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objective: To report an unusual lateral medullary stroke (LMS) associated with transient 
unidirectional horizontal, nystagmus, and decreased horizontal vestibulo–ocular reflex 
(h-VOR) gain that mimicked a peripheral vestibulopathy. MRI suggested involvement of 
caudal medial vestibular nucleus (MVN); however, the rapid resolution of the nystagmus 
and improved h-VOR gain favored transient ischemia without infarction. Decreased 
h-VOR gain is expected with peripheral vestibular lesions within the labyrinth or superior 
vestibular nerve; less frequently lateral pontine strokes involving the vestibular root entry, 
the vestibular fascicle, or neurons within the MVN may be responsible. The h-VOR is 
typically normal in LMS.

Methods: Clinicopathologic examination of a 61-year-old man with an acute vestibular 
syndrome (AVS) and left LMS who died 3 weeks after the stroke. Postmortem brainstem 
analysis was performed.

Results: The stroke involved the lateral medulla and pontomedullary junction, near the 
MVN, sparing the cerebellum and pons. To explain transient vestibular findings there 
are two possible hypotheses; the first would be that the MVN survived the ischemic 
process and would be histologically intact, and the second that vestibular afferents in the 
horizontal semicircular canal were ischemic and recovered after the ischemic process. 
Neuropathological examination showed a left LMS whose extent matched that seen by 
imaging. Non-ocular motor signs correlated well with structures affected by the infarction. 
Neurons and glia within nearby MVN were spared, as predicted by the rapid normalization 
of the ocular motor signs. Although unlikely, the possibility of transient intralabyrinthine 
arteriolar ischemia cannot be excluded. Additionally, truncal lateropulsion was due to 
combined lateral vestibulospinal tract and lateral reticular nucleus infarction.

Abbreviations: AICA, anterior inferior cerebellar artery; AVS, acute vestibular syndrome; LRN, lateral reticular nucleus; 
CVRG, caudal ventral respiratory group; CVLM, caudal ventral medulla with premotor vasomotor neurons; CTA, computer-
ized tomography angiogram; HIT, head impulse test; LMS, lateral medullary syndrome; LVN, lateral vestibular nucleus; STT, 
spinothalamic tract; MVN, medial vestibular nucleus; PICA, posterior inferior cerebellar artery; PO, principal olive; PPH, 
prepositus hypoglossi nucleus; VA, vertebral artery; vHIT, video HIT.
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INtRoDUCtIoN

Following the first clinicopathologic description of a lateral 
medullary stroke (LMS) (1, 2), few clinicopathologic series can 
be found in the literature, presumably because LMS generally 
has a favorable outcome. HINTS examination battery in LMS is 
frequently indicative of central localization [normal head impulse 
test (HIT), presence of direction changing nystagmus, or skew 
deviation]. In general, persistent peripheral vestibular signs in 
LMS are uncommon and suggest either combined [posterior infe-
rior cerebellar artery (PICA)/anterior inferior cerebellar artery 
(AICA) stroke] or a medullary/cerebellar stroke with brainstem 
compression (3–7). We report transient neurovestibular changes 
with clinical, serial imaging, and neuropathological findings in 
a caudal/rostral LMS patient who had sudden cardiorespiratory 
arrest 3  weeks after his initial stroke that presented with the 
acute vestibular syndrome (AVS). Initially, medial vestibular 
nucleus (MVN) infarction was considered; however, to explain 
the transient nature of the vestibular findings, we hypothesized 
that symptomatic, ischemic neurons in the MVN survived the 
ischemic process. An alternative hypothesis would be ischemia 
of intralabyrinthine vestibular receptor hair cells in the cupula, 
bipolar cells, or Scarpa ganglion neurons. This case offers unique 
insights into the relationship between neurovestibular signs and 
brainstem ischemia.

Acute vestibular syndrome is characterized by severe, continu-
ous dizziness or vertigo, nausea, vomiting, gait instability, head 
motion intolerance, and nystagmus that may occur in associa-
tion with peripheral or central lesions. Most LMS patients have 
prominent central vestibular manifestations including normal 
vestibulo–ocular reflex (4, 5). Delayed evolution or worsening 
of neurologic signs may occur, even after initial improvement of 
vestibular or ocular motor signs. Respiratory distress, aphonia, 
and need for endotracheal intubations in LMS may be a sentinel 
sign of respiratory failure and sudden death.

MateRIaLs aND MetHoDs

Single LMS patient reports with postmortem neuropathologic 
examination, neurovestibular studies, clinicopathologic correla-
tion, and literature review.

Case RepoRt

Upon awakening, a 61-year-old male experienced generalized 
malaise. A few hours later he developed an acute AVS. He could not 
stand or sit without support due to intense leftward lateropulsion. 
Glucose intolerance was his single stroke risk factor. On exami-
nation, a left Horner’s syndrome was noted. Ophthalmoscopy 

and visual fields were normal. In primary gaze, we observed a 
conjugate horizontal right beat nystagmus that increased in right 
gaze, without ocular lateropulsion or skew deviation. The clinical 
HIT VOR was abnormal and the quantitative video-HIT (vHIT) 
test (ICS Impulse, GN Otometrics, Taastrup, Denmark) demon-
strated decreased left gain in two consecutive trials (0.48 and 0.59, 
normal range >0.80), whereas right vHIT gain was normal (0.80 
and 0.95). Overt refixation saccades were present (Figure 1). He 
did not have hearing loss to finger rubbing. Aphonia, dyspha-
gia, hiccups, and paresis of the soft palate were noted, without 
tongue weakness. No limb weakness or ataxia, sensory loss, or 
pathologic reflexes were found. Left LMS was suspected due to 
presence of Horner’s, left lower cranial nerve compromise, and 
truncal ataxia. Additional involvement of structures in the left 
pontine tegmentum was considered to explain an HINTS triad 
consistent with peripheral lesion localization. Involvement of the 
rostral MVN ischemia would explain the abnormal horizontal 
(h)-HIT and adjacent facial nucleus, or fascicle ischemia would 
account for mild peripheral facial weakness. Head and neck 
computerized tomography angiogram (CTA) showed occlusion 
of the V4 segment of the left vertebral artery (VA); a robust left 
PICA originated extradurally from the V3/V4 junction, proximal 
to the occlusion (Figure  2), the right VA was hypoplastic and 
50% stenotic at its origin; the right AICA artery was patent, and 
the left was either hypoplastic or absent. We cannot tell from the 
CTA if a basilar artery origin of the internal auditory artery is 
present; he had a left PICA/AICA variant that contributed to the 
circulation of the left labyrinth; the common carotid arteries were 
50% stenotic bilaterally.

Two days later, the neurologic examination was unchanged 
except for resolution of the horizontal nystagmus, normalization 
of the h-HIT, and new impaired pin-prick sensation in the left side 
of the face. Progressive respiratory distress required endotracheal 
intubation. A brain MRI 2  days later demonstrated restricted 
diffusion (DWI) involving the left lateral caudal medulla with 
rostral extension to the pontomedullary junction, sparing the 
pons and the root entry of the vestibular nerve (Figure 3). An 
old lacunar stroke in the left putamen was noted. A cardiac work 
up revealed an old left bundle branch block, an ejection fraction 
of 38%, and septal/inferior wall hypokinesis, without evidence of 
acute myocardial infarction. The next morning the patient was 
extubated. There was no change in the neurologic examination, 
the h-HIT remained normal. In contrast, the left truncal latero-
pulsion remained severe. He remained aphonic with limited soft 
palate elevation. To treat dysphagia, percutaneous gastrostomy 
was placed.

Ten days later, worsening respiratory distress, progressive 
bradycardia, and occasional premature ventricular contractions 
developed, requiring endotracheal re-intubation. The chest X-ray 

Conclusion: LMS may rarely be associated with an AVS that either represents or mimics 
a peripheral vestibulopathy. To our knowledge, this is the first neuropathologic examina-
tion of the brainstem of an LMS associated with transient vestibular findings occurring in 
the context of an anterior/posterior (AICA/PICA) cerebellar arterial variant stroke.

Keywords: lateral medullary infarction, pathology, MRI diffusion, head impulse test, transient ischemia
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FIgURe 2 | Head and neck computerized tomography angiogram: left upper panel: coronal view of the vertebrobasilar junction. The right superior V4 
vertebral artery (VA) segment is visualized, and the origin of the right anterior inferior cerebellar artery (AICA) is observed. Retrograde flow fills the left VA. The left 
AICA is not visualized. Right upper panel: the left posterior inferior cerebellar artery (PICA) is imaged; it originates extra-cranially from the left V3/V4 VA and is normal, 
probably representing a PICA/AICA variant. Left lower panel: sagittal image of a normal left V2/V3 VA. Right lower panel: coronal view of a normal left V2/V3 VA.

FIgURe 1 | Video-head impulse test: the gain of the left horizontal VoR is decreased: 0.48, in contrast to a right horizontal VoR gain of 0.8 
(normal: 0.8).
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showed basilar atelectasis. After treatment with antibiotics for 
suspected pneumonia he did well and was extubated. A repeat 
brain MRI showed unchanged caudal left lateral medulla DWI 
restriction (Figure S4 in Supplementary Material).

After recovering from the respiratory distress, he engaged in a 
demanding rehabilitation program. He could stand with the aid 
of parallel bars but had residual left lateropulsion and could not 
use a walker independently. His voice throughout his hospital 

stay was hypophonic. Unfortunately, 19 days after admission, he 
was found unresponsive and pulseless.

NeURopatHoLogIC FINDINgs

At autopsy, we found significant atherosclerotic disease including 
an abdominal aortic aneurysm and bilateral iliac artery stenosis. 
There was no acute myocardial infarction despite advanced 
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FIgURe 3 | axial diffusion-weighted image MRI 04-25-2014: serial 
consecutive MRI sections of the medulla, from left: caudal to right: 
pontomedullary junction: restricted diffusion is present in the left 
lateral medulla.
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coronary artery disease. The lungs showed no evidence of pulmo-
nary edema, embolism, or pneumonia. A specific cause of death 
was not provided by the general autopsy examination. The cause 
of the stroke was in situ thrombosis of the V4 segment of the VA.

The brain showed significant atherosclerosis affecting 
the major cerebral arteries. The left lateral medulla showed 
marked softening of the tissue with gray–yellow discoloration. 
Macroscopically, the lesion did not cross the midline and was 
dorsal to the inferior olivary nucleus; the left VA showed advanced 
narrowing of the lumen, and the right was hypoplastic with 
focal narrowing. The basilar artery showed mild atherosclerotic 
changes. The right AICA was patent; the left was not described. 
Other than a remote lacunar infarct in the left putamen, the find-
ings relevant to the clinical presentation were localized to the left 
lateral medulla. The brainstem was sectioned into 5-mm slices 
and embedded in paraffin following formalin fixation. Brainstem 
sections were stained with hematoxylin and eosin, Luxol fast blue 
(LFB), and immunostained for non-phosphorylated neurofila-
ments, glial fibrillary acid protein, and CR3/43, a marker for acti-
vated microglia. The stroke involved the left lateral medulla and 
affected the structures shown in tissue sections in Figure 4 and 
Figures S1–S3 in Supplementary Material, which are also listed 
in Table S1 in Supplementary Material. The stroke core involved 
the lateral reticular nucleus (LRN), the principal inferior olive, the 
spinal trigeminal nucleus, internal arcuate fibers, spinothalamic 
tract (STT), a small component of the lateral pyramidal tract, 
and the lateral vestibulospinal tract (LVST) as it traversed dorsal 
to the inferior olive (Figure 4). Microscopic examination of the 
stroke core showed necrosis with dense infiltration by foamy 
macrophages. The adjacent parenchymal tissue showed edema-
tous vacuolization, numerous eosinophilic axonal swelling, and 
reactive astrocytes. Histologically, the neurons and neuropil in 
the left MVN appeared intact (Figures S1C,D in Supplementary 
Material), without any substantial microglia activation or gliosis 
in comparison to the other side (Figures S2E,F in Supplementary 
Material). A high number of axonal spheroids involved the 
olivocerebellar fibers that traverse the LRN and those of the STT 
(Figures S3A,B in Supplementary Material).

Immunostaining of perineuronal nets, a condensed form of 
the extracellular matrix, did not identify signs of ischemia (8). 
This observation does not rule out transient ischemia because 
affected perineuronal nets may have recovered within a 3-week 
interval (9). The vestibular nerve that is visible in the brainstem 
sections at its course to the vestibular nuclei showed no obvi-
ous signs of nerve ischemia or spheroids. Testing for Wallerian 
degeneration of the vestibular nerve was not possible because 
the tissue was not fixed in glutaraldehyde and not embedded in 
epoxy resin.

BaCKgRoUND

The first pathologic examination of LMS was described by 
Wallenberg (1, 2), and large reviews of the findings have been 
recently published (10). To the best of our knowledge, the neu-
ropathology of the syndrome has been described only once in a 
retrospective clinicopathologic correlation series (11). A recent 
report listed cases from the Japanese literature (12). Although the 
LMS prognosis may not be as benign as is generally assumed (13), 
most LMS patients recover in the short term (14). In a large LMS 
series, however, 1- and 5-year survival rates were reported as 84 
and 54%, respectively (15). The risk of sudden death in LMS due 
to cardiorespiratory arrest has been previously noted, presumably 
related to compromise of medullary respiratory and vasomotor 
centers (13–15) or co-existent coronary disease (16).

The main focus of our pathologic analysis was to provide a 
clinicopathologic investigation of the extent of the LMS core and 
to study the anatomic structures responsible for the transient 
abnormal vestibulo–ocular and the persistent vestibulospinal 
findings in this patient. One aim in this study was to determine 
if rapid recovery of the abnormal ocular findings was related to 
preservation of neurons within the MVN and peripheral vestibu-
lar structures or both. To our knowledge, the neuronal morphol-
ogy of transient ischemia of vestibular structures in LMS has not 
been previously studied in humans.

DIsCUssIoN

The presenting symptoms and findings in our patient included 
an AVS associated with severe left axial lateropulsion, aphonia, 
and left Horner’s syndrome, clearly pointing to brainstem 
localization. The neuro-otologic examination unexpectedly 
showed a positive h-HIT and unidirectional, contralateral, 
horizontal nystagmus, typical of peripheral vestibular involve-
ment. Furthermore, two consecutive vHIT recordings unexpect-
edly showed decreased VOR gain, thus localizing to either a 
peripheral vestibular labyrinth or an ischemic MVN mimicking 
a peripheral vestibulopathy (Figure 1) (6, 17).

The possibility of labyrinthine ischemia to explain the abnor-
mal HIT VOR responses was entertained in our patient; however, 
the CTA demonstrated a patent right AICA that originated from 
the basilar artery and a robust left PICA/AICA probably a con-
tributor to the vascular supply of the left labyrinth (Figure  2). 
The great majority of AVS due to labyrinthine ischemia have 
occurred with AICA strokes (18–20). One series of non-AICA 
strokes and unilateral deafness identified cochlear infarction in 7 
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FIgURe 4 | Continued
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FIgURe 4 | Continued 
transversal brainstem sections from caudal to rostral stained for Luxol fast blue to demonstrate the localization and extent of the stroke.  
(a–D) In each section, the ischemic core with total necrosis is outlined by dashed lines. Note that the left medial vestibular nucleus (MVN) and prepositus hypoglossi 
nucleus (PPH) are not included in the lesion (e,F). Detailed views of the white boxes in (e) are shown in Figures S1A,B,D in Supplementary Material. AMB, nucleus 
ambiguous; AP, area postrema; ARC, arcuate nucleus; CTT, central tegmental tract; DCN, dorsal cochlear nucleus; DMX, dorsal motor nucleus of the vagal nerve; 
DSC, dorsal spinocerebellar tract; GR, gracile nucleus; HST, hypothalamic–spinal tract; IA, internal arcuate fibers; IVN, inferior vestibular nucleus; MAO, medial 
accessory inferior olive; LCU, lateral cuneate nucleus; MCU, medial cuneate nucleus; ML, medial lemniscus; MLF, medial longitudinal fascicle; NV, trigeminal nerve; 
NVIII, vestibular nerve; NXII, hypoglossal nerve; PN, pontine nuclei; PO, principal olive; PT, pyramidal tract; RVLM, rostral ventrolateral medulla; SOL, solitary nucleus; 
STT, spinothalamic tract; VCN, central cochlear nucleus; VSC, ventral spinocerebellar tract; Vsp, spinal trigeminal nucleus; VII, facial nucleus; XII, hypoglossal 
nucleus.
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out of 685 patients with brainstem strokes, 5 of them with PICA 
territory infarction, and 2 of them with severe sensorineural 
hearing loss (21, 22). Isolated vertigo, presumably of peripheral 
origin was found in 4 of 82 patients with AICA strokes by the 
same research group (6, 21). Combined cochleovestibular loss 
is the most frequent finding in labyrinthine infarction because 
the apex of the cochlea is more sensitive to ischemia than the 
vestibular labyrinth (21). Moreover, hearing loss or deafness and 
imaging/neuropathologic evidence of AICA territory infarction 
were not present in our patient but were noted in three previous 
reported AICA occlusions with labyrinthine infarction; two with 
cochlear–vestibular loss (18, 20) and one with isolated anterior 
vestibular artery ischemia and acute lateral pontine stroke (19). 
DWI signal changes involving the left vestibular nerve were not 
found in our patient with serial MRI studies (20). The internal 
auditory artery had a PICA origin in 3 out of 100 temporal lobe 
dissections (23) or a direct origin from the basilar artery (24). The 
limitations of the CTA in this case do not allow a better analysis of 
the vasculature; the autopsy specimen did not include a descrip-
tion of the left AICA, which may be explained by the PICA/AICA 
abnormality.

To explain the presenting nystagmus characteristics (unidi-
rectional, horizontal, and worse with gaze toward the fast phase) 
and impaired horizontal vestibulo–ocular reflex (h-VOR) gain, 
infarction of the MVN at the pontomedullary junction should 
be considered. MVN involvement in LMS has been previously 
reported in neuropathologic LMS studies (11, 12, 25) and can 
be associated with abnormal h-HIT VOR and peripheral-type 
nystagmus (26). Experimental global ischemia in a murine animal 
model has shown significant vulnerability of the MVN to ischemia 
(27). The initial MRI in our patient (Figure  2) showed rostral 
extension of the infarct and provided direct imaging evidence for 
the proposed lesion localization (26). However, the nystagmus 
gradually resolved in the ensuing 48 h and the vHIT normalized 
clinically, suggesting that MVN neurons probably survived the 
ischemic process, despite the fact that the vestibular signs per-
sisted well beyond 24 h. This was later confirmed pathologically.

An alternative explanation can be an association of the LMS 
with an ipsilesional partial labyrinthine infarction or ischemia 
sparing the brainstem parenchyma. The labyrinth is normally 
supplied by AICA but in our patient it was supplied by an AICA/
PICA variant. In such case, the peripheral labyrinth, which is the 
only relevant location to account for the neuro-otologic findings 
that was not examined pathologically in our case, could have been 
a target of transient ischemia. Additional vestibular tests that 
could contribute to lesion localization could not be performed in 
an intubated patient (6). Generally, the cochlea is very sensitive 

to ischemia and hearing loss/deafness is frequently found but was 
not noted in our patient. Previous temporal bone examination 
performed in labyrinthine infarctions centered in the semicircu-
lar canal cupula and utricular macula, sparing the cochlea has not 
being described to our knowledge (18, 21).

A recent series of 172 LMS patients identified 18 isolated 
vestibular syndromes and provided a clinico-radiologic cor-
relation (5). Just five of the reported patients had strokes with 
DWI signal changes compatible with involvement of the MVN. 
These patients displayed horizontal nystagmus, a positive h-HIT, 
caloric weakness, and gaze direction changing nystagmus. In 
this series, vHIT tests showed bilaterally decreased VOR gain, 
worse on the side of the lesion. Skew deviation, ocular tilt reac-
tion, and other abnormalities of otolith–ocular function were 
also present. The h-horizontal VOR is generally normal in LMS 
(3–5). Accordingly, persistent peripheral vestibular signs in LMS 
suggest rostral extension of the stroke. A combined (PICA/AICA 
stroke) and less commonly combined medullary/cerebellar 
stroke with brainstem compression need to be evaluated. We 
excluded these considerations in our case by the rapid resolu-
tion of the nystagmus, normalization of the h-VOR, and lack of 
additional DWI signal changes in a second MRI (Figure S4 in 
Supplementary Material).

The severe truncal lateropulsion in our case was attributed to 
combined LVST and LRN infarction. The LRN is a key nucleus 
in the coordination of posture; it receives otolith vestibular 
(28), proprioceptive spinal input, projections from sensori-
motor cortex, superior colliculus, and red nucleus (29–32). 
Efferent projections are primarily to cerebellar cortex with col-
laterals to deep cerebellar nuclei to regulate postural reflexes, 
thus, the LRN is important in the maintenance of limb and 
neck muscle tone (28–30, 33). In spinocerebellar ataxia type 3 
severe destruction of LRN is common, affecting truncal balance 
(34). Experimental LRN lesions in cats cause severe postural 
deficits (35). Estimation of truncal lateropulsion severity and 
duration due to an isolated LRN, inferior cerebellar peduncle, 
or descending LVST versus different combinations of these 
structures is impossible from the current available literature. 
Our patient with an initially abnormal DWI restriction affect-
ing the rostral medulla eventually had histologically normal 
rostral MVN and prepositus hypoglossi neurons, glial cells, 
and nerve fibers, correlating with a clinically milder vestibular 
presentation: transient unidirectional nystagmus, unilater-
ally abnormal vHIT, followed by a rapidly improving VOR 
gain, all compatible with transient ischemia. Pathologically, 
a stroke consists of an infarct core and surrounding ischemic 
tissue (ischemic penumbra) (36, 37). Ultimately, the extent of 
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morphologic injury determines functional outcome. The brief 
duration of the vestibular findings suggests that the severity 
of the ischemia was mild and correlates with lack of neuro-
pathologic tissue signs of ischemia in all vestibular structures 
examined. Normalization of the HIT and resolution of the 
nystagmus suggests also that the peripheral labyrinth function 
was restored.

The main limitations of this study relate to the lack of temporal 
lobe histopathology. In addition, a detailed pathologic analysis of 
the brainstem vasculature is not available, because of the patient’s 
unanticipated outcome; the autopsy was performed without 
clinician’s participation. Notwithstanding these limitations, the 
data are in favor of MVN transient ischemia, which will need to 
be confirmed in future cases. In our opinion, a neuropathologic 
evaluation of posterior fossa strokes should always include tem-
poral bone examination.

CoNCLUsIoN

Although there are very few reports of AICA/PICA strokes (7), 
the clinical analysis of stroke pathogenesis include the location 
of the stroke core, and the surrounding penumbra and peripheral 
ischemia, clinicians applying these concepts to an LMS stroke 
associated with transient vestibular signs, regardless of the loca-
tion of the vestibular pathway lesion face the following outcomes: 
delayed DWI signal (symptomatic ischemia without infarction), 
prolonged, albeit reversible ischemia in the periphery of the 
stroke and persistent, irreversible infarction with persistent posi-
tive DWI signal, and neuropathologic confirmation. Importantly, 
recent definitions of “transient ischemia” suggest it usually lasts 
minutes, not hours, and certainly not days (38, 39). When 
combined with evidence of delayed false-negative DWI imag-
ing in patients with brainstem ischemia nearing 48 h suggests a 
higher tolerance threshold to ischemia (40). Rapidly reversible 
DWI signal changes in a stuttering stroke were documented and 
followed subsequently by stroke (41). Finally, whereas resolution 
of the nystagmus and abnormal vHIT in our patient coincided or 
correlated with improved DWI signal intensity in the region of 
the MVN, persistent DWI signal in the lateral medulla correlated 
with otherwise unchanged neurologic abnormalities (Figure S4 
in Supplementary Material).

In summary, we describe a clinicopathologic correlation 
of a patient with a left LMS associated with signs of an acute 
peripheral vestibulopathy. The severe truncal lateropulsion was 
attributed to combined LVST and LRN infarction. The transient 
vestibular findings may either represent reversible intralabyrin-
thine ischemia or reversible MVN ischemia that persisted for 
48 h without infarction. In previous LMS or PICA stroke series 
the occurrence of a labyrinth vascular syndrome is distinctly 
uncommon and has not been pathologically studied (21). Unless 
there is major breakthrough in the imaging of the labyrinth, our 
experience highlights the urgent need for temporal bone histo-
pathologic examination in autopsy studies of AICA, PICA, and 
basilar artery strokes. Regardless of the location of the vestibular 
lesion in our case, the rapid resolution of the nystagmus and nor-
malization of the HIT may correlate with recent data supporting 
increased tolerance to ischemia in brainstem syndromes (38, 39) 

and perhaps the possibility of thrombolysis beyond the 3- to 4.5-h 
window.
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