediating T-cell 
memory formation and induces the expression of inflamma-
tory cytokines (TNFα, IL-1α, IL-1β, IL-6, IL-8, and IL-12), 
chemokines (CCL2, CCL3, and CCL5), and matrix-degrading 
enzymes by monocytes and macrophages.84–88 CD40–CD40L 
interactions also drive the expression of costimulatory mol-
ecules such as CD80, CD86, and CD70. Moreover, CD40–
CD40L promotes CD8+ T-cell activation even without the 
need for CD4+ T-cell help.84,89

A genetic polymorphism in the 5′ untranslated region of 
CD40 was enriched in a case–control study of Chinese patients 
with acute coronary syndrome and ischemic stroke.90,91 
Furthermore, the rs1535045-T allele of the CD40 locus posi-
tively correlated with cardiovascular disease and plasma cho-
lesterol levels in a Chinese Han population.92

Pharmacological inhibition of CD40–CD40L interactions 
or global deficiency reduced atherosclerotic burden accompa-
nied by stable lesion formation in murine models of atheroscle-
rosis.93–96 CD40L expressed by activated thrombocytes fosters 
recruitment of monocytes to the inflamed endothelium and is 
important for platelet–leukocyte aggregate formation, which 
can contribute to atheroprogression.97,98 Furthermore, platelet 
CD40L expression reduced the abundance of atheroprotective 

Tregs, further contributing to inflammation.98 CD40 expres-
sion by platelets sustained atherosclerosis by increasing adhe-
sion molecule expression of EC and subsequent increased 
adhesion of leukocytes.99

Pharmacological inhibition of CD40–CD40L interactions 
is an attractive target, but clinical trials were discontinued 
because of severe thromboembolic complications as discussed 
below.

On a cautionary note, transplantation of bone marrow 
deficient for costimulatory or inflammatory molecules into 
Ldlr−/− mice often yields results opposing studies using the 
corresponding compound deficient mice or respective block-
ing antibodies.53,69,93,100,101 In particular, lesion size between 
Ldlr−/− mice Ldlr−/− Cd40−/− mice was comparable,102 whereas 
transplantation of Cd40−/− bone marrow into Ldlr−/− mice 
reduced lesion formation.103 Apoe−/− mice deficient for CD40 
also harbored smaller lesions as compared with Apoe−/− con-
trol mice, which is likely based on defective tumor necrosis 
factor receptor-associated factor 6 signaling.103 The under-
lying cause for the observed discrepancies is not clear and 
might be based on the varying kinetics of atherosclerosis 
between the mouse models involved. Apoe−/− mice develop 
spontaneous atherosclerosis, whereas Ldlr−/− mice need to 
receive a cholesterol-enriched diet. The comparison of mouse 
models of atherosclerosis is beyond the scope of this review 
and has been reviewed elsewhere.104,105

CD27–CD70
The costimulatory molecules CD27 (TNFRSF7) and CD70 
(TNFSF7) play important roles during the establishment of 
long-term T-cell immunity.106 Naive T cell express CD27, 
which is increased after TCR engagement with cognate peptide 
MHC complexes. CD27 is lost from the cell surface by pro-
teolytic shedding, but long-lived central memory cells express 
CD27 again.107 Apart from T cells, CD27 is found on natural 
killer (NK) cells, activated B cells, and hematopoietic stem 
cells.106,108 CD70, the ligand for CD27, is expressed on T cells, 
B cells, and activated DC.109 Whereas antigen-stimulated T 
cells and B cells transiently increase CD70 expression, APCs 
in the intestine and medullary thymic epithelial cells consti-
tutively express CD70.110 The development of effector T cells 
seems independent of the presence of CD27, whereas thymic 
output of natural Tregs is reduced in Cd27−/− mice.110,111 CD27 
and CD70 interactions play an important role in mounting ful-
minant CD4+ and CD8+ T-cell responses including memory 
formation at effector and priming sites.110,112

Proper CD27/CD70 signaling is needed for B-cell prolif-
eration and plays an important role during the process of Ig 
synthesis.113 Insufficient CD70 triggering on B cells leads to 
an impaired germinal center formation, thereby affecting the 
humoral immune response.114 However, B cells from Cd27−/− 
mice still undergo class switching and Ig maturation in aged 
mice, thus other factors contribute and compensate for CD27 
defects that are only present during early phases. In con-
trast, human CD27+ B cells produced a higher amount of Ig, 
IL-10, and displayed enhanced survival.115–117 In accordance, 
humans carrying mutations in the CD27 gene suffer from a 
severe immunodeficiency characterized by hypogammaglob-
ulinemia, dysregulated lymphoproliferation, and increased 
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susceptibility for infections with Epstein–Barr virus.118–120 
Costimulation of CD70 via CD27 induced B cell prolifera-
tion but impaired terminal differentiation and Ig secretion of 
human and murine B cells although stimulation of CD70 via 
soluble CD27 resulted in increased Ig secretion.113,121,122 Thus, 
soluble and membrane-bound CD27 interacting with CD70 
exert species-specific effects and seem to contribute to a ger-
minal center reaction in mice. In humans, CD27 promotes 
terminal B-cell differentiation and CD70 might downregulate 
humoral immunity.

Mice deficient for CD27 demonstrated a reduction in 
the proliferative capacity of antigen-specific T cells, which 
is not dependent on cell cycle entry.123 CD27 acts antiapop-
totic in various manners, thus contributing to T-cell survival 
and memory formation. T cells stimulated in vitro by CD27 
signaling increase expression of the antiapoptotic molecule 
B-cell lymphoma-extra large.124 Moreover, CD27 acts indirect 
on antigen-experienced CD8+ T cells as deficiency for CD27 
reduced production of the autocrine growth factor IL-2, thus 
limiting survival and proliferation of all T cells in nonlym-
phoid tissue.125 In addition, the pharmacological inhibition of 
CD27/CD70 interactions with a blocking antibody increased 
FasL expression on CD4+ T cells, which in turn induced apop-
tosis of virus-specific CD8+ T cells.126 Early work addressing 
the role of CD27 and CD70 on atherosclerosis demonstrated 
an atheroprotective role for stimulation of CD70.127 Chronic 
CD70 overexpression in B cells continuously induced CD27 
signaling on T cells, leading to a predominant, presumably 
proatherogenic Th1 response. However, this was accompanied 
by increased rate of apoptosis among proatherogenic Ly6C+ 
monocytes, thus reducing macrophage abundance in ath-
erosclerotic lesions. Furthermore, constitutive CD27/CD70 
signaling led to immunopathology characterized by the con-
version of naïve T cells into interferon γ–producing effector 
T cells leading to the progressive loss of B cells.127,128 Thus, 
the model of B-cell–restricted CD70 overexpression is of lim-
ited use to determine the precise roles of CD27 and CD70 in 
atherosclerosis.

Macrophages are the main lesional CD70-expressing 
cells.129 Macrophages deficient for CD70 displayed a unique 
phenotype characterized by enhanced M1 and M2 marker 
expression, yet were less viable and incompetent in mount-
ing a proper inflammatory response.129 Furthermore, Cd70−/− 
macrophages were less efficient in scavenging and cholesterol 
efflux, thereby contributing pathogenically to atherosclerosis 
progression. Accordingly, deficiency of CD70 resulted in 
exacerbated atherosclerosis.129 Of note, CD70 and ApoE com-
pound mutant mice were protected from hypertension and 
renal damage because of reduced accumulation of CD4+ and 
CD8+ effector memory T cells.130

GITR–GITRL
Tregs express significant levels of GITR (glucocorticoid-
induced TNFR-related protein; TNFRSF18). Stimulation 
with its ligand (TNFSF18, GITRL) reduces their suppres-
sive capacity.131 However, naive T cells also express GITR 
at low levels, which is increased on activation.132 Moreover, 
mast cells, APCs, NK cells, and granulocytes express 
GITR.133 GITR expression on human immune cells is more 

restricted, and expression has been described in Tregs, NK 
cells, and macrophages.134 The latter cells also demon-
strated GITRL expression on Toll-like receptor signaling, 
whereas antigen recognition drives GITRL expression in 
T cells.133 Functional differences between species-specific 
GITR–GITRL interactions have been reviewed elsewhere.134 
Furthermore, EC express GITRL, which is enhanced on lipo-
polysaccharide treatment, suggesting potential interaction of 
T cells and EC via this costimulatory axis during inflamma-
tion.135,136 In human atherosclerotic lesions, plaque-resident 
macrophages demonstrate GITR and GITRL expression.137 
Interestingly, GITR stimulation of macrophages increased 
expression of matrix metalloproteinase (MMP)-9, which 
colocalized with GITR expression in atherosclerotic lesions, 
suggesting that GITR–GITRL interactions exert plaque 
destabilizing effects.137 In mice, chronic GITR stimulation 
is atheroprotective.138 Ldlr−/− mice transplanted with bone 
marrow from B-cell–restricted GITRL overexpressing mice 
showed enhanced thymic generation and lesional abundance 
of Tregs. Although deficiency for GITR is protective in 
murine models of asthma, experimental colitis, and colla-
gen-induced arthritis, the exact role of GITR in atheroscle-
rosis needs to be clarified.139

OX40–OX40L
OX40 (CD134/TNFRSRF4) and its ligand (OX40L/CD252/
TNFSF4) are predominantly expressed on activated CD4+ 
and CD8+ T cells, whereas naive and resting memory T cells 
express neither OX40 nor OX40L.140 Besides other immune 
cells such as neutrophils and NK cells express OX40 consti-
tutively, whereas OX40L is inducible among others on APC, 
EC, and smooth muscle cells.140 OX40 and OX40L expres-
sion is important for expansion of antigen-specific T cells to 
mount a functional T-cell response and to form memory.141,142 
OX40 also functions as a negative regulator of Tregs, thus 
further increasing the proinflammatory response.143 In addi-
tion, OX40 interactions with OX40L drive B-cell activation 
and Ig production and play a role in macrophage activa-
tion.144,145 Plaque-resident macrophages express OX40L in 
mice and humans, whereas lesional T cells were positive 
for OX40.146,147 Of note, a single nucleotide polymorphism 
of the OX40 gene in intron 5 was significantly associated 
with myocardial infarction.148 Spontaneous mutations in the 
Tnfsf4 locus of healthy C57BL/6 mice are associated with 
susceptibility for atherosclerosis.146 The minor allele of 
the single nucleotid polymorphism rs3850641 of TNFSF4 
is associated with an increased risk for women to develop 
myocardioal infarction.29 However, another group could not 
confirm associations between the TNFSF4 genotype and an 
increased risk to develop carotid artery disease or stroke.147 
Genetic disruption or pharmacological inhibition of this 
costimulatory dyad attenuated atherosclerotic development 
and even caused regression of established atherosclerotic 
lesions, including a reduced neovascularization of the vasa 
vasorum.29,149,150

CD30–CD30L
CD30 (TNFRSF8) and CD30L (TNFSF8, CD153) are 
expressed by activated T cells and B cells. Furthermore, 
mature DC, macrophages, and mast cells demonstrate CD30L 
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expression.151 Costimulation via CD30–CD30L induces T-cell 
proliferation and activation and is important for long-lived 
CD8+ T-cell memory formation.152 The global absence of CD30 
in mice reduced secondary humoral responses by an impaired 
induction of follicular germinal center responses accompa-
nied by reduced antibody production.153,154 Pharmacological 
CD30L blockage efficiently prevented development of spon-
taneous type I diabetes mellitus in nonobese diabetic mice.80 
Furthermore, CD30L blockage reduced atherosclerotic bur-
den in Ldlr−/− mice presumably by reducing overall T-cell pro-
liferation in the spleen and lymph nodes without affecting the 
humoral response.155

4-1BB–4-1BBL
The costimulatory molecule 4-1BB (TNFRSF9, CD137) is 
expressed on activated CD4+ T cells, CD8+ T cells, NK cells, 
resting monocytes, and DC, whereas its ligand is predomi-
nantly expressed on APC.156 Mice deficient for 4-1BB have 
fewer NK and NKT cells, whereas T-cell development is 
not affected.157,158 Furthermore, 4-1BB deficiency increased 
the number of myeloid progenitor cells and mature DCs, 
yet reduced the survival of the latter cell type.159,160 Of note, 
although 4-1BBL reduced human NK cell activity in cocul-
tures with tumor cell lines, it activated murine NK cells and 
led to enhanced killing activity.161 In addition, Tnfrsf9−/− 
mice mounted a stronger antigen-specific T-cell response 
although DC functionality is impaired.162 Presumably, these 
effects would contribute to progression of atherosclerosis. 
However, stimulation of 4-1BB with an agonistic antibody 
increased atherosclerotic burden accompanied by enhanced 
lesional inflammation whereas 4-1BB deficiency attenu-
ates atherosclerosis in mice.163,164 Advanced atherosclerotic 
lesions accumulated more macrophages and T cells when 
4-1BB was lacking.165 Lesions in these mice showed signs 
of vulnerability, accompanied by reduced smooth muscle 
cell survival and collagen production.165 Interestingly, 
macrophage glucose metabolism is regulated by the inter-
action of 4-1BBL with its receptor, leading to increased 
metabolic activity and cell proliferation.166 Thus, interven-
tion in 4-1BB–4-BBL interactions might be a valuable 
therapeutic option in macrophage-driven diseases such as 
atherosclerosis.

LIGHT–Herpes Virus Entry Mediator
Herpes virus entry mediator (HVEM; TNFRSF14) is 
expressed by resting T cells and APCs, whereas its main 
ligand, LIGHT (TNFSF14), is expressed by activated T 
cells, monocytes, DCs, and NK cells.167,168 HVEM can also 
interact with lymphotoxin-α, B and T lymphocyte attenuator, 
and CD160.169 Interactions with LIGHT and lymphotoxin-α 
contribute to T-cell activation and cytokine production, 
whereas ligation of HVEM to B- and T-lymphocyte attenu-
ator and CD160 promotes coinhibitory effects.169 The con-
tribution of HVEM and LIGHT to atherosclerosis is not 
fully understood. EC and macrophages in atherosclerotic 
lesions express HVEM and LIGHT, and both transcripts 
were elevated in aortas of atherosclerotic Apoe−/− mice.170 
HVEM signaling induced the production of MMP-1, MMP-
9, and MMP-13 by monocytic cells in vitro and the staining 
of MMPs overlapped with HVEM in human atherosclerotic 

lesions, suggesting that HVEM signaling contributes to 
plaque destabilization and rupture.171 Further proatherogenic 
features of this costimulatory axis involve the adhesion of 
platelets to EC and contribute to atheroprogression by guid-
ing leukocyte adhesion to the inflamed endothelium.172,173 
Furthermore, LIGHT expressed by platelets induces signals 
in EC and monocytes that increase the expression of adhe-
sion molecules and chemokines.174 The increased expression 
of proatherogenic inflammatory mediators such as IL-8 and 
MCP-1 depends on a LIGHT-mediated induction of protein-
ase-activated receptor 2.170 T-cell–restricted overexpression 
of LIGHT induced hyperlipidemia by a substantial reduction 
of hepatic lipase expression.175 In the liver hepatic lipase is 
surface expressed and promotes uptake of lipoproteins con-
taining cholesterol and triglycerides, hydrolyzing the latter. 
However, the mechanisms underlying how T-cell–mediated 
LIGHT expression alters liver metabolism is not understood.

Coinhibitory Pathways Shaping Atherosclerosis
PD-1–PD-L1/PD-L2
The CD28-superfamily also includes the coinhibitory mol-
ecule PD-1 (CD279), which binds to PD-L1 (CD274) and 
PD-L2 (CD273). Whereas PD-L1 expression is broadly found 
on APCs and tissue cells of nonhematopoietic origin, espe-
cially in the presence of innate inflammatory stimuli, PD-L2 
expression is mainly restricted to APCs.176 Furthermore, 
PD-L1 can be expressed in vitro by vascular smooth muscle 
cell and vascular EC in vitro and in vivo.177–179 Interestingly, 
in vitro incubation of vascular ECs with oxidized LDL 
increased PD-L1 expression.180 This led to a strong induc-
tion of anti-inflammatory cytokine production by cocultured 
Tregs displaying a potential atherosclerosis counterbalancing 
mechanism.180 Furthermore, hypercholesterolemia promoted 
PD-L1 expression on splenic macrophages and DCs of Ldlr−/− 
mice.181 On the contrary, circulating T cells and myeloid DC 
from patients with coronary artery disease demonstrated 
reduced PD-1 and PD-L1 expression compared to healthy 
individuals.182 Deficiency of PD-1 or its ligands increased 
CD4+ and CD8+ T-cell activation and their influx into ath-
erosclerotic lesions that accelerated atherosclerosis in Ldlr−/− 
mice.181,183 Similarly, the administration of a PD-1–blocking 
antibody to Ldlr−/− mice exacerbated atherosclerosis and 
lesional T-cell infiltration.183 The overall increased T-cell acti-
vation in atherosclerotic Pd1−/− mice did not favor a certain 
subtype, but enhanced abundance and response of pro- and 
antiatherogenic subsets, suggesting that the proinflammatory 
compartment outcompetes immunosuppression by Tregs.184 
PD-1 and Tim-3 expression defines highly exhausted CD8+ T 
cells. In vitro restimulation of PD-1+Tim-3+ CD8+ T cells iso-
lated from human atherosclerotic lesions demonstrated skew-
ing toward an anti-inflammatory cytokine profile, which was 
reverted by applying PD-1– and Tim-3–blocking antibodies, 
suggesting that these particular CD8+ T cells in lesions are of 
regulatory nature, whereas other reports attribute CD8+ T-cell 
proatherogenic function.149,150,185 Monoclonal antibodies to 
PD1 and PD-L1 and PD-L2 are now widely used in immuno-
therapy of cancer patients.186 It should be considered that these 
treatments may increase cardiovascular risk (Table).
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Table.  Expression Profile and Effects of Costimulatory Molecules in Atherosclerosis

Costimulatory Molecule
Expression on 
Resting Cells

Expression on 
Activated Cells Effect on Atherosclerosis Protein Gene

CD28 Cd28 Naive T cells, eosinophils, basophils, 
Treg

T cells Unclear: increased atherosclerosis in 
Ldlr−/− mice transplanted with Cd28−/−, 

Cd80−/−, or Cd86−/− BM53

CD80 Cd80 ++: APC +++: APC Reduced atherosclerosis in Cd80−/− Cd86−/− 
Ldlr−/− mice69 CD86 Cd86 +: APC +++: APC

CTLA-4/CD152 Ctla4 Tregs Tregs, effector T cells Clear: CTLA-4–blocking antibodies189 
increased atherosclerosis

    CTLA-4–Ig fusion protein190 reduced 
atherosclerosis

CD40 Tnfrsf5 +++: B cells, SMC; ++: platelets; +: 
macrophages, neutrophils, EC

+++: T cells, APCs, platelets, neutrophils, 
EC Clear: pharmacological inhibition94–96 or 

global deficiency93 reduced atherosclerosis CD40L Tnfsf5 ++: B cells; +: macrophages, DC, 
neutrophils, EC, SMC

+++: T cells, B cells, macrophages, 
platelets; +: DC, EC, neutrophils

CD27 Tnfrsf7 Naive T cells, NK cells, murine HSC Human memory B cells, murine 
centroblasts, memory T cells

Unclear: CD70 deficiency129 and 
overexpression127 reduced  

atherosclerosis by limiting macrophage 
function or survival of Ly6Chi monocytes, 

respectively 

CD70 Tnfsf7 MTEC, APC subset in lamina propria APC

GITR Tnfrsf18 +++: Treg; +: naive CD4 T cells, 
Mast cells, APC

++: Macrophages
Clear: chronic GITRL overexpression is 
atheroprotective by Treg expansion138 

GITRL Tnfsf18 +: EC +++: EC, T cells, APC

OX40/CD134 Tnfrsf4 Neutrophils, NK cells Effector CD4 and CD8 T cells Clear: Genetic ablation150 or 
pharmacological inhibition149 attenuates 

atherosclerosis 
OX40L/CD252 Tnfsf4 APC, EC, SMC Effector CD4 and CD8 T cells, 

macrophages

CD30 Tnfrsf8  Activated T and B cells
Insufficient data: pharmacological CD30L 

blockage reduced atherosclerosis155 CD30L Tnfsf8 B cells, MTEC Activated T and B cells, DC, macrophages, 
mast cells, granulocytes

4-1BB/CD137 Tnfrsf9 Monocytes, DC, B cells, FDC, NK 
cells, granulocytes

Activated CD4 and CD8 T cells, EC Clear: Agonistic 4-1BB stimulation163 
increased atherosclerosis, whereas  

genetic deficiency attenuated 
atherosclerosis.164 Later stage  

lesions in 4-1BB KO mice show vulnerable 
lesions165 

4-1BBL/
CD137L

Tnfsf9  APC

HVEM/CD270 Tnfrsrf14 T cells, APC EC, macrophages Insufficient data: Not fully understood, 
signaling induces proinflammatory 

mediator expression and altered liver 
metabolism170,171 

LIGHT/CD258 Tnfsf14 Monocytes, NK cells, DC T cells, EC, macrophages

PD-1/CD279 Pdcd1 Myeloid DC, pro-B cells, Treg Myeloid DC, T cells
Clear: Genetic deficiency of Pd1 or Pd-l1/

Pd-l2181 or pharmacological inhibition 
of Pd-1183 increased atherosclerosis in 

Ldlr−/− mice 

PD-L1/CD274 Pdcd1lg1 +: vascular EC, vascular SMC T cells, NK cells, macrophages, myeloid 
DC, B cell, epithelial cells, and vascular EC

PD-L2/CD273 Pdcd1lg2 DC DC

+ indicates mild expression; ++, intermediate expression; +++, strong expression; APC, antigen-presenting cell; BM, bone marrow; CTLA, cytotoxic T-lymphocyte–
associated protein 4; DC, dendritic cell; EC, endothelial cell; FDC, follicular DC; HSC, hematopoietic stem cell; KO, knockout; NK cell, natural killer cell; and SMC, smooth 
muscle cell.
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CTLA-4–CD80/CD86
CTLA-4, CD152 (cytotoxic T-lymphocyte–associated pro-
tein 4) competes with CD28 for binding to CD80 and CD86. 
However, CTLA-4 decreases immune responses and functions 
as an immune checkpoint regulator. The clinical targeting 
of this molecule in tumor malignancies is discussed below. 
Effector T cells increase surface abundance of CTLA-4 after 
activation, whereas Tregs express CTLA-4 constitutively, 
which probably represents one of their main immunosuppres-
sive effector mechanisms.187 The impact of a genetic CTLA-4 
deficiency on atherosclerosis is unknown because mice defi-
cient for CTLA-4 succumb to an autoimmune lymphoprolifer-
ative disorder.188 Application of CTLA-4–blocking antibodies 
resulted in a dramatic increase of atherosclerotic burden in 
hypercholesterolemic mice.189 Conversely, the application of 
a CTLA-4-Ig fusion protein, which mimics CTLA-4 func-
tion, prevented CD80/CD86–CD28 interactions accompanied 
by reduced T-cell activation. Such treatment also resulted 
in limited neointima formation and reduced homocysteine-
accelerated atherosclerosis.189,190 In line with these results, 
transgenic mice constitutively expressing CTLA-4 on T cells 
were protected from atherosclerosis.191 Similar to the effects 
of blocking PD1/PDL1/PDL2 in patients with cancer, CTLA4 
blockade may trigger proatherosclerotic effects.

Potential Therapeutic Applications  
in Atherosclerosis

Targeting CD40/CD40L Interactions
The modulation of CD40/CD40L interactions was clinically 
tested in a variety of chronic inflammatory diseases and can-
cer.78 However, pharmacological interference with antagonis-
tic or agonistic antibodies triggered severe side effects. Patients 
having lupus glomerulonephritis experienced a marked reduc-
tion of hematuria when treated with a blocking anti-CD40L 
antibody.155 However, this trial was prematurely discontinued 
as anti-CD40L antibody treatment caused thromboembolic 
events and myocardial infarctions, likely by the destabiliza-
tion of platelet aggregates.192,193 Also, agonistic or antagonistic 
anti-CD40 antibodies failed in diverse clinical disorders as the 
treatment was not efficient, or side effects including throm-
bocytopenia, neutropenia, and pleural effusion led to the dis-
continuation of trials.194–196 An alternative therapeutic strategy 
harnesses interactions of CD40L with Mac-1, also known as 
CD11b/CD18 integrin, which is abundantly expressed on neu-
trophils, NK cells, monocytes, and macrophages.197 The intra-
peritoneal application of a small peptide prevented interaction 
of CD40L with Mac-1 and reduced atherosclerotic burden in 
Ldlr−/− mice, potentially by reducing leukocyte recruitment 
to the inflammatory site.198 Disrupting CD40–Mac-1 inter-
actions did not prevent functional CD40–CD40L interac-
tions and spared thrombotic events.198 A different therapeutic 
approach targets the interaction of CD40 with its downstream 
signaling interaction partner tumor necrosis factor receptor-
associated factor 6. Ablation of CD40–tumor necrosis factor 
receptor-associated factor 6 interactions led to more stable 
and smaller atherosclerotic lesions, accompanied by reduced 
monocyte influx into the arterial wall.103 Furthermore, a small 
compound designed to prevent CD40–tumor necrosis factor 

receptor-associated factor 6 interactions increased survival of 
mice with induced sepsis and improved insulin resistance in 
obese mice.199,200 However, the efficacy of this compound in 
atherosclerosis has yet to be tested.

Anti-CD27/CD70 Antibodies in Cancer 
and Cardiovascular Implications
Hematologic malignancies and solid tumors feature high 
CD70 expression.201–205 The constitutive activation of effec-
tor T cells by persistent antigen and constitutive signaling via 
CD27/CD70 interaction leads to exhaustion, demonstrated in 
patients having B-cell non-Hodgkin lymphoma.206 Exhausted 
T cells are less cytotoxic and incapable of attacking the tumor. 
The pharmacological inhibition of CD27/CD70 interaction 
by blocking-CD70 antibodies represents a promising thera-
peutic strategy in the treatment of such malignancies.207,208 
Furthermore, the opsonization of CD70 expressing tumor 
cells by these antibodies could induce antibody-dependent 
cellular cytotoxicity and phagocytosis, thus directly attack-
ing the tumor cells and contributing to tumor regression. 
Alternatively, agonistic CD27 modulation by the CDX-1127 
(varlilumab) antibody is under clinical evaluation in patients 
having B-cell malignancies, melanoma, and renal cell car-
cinoma.209,210 Such agonistic CD27 stimulation successfully 
reactivated exhausted effector T cells, leading to a profound 
antitumor immune response and tumor regression in mice 
with a transgene expressing human CD27.211 As CD70 dele-
tion exacerbates atherosclerosis, potential side effects on the 
cardiovascular system by pharmacological modulation of 
CD27/CD70 interactions require consideration.129

Anti–CTLA-4 and Anti–PD-1 
Antibodies in Oncotherapy and Their 
Potential Cardiovascular Effects
The coinhibitory molecules CTLA-4 and PD-1 regulate T-cell 
activation, however, in different ways. The blockage of both 
immune checkpoint mediators is desirable in advanced tumor 
malignancies because cytotoxic antitumor T cells are reacti-
vated and not suppressed anymore. Dual blockage with the 
monoclonal antibodies ipilimumab and nivolumab, targeting 
CTLA-4 and PD-1, respectively, has been tested in clinical 
trials.212 Recently, the Checkmate-67 phase III study demon-
strated a 55% response rate when both antibodies were used 
to treat patients having advanced melanoma.213 Furthermore, 
patients receiving treatment with both antibodies showed a 
median progression free survival of almost 12 months, 2 to 
4 times higher than treatment with one or the other antibody. 
Data on the overall survival of the dual-treated patients are 
not yet published. Although an overall enhanced antitumor 
T-cell response is highly desirable, uncontrolled T-cell activity 
could exacerbate atherosclerosis and cardiovascular disease. 
Indeed, as pointed out above, pharmacological blockage or 
deficiency of CTLA-4 or PD-1 increased atherosclerotic bur-
den. Overall, it has to be considered whether a patient hav-
ing advanced tumor malignancies can gain expanded lifetime 
when undergoing immune checkpoint modulating therapy at 
the potential cost of accepting a higher risk for cardiovascular 
complications.
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Open Questions and Future Directions
Past research has identified costimulatory and coinhibitory 
molecules as important modulators of immune response 
mediating effects on various cell types. Functional studies 
by genetic deletions or pharmacological manipulation have 
shown that these molecules significantly contribute to ath-
erosclerosis (Figure). More research is needed to evaluate 
expression patterns of all these molecules on immune and 
nonimmune cells in health and disease, especially during 
atherosclerosis progression. In addition, not much is known 
about how immune cells integrate signals received by various 
costimulatory and coinhibitory pathways. Understanding the 
integration of costimulatory pathways in chronic inflammatory 
conditions such as atherosclerosis will help to develop new, 
tailored therapeutic approaches. The clinical success of block-
ing PD1, PD-L1, PD-L2, and CTLA-4 in cancer support the 
general feasibility of manipulating coinhibitory and costimu-
latory pathways. Whether such approaches will succeed in 
curbing major adverse cardiovascular events is the subject of 
ongoing and future studies.
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