
Abstract
Background: Fluoroscopy is a frequently used examination in clinical routine without appropriate research evaluation latest hardware and software equipment. Purpose: To evaluate the feasibility of low-dose pulsed video-fluoroscopic swallowing exams (pVFSE) to reduce dose exposure in patients with swallowing disorders compared to high-resolution radiograph examinations (hrVFSE) serving as standard of reference. Material and Methods: A phantom study (Alderson-Rando Phantom, 60 thermoluminescent dosimeters [TLD]) was performed for dose measurements. Acquisition parameters were as follows: (i) pVFSE: 76.7 kV, 57 mA, 0.9 Cu mm, pulse rate/s 30;(ii) hrVFSE: 68.0 kV, 362 mA, 0.2 Cu mm, pictures 30/s. The dose area product (DAP) indicated by the detector system and the radiation dose derived from the TLD measurements were analyzed. In a patient study, image quality was assessed qualitatively (5-point Likert scale, 5 = hrVFSE;two independent readers) and quantitatively (SNR) in 35 patients who subsequently underwent contrast-enhanced pVFSE and hrVFSE. Results: Phantom measurements showed a dose reduction per picture of factor 25 for pVFSE versus hrVFSE images (0.0025 mGy versus 0.062 mGy). The DAP (mu Gym 2) was 28.0 versus 810.5 (pVFSE versus hrVFSE) for an average examination time of 30 s. Direct and scattered organ doses were significantly lower for pVFSE as compared to hrVFSE (P< 0.05). Image quality was rated 3.9 +/- 0.5 for pVFSE versus the hrVFSE standard;depiction of the contrast agent 4.8 +/- 0.3;noise 3.6 +/- 0.5 (P< 0.05);SNR calculations revealed a relative decreased of 43.9% for pVFSE as compared to hrVFSE. Conclusion: Pulsed VFSE is feasible, providing diagnostic image quality at a significant dose reduction as compared to hrVFSE.
Item Type: | Journal article |
---|---|
Faculties: | Medicine |
Subjects: | 600 Technology > 610 Medicine and health |
URN: | urn:nbn:de:bvb:19-epub-52469-3 |
ISSN: | 0284-1851 |
Alliance/National Licence: | This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. |
Language: | English |
Item ID: | 52469 |
Date Deposited: | 14. Jun 2018, 09:50 |
Last Modified: | 04. Nov 2020, 13:31 |