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ABSTRACT
Background. Publication bias is a form of scientific misconduct. It threatens the
validity of research results and the credibility of science. Although several tests on
publication bias exist, no in-depth evaluations are available that examine which test
performs best for different research settings.
Methods. Four tests on publication bias, Egger’s test (FAT), p-uniform, the test of
excess significance (TES), as well as the caliper test, were evaluated in a Monte Carlo
simulation. Two different types of publication bias and its degree (0%, 50%, 100%)
were simulated. The type of publication bias was defined either as file-drawer, meaning
the repeated analysis of new datasets, or p-hacking, meaning the inclusion of covariates
in order to obtain a significant result. In addition, the underlying effect (β = 0, 0.5, 1,
1.5), effect heterogeneity, the number of observations in the simulated primary studies
(N = 100, 500), and the number of observations for the publication bias tests (K = 100,
1,000) were varied.
Results. All tests evaluated were able to identify publication bias both in the file-
drawer and p-hacking condition. The false positive rates were, with the exception of
the 15%- and 20%-caliper test, unbiased. The FAT had the largest statistical power in
the file-drawer conditions, whereas under p-hacking the TES was, except under effect
heterogeneity, slightly better. The CTs were, however, inferior to the other tests under
effect homogeneity and had a decent statistical power only in conditions with 1,000
primary studies.
Discussion. The FAT is recommended as a test for publication bias in standard meta-
analyses with no or only small effect heterogeneity. If two-sided publication bias is
suspected as well as under p-hacking the TES is the first alternative to the FAT. The
5%-caliper test is recommended under conditions of effect heterogeneity and a large
number of primary studies, which may be found if publication bias is examined in a
discipline-wide setting when primary studies cover different research problems.

Subjects Ethical Issues, Science Policy, Statistics
Keywords Statistics, Publication bias, Test for excess significance, Caliper test, Monte carlo
simulation, p-uniform, Egger’s test, FAT

INTRODUCTION
All scientific disciplines try to uncover truth by systematically examining their surrounding
environment (Descartes, 2006: 17). Natural scientists try to observe regularities in nature,
whereas social scientists try to uncover patterns in the social behaviour of humans. The
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success, as well as the reputation, of science rests on the accuracy and unbiasedness of
scientific results. Publication bias, the publication of only positive results confirming the
researcher’s hypothesis (cf. Dickersin & Min, 1993: 135), threatens this validity. Under
publication bias, only results showing either statistical significance and/or the desired
direction of the effects are published. The published literature in this case is merely a
selective (and too optimistic) part of all existing scientific knowledge. Furthermore, science
is in the case of publication bias also inefficient as studies that add substantial knowledge
to the literature, but contain null-findings remain unpublished.

The study at hand examines the performance of four methods to identify publication
bias: Egger’s Test/FAT (Egger et al., 1997; Stanley & Doucouliagos, 2014), p-uniform
(PU; Van Aert, Wicherts & Assen, 2016; Van Assen, Aert & Wicherts, 2015), the test for
excess significance (TES; Ioannidis & Trikalinos, 2007) and the caliper test (CT; Gerber &
Malhotra, 2008a;Gerber & Malhotra, 2008b). In order to compare the performance of these
tests, the false positive rate (α-error, type I error) and the statistical power (true positive
rate) were examined in a Monte Carlo simulation study. This makes it possible to assess the
performance of the four tests under different conditions of publication bias (file-drawer vs.
p-hacking ), as well as study settings (underlying true effect, effect heterogeneity, number
of observations in primary studies and in meta-analyses).

The issue of publication bias
The false positive rate of a test (commonly called p-value) is the probability of the estimator
rejectingH0 despite this being true. The p-value is therefore the probability that the observed
estimate is at least as extreme given there is no effect as assumed by H0 (Wasserstein &
Lazar, 2016). The larger the p-value the higher the risk of assuming an effect if none
exists in the data. p-values below a certain threshold are called statistically significant,
whereas values above the threshold are labelled as non-significant. In the empirical sciences
the 5%-significance threshold is mostly used (Cohen, 1994; Labovitz, 1972; Nuzzo, 2014).
The difference between 0.049 and 0.051 in the error probability is, however, marginal.
Nevertheless, from the standpoint of the 5%-significance threshold the first would be a
significant effect, whereas the latter would be a non-significant effect. In both of these
two cases, on average around 1 in 20 null-hypotheses of no difference would be rejected,
albeit true. If empirical researchers select their data/models until they find, just by chance,
significant evidence that seems worth publishing, publication bias is on the rise, leading to
inflated or even artificial effects.

Rosenthal (1979) constructs a worst case scenario in which only the 5% of false positive
studies that are ‘‘significant’’ solely by pure chance are published. In this case,misinterpreted
results shape the scientific discourse and finally result in (medical or political) interventions.
Although Rosenthal’s example is extreme, amultitude of evidence for publication bias exists
in various disciplines and research fields (e.g., Doucouliagos & Stanley, 2009; Jefferson et al.,
2012). Godlee (2012) therefore warns that scientific misconduct, under which publication
bias is subsumed (Chalmers, 1990), may also physically harms patients.

In addition to the societal consequences, publication bias also has severe implications for
the evolution of knowledge. Under publication bias no rejection of theories (Popper, 1968:
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215), on which all scientific progress relies, occurs; this leads to a state of ‘‘undead theory’’
(Ferguson & Heene, 2012: 559) where all existing theories are confirmed irrespective of
their truth.

Motivation to commit publication bias
Because statistically significant results stress the originality of research findings (Merton,
1957), Both authors and scientific journals (cf. Coursol & Wagner, 1986; Epstein, 1990;
Epstein, 2004;Mahoney, 1977) have large incentives to maximise their significant results to
survive in a publish or perish research environment. Authors especially want to increase
their publication chances, notably in top-tier journals where low acceptance rates of
5%–10% are quite common (for the top interdisciplinary journals Nature, 2017; Science,
2017; cf. for the political sciences Yoder & Bramlett, 2011: 266). Two distinct strategies to
achieve significant results by means of publication bias practices can be pointed out. Firstly,
non-significant findings can be suppressed (cf. the classical file-drawer effect described by
Rosenthal, 1979) and significant results are then searched for in another dataset. Secondly,
small bits in the data analysis can be changed (e.g., adding covariates, optional stopping,
exclusion of outliers, etc.) until a significant result is obtained—this method is known as
p-hacking (cf. ‘‘fishing’’Gelman, 2013; or ‘‘researchers degree of freedom’’ Simmons, Nelson
& Simonsohn, 2011: 1359). Whereas the file-drawer strategy can be utilised by authors as
well as by editors and reviewers, p-hacking can only be committed by authors/researchers.
Nonetheless, p-hacking strategies can be recommended by actors other than authors
(e.g., editors, reviewers, etc.). Especially p-hacking is almost without any costs, as data
analysis tools/packages become increasingly easy to apply (Paldam, 2013).

Evidence on the prevalence of publication bias
So far, there are two strategies for identifying publication bias: the first traces studies
through the publication process, the second asks authors, reviewers, or editors about
their publication practices via surveys. In the first strategy, most of the analyses trace
conference papers or ethics committee decisions if those results get published or remain
in the file-drawer. Overall previous findings note, that studies with significant results
have a substantially higher chance to get published (cf. Callaham et al., 1998; Coursol &
Wagner, 1986; Dickersin, 1990; Easterbrook et al., 1991). Ioannidis (1998) in addition finds
that significant studies have, beside their higher publication rate, also a substantially higher
publication speed, meaning a shorter time between the completion of the study and the
final publication. This results suggest that publication bias is a beneficial strategy in order
to maximize academic merits.

The second approach asks directly about the publication practices of the involved actors.
In a survey of psychologists that used a sensitive question technique up to 50% of the
respondents claimed that they exercised publication bias (John, Loewenstein & Prelec, 2012:
525). Franco, Malhotra & Simonovits (2014) also note that most non-significant findings go
to the file-drawer right after the analysis and are not even written up. Also, other forms of
misbehaviour, like optional stopping (stopping data collectionwhen significance is reached)
or erroneous rounding of p-values to reach significant results, are alarmingly widespread
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1Because for Fail-save-N (Rosenthal, 1979)
only rules of thumbs (instead of a formal
statistical test) exist it was not included in
the simulation at hand. Although it is still
widely applied (Banks, Kepes & McDaniel,
2012: 183; Ferguson & Brannick, 2012:
4), this benchmark is not recommended
in the Cochrane Handbook, a guideline
for conducting meta-analyses (Higgins &
Green, 2008: 321f.).

2For a similar result, see Terrin et al. (2003)
for the related Trim and Fill technique
(Duval & Tweedie, 2000).

Table 1 Publication bias tests in comparison. compares the four evaluated publication bias tests in respect to four criteria, the measurement level,
the sample used by the test, its underlying assumptions and its limitations.

Test Measurement level Sample Assumption Limitation

FAT Continuous [−∞,∞] All Cov(es, se)= 0 Only one-sided publication bias (PB) detectable
PU Continuous [0, 1] p< 0.05, effects of same sign Uniform or right skewed

Skewness ≥0
Only one-sided PB detectable
Only on prespecified levels
Effect homogeneity (fixed-effect meta-analysis)

TES Dichotomous [0, 1] All E= O Only on prespecified levels
Effect homogeneity (fixed-effect meta-analysis)

CT Dichotomous [0, 1] Threshold± caliper width P(UC)= P(OC) Only on prespecified levels

(prevalence rate arround 22.5% John, Loewenstein & Prelec, 2012: 525). These results are in
line with the survey of Ulrich & Miller (2017: 9), who report that researchers in the field of
psychology prefer significant over non-significant results, and, furthermore, attribute more
value to results with smaller p-values. These estimates may even be conservative because it
is known from the survey literature that sensitive behaviours like scientific misconduct may
be underreported (Kreuter, Presser & Tourangeau, 2008: 848). According to the presented
research results file-drawer and p-hacking behaviour is therefore quite widespread.

METHODS
Publication bias tests in comparison
So far, the presented detection strategies ask either directly for publication preferences or
examine the publication fate of conference papers. Both approaches have the weakness
that they either rely on the potentially biased answers of the actors involved or require
an immense effort to follow the publication process, while publication bias may have
happened before the paper is submitted to a conference. Statistical tests on publication bias
circumvent this problem by relying only on the published literature. In the paper at hand
the regression-based FAT (Egger et al., 1997; Stanley & Doucouliagos, 2014), PU (Van Aert,
Wicherts & Assen, 2016; Van Assen, Aert & Wicherts, 2015), an extended version of p-curve
(Simonsohn, Nelson & Simmons, 2014a; Simonsohn, Nelson & Simmons, 2014b; Simonsohn,
Simmons & Nelson, 2015), the TES (Ioannidis & Trikalinos, 2007), and the CT (Gerber &
Malhotra, 2008a; Gerber & Malhotra, 2008b) were evaluated (see online Appendix for an
in-depth discussion of the tests).1

In order to compare the different publication bias tests, four different criteria have to be
established: the assumptions of the test, the measurement level, the sample used, the test
method, and its according limitations (see Table 1).

The FAT tests basically the relationship between study’s precision and its effect size with
all available effect sizes from primary studies. If larger effects are observed for studies with
low precision (and low N ) publication bias is suspected. Nonetheless, alternative reasons
may lead to this result: small studies examine specific high risk populations in which
treatments may be more effective (Sterne et al., 2011); this effect heterogeneity may lead
to the diagnosis of publication bias where none exists (Schwarzer, Antes & Schumacher,
2002).2 The FAT has furthermore the disadvantage that only one-sided publication bias
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3For simulations see: Hayashino, Noguchi
& Fukui (2005); Kicinski (2014);Macaskill,
Walter & Irwig (2001); Sterne, Gavaghan &
Egger (2000).

4For simulations see: Bürkner & Doebler
(2014); Kicinski (2014);Moreno et al.
(2009); Renkewitz & Keiner (2016).

either in favour of a positive or negative significant effect can be tested. Alinaghi & Reed
(2016: 10) show that if significant results of either sign are searched for, the FAT suffers
frommassively inflated false positive rates. In the Monte Carlo simulation at hand only the
FAT is used because of its better statistical power as shown in prior simulations compared
to the similar rank correlation test of Begg & Mazumdar (1994)3 and the trim and fill
technique (Duval & Tweedie, 2000).4

PU has the assumption that every left skewness in the distribution of p-values smaller
than the significance threshold (e.g., p< 0.05) and conditioned on the underlying observed
mean effect (pp-value) is caused by publication bias. This assumption is, however, grounded
mainly on the fixed-effect estimate of the mean effect, which is very sensitive to effect
heterogeneity. PU furthermore limits its test-value only on significant estimates in the
direction where publication bias is suspected (Van Aert, Wicherts & Assen, 2016: 727).
Therefore PU is, as the FAT, only able to identify one-sided publication bias.

The TES (Ioannidis & Trikalinos, 2007; also called ic-index see Schimmack, 2012) in
contrast relies only on a dichotomous classifier, testing if the number of expected significant
results and the empirically observed number of significant effects differ. Because the TES
relies, as PU, on the fixed-effect estimate of the mean effect of all included studies it is
sensible to effect heterogeneity. A large controversy in the literature is not about the TES
itself, but on its application. Francis (2012a, 2012b, 2012c, 2012d, 2012e, 2013) used the TES
to identify singular articles in order to test if they suffer from publication bias. This may
invalidate the assumption of independence (Morey, 2013: 181) as well as inflate the false
positive rate in a similar manner than in primary research (cp. HARKing Kerr, 1998) if the
TES is used in such an exploratory manner (Simonsohn, 2013: 175). Ioannidis, however,
responds that if the TES is applied on prespecified research questions with a large and
independent number of effect sizes, the TES is even a conservative test on publication bias
(Ioannidis, 2013: 185).

The CT uses the most limited sample of the included tests that includes only estimates
slightly over and under the chosen significance level in a distribution of z-values. In
case of publication bias the assumption of a continuous distribution that results in
an approximately even distribution in a narrow interval (caliper) is violated by an
overrepresentation of just significant results. The broader the interval is set the more
it may deviate from the assumed even distribution caused by the true underlying effect.
This restrictive sample has the downside that the exclusion of most available values may
drastically reduce the statistical power of the test.

In contrast to the FAT, the other tests are only able to test for publication bias on
pre-specified levels (e.g., 0.05). Because the TES and the CT focus only on dichotomous
classifiers (significant or not in the case of the TES, slightly over or under the threshold for
the CT) also tests on two-sided publication bias are possible.

In previous simulation studies with a low number of included studies as well as
observations PU was superior to the TES (Van Assen, Aert & Wicherts, 2015: 303) and
the FAT (Renkewitz & Keiner, 2016). However, no evaluations exists based on a larger
number of primary studies. In particular, the newer publication bias tests like PU, the
TES, and the CT, are in need of an evaluation under different conditions. For the CT
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Table 2 Data generating process (DGP) of Monte Carlo simulation. The 100 conditions of the Monte Carlo simulations are described. Two dif-
ferent aspects were varied: the underlying data and the publication bias behaviour of the actors. For the underlying data the true effect size, the num-
ber of observations (N ) and the number of studies included in the meta-analysis (K ) were varied. The behavioural component altered the propor-
tions of authors who are willing to commit publication bias and its actual form as either p-hacking or file-drawer.

Conditions Values Functional form N (conditions)

Data setup:
1. True effects β: β = 0; 0.5; 1; 1.5; Het

ε = NV (0,10)
σx = 2

y =βx+ε 5

2. Number of observations N : µN = 100; 500 |N (µN )|N > 30 2
3. Number of studies K : K = 100; 1,000 2
Behavioural setup:
4. Publication bias (PB) PB= 0; 0.5; 1.0 β > 0 & p< 0.05 1+2∗2= 5
4.1. File-drawer Draw new sample size N (max. 9 additional samples)
4.2. p-hacking Run new analyses with same dataset y = βx + γjzj + ε

z = 0.5x + 0.5y + ε

(max. 3 z’s= 7 combinations)
5*2*2*5= 100

also no studies exist regarding the best caliper width to use. Despite the existence of some
simulation studies on publication bias tests, so far no direct comparison exists that evaluates
the performance of all four publication bias tests, especially under effect heterogeneity.

Simulation setup
In order to examine the performance of the four publication bias tests, a Monte Carlo
simulation approach is used. For the simulation two different processes have to be
distinguished: firstly, the data generation process (DGP), and, secondly, the meta-analytical
estimation method (EM). The DGP provides the ground for the hypothetical data used by
the simulated actors, as well as the results they report, whereas the EM applies the tests on
publication bias reported in the previous section. The central advantage of using Monte
Carlo simulations is that controlling the DGP allows to identify which simulated studies
suffer from publication bias and which do not. Similar to the case in experiments, different
conditions can be defined to ensure a controlled setting. The performance of the estimators
can then be examined under the different conditions.

Data setup of the primary studies and meta-analyses
The first step of the DGP defines different effect size conditions that underlie the analyses
of the simulated actors (see Table 2). As a first condition, the underlying true effect was
specified by a linear relationship with β = 0, 0.5, 1.0, 1.5. Analogous to a linear regression
model, this means for β = 0.5 that an increase of one unit of the independent variable
x increases the dependent variable y by 0.5. The specified linear relationship between
the dependent variable y and the independent variable x had a normally distributed
regression error term of ε=N (0,10), while the variation of the independent variable
was defined as σx = 2 (for a similar setup see Alinaghi & Reed, 2016; Paldam, 2015). The
regression coefficients can also be transformed in the Pearson correlation coefficient
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5A total of 16.6% of the simulated studies
were adequately powered with at least
80% power (Cohen, 1988: 56). The setting
produced by the DGP also reflects the
results of Ioannidis, Stanley & Doucouliagos
(2017: 245), who report that only 10% of
the studies in Economics are adequately
powered.

yielding approximately r = 0, 0.1, 0.2, 0.3. This results are equivalent to low or medium
effect sizes in terms of Cohen (1992) and cover about 75% of the empirical observed
effects in psychology (Bosco et al., 2015: 436).5 In addition to the homogenous conditions
with a common effect size, a heterogeneous condition was added that assumes no fixed
distribution of an underlying effect but a uniformmixture of all four effect sizes, as defined
above, plus an additional effect of β = 2.0 (r = 0.4) in order to ensure enough variation.

As the FAT is based on study precision, which is mainly driven by the number of
observations (N ) of the primary studies, N was computed as a second condition by an
absolute normal distribution with a mean of 100 (smallN ) or 500 (largeN ) and a standard
deviation of 150. In order to ensure an adequate statistical analysis for the primary studies,
N s equal to or smaller than 30 were excluded. This procedure resulted in a right skewed
distribution with a mean N of roughly 500 for the large N, and 165 for the small N
condition. The small N condition reflects the observed number of observations in leading
economics journals (mean: 152, own computations from the publicly available dataset
of Brodeur et al., 2016) as well as of typical trials included in Cochrane reviews (mean:
118, Mallett & Clarke, 2002: 822). Because both studies refer mainly to an experimental
literature, the large N condition reflects the more common number of observations
especially in ex-post-facto designs (e.g., survey studies).

The heterogeneity of effects in each of the meta-analyses was measured by I2, the share
of systematic variation in respect to the overall variation consisting of the systematic and
random variation (Higgins & Thompson, 2002). In case of the small N 68.62% and for
a large N 86.86% of the variation was systematic in the heterogeneous effect condition.
In terms of Higgins & Thompson (2002: 1553), an I2 larger than 50% has to be modelled
explicitly in meta-analyses and cannot be ignored.

In addition to the number of observations in the primary studies (N) the number
of primary studies that were included in the meta-analysis and form the basis of the
publication bias tests (K ) was varied in the third condition. A setting with 100 studies was
used as a lower condition, whereas 1,000 studies were set as an upper condition. Although
on average the number of trials in a meta-analysis is usually much lower than 100 studies
(median 28 studies in the meta-meta-analysis by Elia et al., 2016: 5). One hundred studies
were chosen because in this setting every publication bias test evaluated is at least partially
applicable. In other research areas like Economics, where meta-regression models are more
widely used to model effect heterogeneity, higher numbers of included trials estimates are
also quite common (e.g., 1,474 effect estimates in Doucouliagos & Stanley, 2009).

Behavioural setup of publication bias
Building on this data setup stage of the DGP the behavioural setup adds publication bias to
the simulation in a fourth step (see Table 2). Publication bias was defined as the willingness
to collect new data or run additional analyses if statistical significance failed (p≥ 0.05) or
a negative effect occurred. In the simulation only one-sided publication bias was modelled
because both the FAT and PU are not able to model two-sided publication bias that focuses
only on significant results irrespective of its sign. It is important to note that only the intent
to commit publication bias was varied in the simulation setup. The actual publication bias
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depends on the data setup itself: how large is the true effect size (β) and the number of
observations (N ) in the primary studies? Or, in short: is there already a significant positive
result which does not need a publication bias treatment?

Five different publication bias conditions have to be distinguished. Firstly, the condition
without publication bias: in this ideal case all estimates (βx) are estimated by a bivariate
ordinary least squares (OLS) model and afterwards published. Publishing in terms of the
simulation model means that all estimates enter the final meta-analysis. Therefore, in the
condition without publication bias either 100 or 1,000 regression results were estimated
and enter the meta-analysis.

In the second and third conditions publication bias was present with a 50% probability.
That means that 50% of the actors were willing to run additional analyses in order to
obtain significant results. These conditions seem closest to the behavioural benchmark of
the empirical studies presented.

If a non-significant result was obtained, actors operating under the second condition
chose to collect new data in order to obtain significant results that can be published.
This second condition therefore modelled publication bias under the file-drawer scenario,
because the datasets not used remained unpublished. An actor tried to run analyses on the
basis of up to nine additional datasets and only stopped earlier if a significant result with
a positive sign was obtained. If none of the 10 datasets yielded a significant relationship
with a positive sign, the estimate which was closest to the significance threshold has been
published. This rule served two purposes: firstly, it seemed plausible that an actor who has
tried that many analyses wants to get the results published in the end to compensate for the
invested effort and to avoid sunk costs (Thaler, 1980). Secondly, from a technical point of
view, this allowed to keep the number of observations in a meta-analysis K constant across
all simulation conditions.

In the third condition an actor did not try to achieve significant results by running
the same bivariate analysis on different samples, but rather tried to run different model
specifications on the same data by including control variables (zj) to achieve statistical
significance of the coefficient of interest (βx). The third condition therefore modelled
publication bias as a form of p-hacking, because the existing dataset was optimised to
receive a significant p-value. The actor was able to add three different control variables to
the model. The control variables were defined as collider variables that are both an effect
of x as well as y, which biases the effect of interest (Cole et al., 2009; Greenland, Pearl &
Robins, 1999). The effect of x and y on zj was, however, only small (γ = 0.5). The error
term of the equation defining z was normally distributed N(0,10). With three available
control variables zj an actor had seven different combinations to improve the research
results in order to obtain a significant effect of x on y.

In contrast to the second and third conditions, where 50% of the actors had the
intention to commit publication bias, in the fourth and fifth conditions all actors had the
intention to engage in publication bias practices, once again either through file-drawer
(fourth condition) or p-hacking behaviour (fifth condition). Part from the higher degree of
intention to engage in publication bias practices the settings remained the same. Although
the two conditions where all actors had the intent to engage in publication bias are far
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6In order to specify the number of
replications that are necessary to achieve a
sufficient statistical power of at least 80%
(Cohen, 1988: 56), a power analysis was
conducted for the statistical power as well
as the false positive rate estimates. For
the false positive rate, a small deviation
of 1 percentage point from the set 5%-
false positive rate has to be correctly
identified with at least an 80% chance. To
achieve this goal, every condition without
publication bias had to be supported with
3,729 runs. As deviations in power are,
though important but not as essential
as the false positive rate (Cohen, 1988:
56) a difference of 3 percentage points is
set as acceptable. In order to identify a 3
percentage point deviation from the target
power of 80% each of the 80 conditions
with existing publication bias needed 1,545
runs. In total, 198,080 runs were necessary,
resulting in nearly 109 million primary
studies that in the case of publication bias
contained up to 10 different regression
models.

too pessimistic, they allow to evaluate the performance of the tests in the most extreme
publication bias environment. Tests that are not able to detect publication bias even under
such extreme conditions are of low utility to the research community.

The resulting design matrix had 100 different combinations resulting from 20 data setup
conditions multiplied by the five publication bias conditions. In order to obtain reliable
estimates similarly to an experiment (Carsey & Harden, 2013: 4f.), every single cell of the
design matrix had to be replicated multiple times.6

The aim of the simulation study at hand was to compare the performance of the four
tests in respect of: (A) their capability to detect publication bias if present (true positive,
statistical power), as well as (B) consistent false positive classification (α-error). Because
the conditions with and without publication bias are known in a simulation study, the
power of the tests and the false positive rate is computable (Mooney, 1997: 77–79). In a first
step, a dummy variable (s) was constructed, with the value 1 for a significant test result
below the significance threshold (5% significance level; s= 1 if p< 0.05). The statistical
power, was defined as the proportion of significant results s in respect to all runs (r) with
publication bias (

∑r
i=1si/r if PB> 0). The false positive rate was computed equivalently

but in conditions without publication bias (
∑r

i=1si/r if PB= 0).

RESULTS
Prevalence of publication bias
Because publication bias in the experimental setup was implemented as the intent to
commit publication bias, three variables are useful to address the actual publication bias
and its impact on the overall bias. Firstly, the share of actual studies per meta-analysis that
suffer from publication bias (if p< 0.05 or negative result are obtained as a first result),
secondly the share of studies that achieve their goal of a significant positive result by
publication bias, and thirdly the impact of publication bias on the p-value of a fixed-effect
meta-analysis (deflation factor of the p-value). Because the heterogeneous effect condition
of the simulation does not allow an absolute bias measure the p-value deflation factor was
used for all conditions.

In a first step the focus is on how the opportunity structures of the simulation conditions
shape the committed publication bias. In the first two columns of Table 3 the actual
committed publication bias is shown dependent on study characteristics like the mean
number of observations in the primary studies (N ) and the underlying effect (β), including
effect heterogeneity. As expected, around 50% respectively 100% of the studies committed
publication bias in case of an underlying null-effect because only 2.5% of the results had
the right positive sign and were significant just by chance. In case of an underlying effect the
share of committed publication bias decreased because an already significant finding made
a publication bias treatment unnecessary. For β = 0.5 in the 50%publication bias condition
only 35%; for β = 1, 15% for β = 1.5 only 9%; and in the heterogeneous condition 22%
of the studies employed publication bias practices. The 100% publication bias condition
approximately doubled the prevalence rates of the 50% condition as expected.
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Table 3 Risk factors for publication and its impact on bias in the simulated data (OLS regression). The
first two columns in Table 3 show that actual committed publication bias behaviour depended largely on
the opportunity structure of the underlying data. Despite the defined 50% or 100% willingness of the au-
thors to commit publication bias, only those actors who face insignificant effects (caused by small effects
and sample sizes) engaged in publication bias practices. The success of publication bias in terms of signif-
icant results is shown in column three, dependent on the opportunity structure and form of publication
bias. Conditions under p-hacking were slightly less effective in obtaining significant results than condi-
tions under file-drawer publication bias. Column four shows the deflating impact of publication bias on
meta-analytic p-values. For an average publication bias this p-values halved or even quartered.

Publication
bias committed
(50% intention)

Publication
bias committed
(100% intention)

Publication
bias successful
(in relation to
committed)

Deflation
of p-value

N = 500 −0.105*** −0.211*** 0.179***

(ref. N = 100) (0.000) (0.001) (0.001)
β = 0.5 −0.196*** −0.391*** 0.471***

(ref. β = 0) (0.001) (0.001) (0.001)
β = 1 −0.389*** −0.777*** 0.513***

(0.001) (0.001) (0.001)
β = 1.5 −0.451*** −0.899*** 0.503***

(0.001) (0.001) (0.002)
β = heterogeneous −0.319*** −0.636*** 0.358***

(0.001) (0.001) (0.001)
p-hacking −0.100*** 0.197***

(ref. file-drawer) (0.001) (0.002)
Committed PB [+10ppts] −0.018***

(ref. mean = 32.5%) (0.001)
Successful PB [+10ppts] −0.077***

(ref. mean= 18.8%) (0.001)
Constant 0.541*** 1.080*** 0.313*** 0.225***

(0.000) (0.001) (0.001) (0.002)
Observations 61,760 61,760 115,843 123,520
R2 0.939 0.958 0.648 0.168

Notes.
Standard errors in parentheses.
*p< 0.05.
**p< 0.01.
***p< 0.001.

Besides the necessity of publication bias to achieve significant results also the success
probability in respect to committed publication bias depended on the conditions of the
primary studies as shown by the third column of Table 3. For small studies (N = 100)
with an underlying null-effect (β = 0) the success-probability in respect to the committed
publication bias was about 31.3%. Publication bias got more effective if larger studies
(N = 500) provide the primary study with more statistical power. The success probability
of publication bias rose dramatically around 50 percentage points if a specific underlying
empirical effect existed. Also, in case of effect heterogeneity, the success probability
increased about 35.8 percentage points. Slight differences could be observed in the effectivity
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of the publication bias mechanism, as p-hacking was with 10 percentage points less effective
than the file-drawer condition to achieve significant results.

As publication bias deflates p-values and therefore biases meta-analytical effect estimates
the impact of the actual observed publication bias (the share of committed and successful
publication bias) on the meta-analytical p-value is presented. The fourth column of
Table 3 shows that with an average proportion of publication bias committed (32.6%)
as well successfully implemented (18.8%) in a meta-analysis with 100 studies (K = 100)
the p-value of the meta-analysis more than quartered. This is further aggravated if the
share of committed as well as successful publication bias rose by 10 percentage points.
The actual impact of successful publication bias deflated the p-values by 7.7 percentage
points and was more pronounced than the deflation caused by non-successfully committed
publication bias (deflation by 1.7 percentage points). The deflation also was less severe if
p-hacking procedures, as implemented in the simulation at hand, were used. Nonetheless,
the meta-analytical p-value in case of p-hacking is still less than half the size (42.2%) of the
unbiased estimate.

False positive rate of publication bias tests
For the evaluated tests on publication bias consistent false positive rates aremost important.
In the simulation none of the tests should exceed the prespecified 5% error probability in
any condition. The false positive rate of the test was fixed in the simulation setting to 0.05,
so all false positive rates should be equal to, or even smaller than, 0.05. Positive deviations
from 0.05 point to inflated false positive rates, which lead to more false conclusions than
expected.

Table 4 shows the false positive rate in dependence of the number of studies included
(K = 100, 1,000) and effect heterogeneity measured by I 2. In the constant condition of a
meta-analysis with K = 100 and no effect heterogeneity none of the tests had larger false
positive rates than the expected 0.05. In particular, the TES, the 3% and 5% CTs were very
conservative. A larger meta-analytical sample increased the false positive rates for the TES
and the CTs. The broadest 15% CT missed the expected significance threshold of 5%, with
7.8% clearly. The false positive rates for PU in contrast were slightly lower. Increasing effect
heterogeneity resulted in more conservative false positive rates for PU, the 15% CT, and to
a smaller extent also for the FAT, the TES and the 10% CT. The narrower 3% and 5% CTs
were unaffected by effect heterogeneity.

The overall influence of the varied conditions on the false positive rate was small, as
can be seen by the small share of explained variance (R2 < 1.7%). Looking at the false
positive rates by each condition (Table A1 in the online Appendix) only the 10%- and
15%-caliper showed increased false positive rates because the underlying true effect rather
than publication bias elicited an overrepresentation of just significant values. Note however,
that the 3% and 5% CTs showed no increased false positive rates.

Statistical power of publication bias tests
The following regression model (Table 5) addresses the statistical power conditional on
the type of publication bias and its occurrence (committed as well as successful publication
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Table 4 Conditional false positive rates of the publication bias tests (OLS regression). Table 4 displays the false positive rates of the publication
bias tests conditional on the number of studies included in the meta-analysis (K ) as well as the between study heterogeneity (I 2). The FAT had the
most consistent false positive rate. The 15% CT missed the 5%-level clearly while the 10% CT showed a large variability and gets close to it. The 10%
and 15% CT are therefore problematic because they may suffer from inflated false positive rates.

PU FAT TES 3%CT 5%CT 10%CT 15%CT

K = 1,000 −0.005*** 0.000 0.006*** 0.026*** 0.023*** 0.026*** 0.050***

(ref. K = 100) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.002)
I2 [+10 percentage points] −0.003*** −0.001*** −0.001*** 0.000 0.000 −0.001*** −0.003***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Constanta 0.023*** 0.049 0.010*** 0.003** 0.008*** 0.019*** 0.028***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Observations 73,960 74,560 74,560 62,644 66,546 69,718 70,936
R2 0.005 0.000 0.002 0.010 0.007 0.006 0.017

Notes.
aTest H0: constant= 0.05.
Standard errors in parentheses.
*p< 0.05.
**p< 0.01.
***p< 0.001.

bias). Starting from the baseline condition of a meta-analysis withK = 100, a mean share of
publication bias committed (32.6%), as well as successfully applied (18.8%) via a file-drawer
procedure and no effect heterogeneity, the FAT had a superior power of 56.9%, followed
by the TES (51.5%) and the PU (48.3%). The CTs performed worst and yielded only a
power of 0.0%–38.6%.

The underperformance of the CTs is largely explained by the small number of studies in
the meta-analyses. With K = 100 hardly any study falls within the small caliper around the
significance threshold. This limitation on just significant or non-significant effects also led
to missing values, because without observations in the caliper no CT could be performed.
The underperformance of the CT changed if 1,000 studies were included, which improved
the estimated power substantially, by 30.7–57.3 percentage points, while smaller calipers
profited most. The FAT, the TES, and the PU, profited moderately from an increased
number of studies, by 24.4, 23.8 and 16.5 percentage points, respectively. When focussing
on the influence of heterogeneity in the meta-analyses the PU and the TES showed a drastic
drop in power, by 6.5 and 6.4 percentage points, if the heterogeneity measured by I 2 rose
by 10 percentage points. This decrease in power shows that neither PU nor TES were able
to cope with heterogeneity. In contrast, the FAT and the CTs actually showed a slight
increased statistical power. Varying the publication bias procedure from file-drawer to
p-hacking, which is less related to the standard error of the effect estimates, increased the
power of PU, TES, and the CTs. The CTs profited most, increasing the statistical power
by around 18 percentage points. The TES and PU showed a smaller increase of power, by
7.5 and 4.8 percentage points. The FAT, in contrast lost about 11 percentage points of its
power under p-hacking compared to the file-drawer condition. Although the differences in
power are dependent especially on the operationalization of the p-hacking condition in the
simulation, this result points on a weakness of the FAT under non file-drawer conditions
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7Significant or not (TES) over- or under-
caliper (CTs).

Table 5 Conditional statistical power of the publication bias tests (OLS regression). shows the statistical power of the publication bias tests con-
ditional on the number of studies included in the meta-analysis (K ) and the between study heterogeneity (I 2). In contrast to Table 4, also the share
of committed as well as successful publication bias and its form as either file-drawer or p-hacking was controlled. Overall the FAT had the largest
power but was not able to detect p-hacking as good as the TES. The CTs were underpowered if a low number of studies was included in a meta-
analysis but performed well in studies with large Ks. Both, PU and the TES, were not able to detect publication bias under effect heterogeneity.

PU FAT TES 3%CT 5%CT 10%CT 15%CT

K = 1,000 0.165*** 0.244*** 0.238*** 0.573*** 0.513*** 0.382*** 0.307***

(ref. K = 100) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
I2 [+10 percentage points] −0.065*** 0.001* −0.064*** 0.006*** 0.005*** 0.008*** 0.010***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
p-hacking 0.048*** −0.110*** 0.075*** 0.179*** 0.187*** 0.186*** 0.177***

(ref. file-drawer) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Comitted PB [+10ppts] 0.051*** 0.030*** −0.065*** −0.035*** −0.053*** −0.073*** −0.084***

(ref. mean = 32.6%) (0.000 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Successful PB [+10ppts] 0.103*** 0.099*** 0.221*** 0.162*** 0.193*** 0.224*** 0.234***

(ref. mean= 18.8%) (0.001 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Constanta 0.483*** 0.569*** 0.515*** −0.002 0.125*** 0.300*** 0.386***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Observations 123,520 123,520 123,520 107,736 111,315 115,243 117,207
R2 0.572 0.306 0.473 0.497 0.483 0.457 0.446

Notes.
aTest H0: constant= 0.8.
Standard errors in parentheses.
*p< 0.05.
**p< 0.01.
***p< 0.001.

that are less related to the standard error of the estimate but are still detectable in the
distribution of z- or p-values.

The structural difference between tests based on a continuous effect distribution (FAT,
PU) and tests that focus only on a dichotomous classification (TES, CTs)7 becomes
evident looking at the effect of the proportion of studies that underwent a publication bias
treatment in the simulation and the proportion of studies that had a successful outcome
after publication bias. Increasing the share of studies under publication bias lifted the power
by 3.0 (FAT) and 5.1 (PU) percentage points. A 10 percentage point increase in studies
successfully applying publication bias increases the power by 9.9 (FAT) and 10.3 percentage
points (PU). The TES and the CTs, however, were only able to detect successful publication
bias. An increase only in studies committing publication bias (whether successful or not)
in contrast reduced the statistical power. Both tests were therefore not able to detect all
possible outcomes of publication bias. This is especially problematic as non-successful
publication bias may also inflate the overall estimated effect in meta-analyses. All effects
presented are statistically significant (p< 0.05).

In contrast to the influence of the varied conditions on the false positive rate, the
influence on statistical power was substantial, varying from 30.6% in the case of the FAT
to 57.2% for the PU. This finding underlines the fact that all publication bias tests have
their strengths and weaknesses in specific conditions.
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DISCUSSION & CONCLUSION
In the simulation at hand, the performance of four different tests (PU, FAT, TES, CTs) were
evaluated in a Monte Carlo simulation. Different conditions were varied: the underlying
true effect size, including effect heterogeneity, the number of observations in the primary
studies, the number of studies in the meta-analyses, the degree of publication bias and its
form as either file-drawer or p-hacking.

Limitations
In order to compare the tests in a realistic setting that is nonetheless at least from the
assumptions of all four tests applicable, four central limitations have to be pointed out:

Firstly the simulation and its according publication bias procedures rest on the
assumptions that all the correlation between the study’s precision and its effect size is caused
by publication bias. In case that studies with larger effects are, for example after a pre-study
power analysis (Lau et al., 2006) conducted with a lower number of observation especially
the FAT may yield increased false positive rates (Schwarzer, Antes & Schumacher, 2002).

Secondly the number of observations included in the meta-analyses either set to
K = 100 or 1,000 is large compared to the average meta-analysis (Elia et al., 2016). The
results however showed that even in such large meta-analyses and especially in the more
realistic condition in which 50% of the actors are willing to commit publication bias, the
tests hardly yielded an adequate statistical power under most conditions. Increasing the
number of included studies is therefore important to assure an adequately powered test on
publication bias.

Thirdly the analysis focused only on one specific form of p-hacking that could occur in
both small (N = 100) or large studies (N = 500). Especially for studies where N is small,
other strategies like optional stopping may also be applied. Further research on publication
bias should therefore focus on the different impact of other p-hacking practices.

As a fourth limitation only one-sided publication bias against insignificant or negative
results was simulated. By assumption especially PU limits only on the negative or positive
signed studies that were supposed to be affected by publication bias. Also the FAT is not
able to detect two-sided publication bias because the funnel in this situation may still
be perfectly symmetric. The suggestions for applications if two-sided publication bias is
suspected are therefore limited to the TES and the CTs only.

CONCLUSION
The following five conclusions can be derived from the results: Firstly, for homogenous
research settings andwith publication bias favouring only effects in one direction (one-sided
publication bias) the FAT is recommended due to its most consistent false positive rate
as well as its superior statistical power. Secondly, if there are concerns whether there are
any correlations between the precision of the study and its effect size for other reasons
than publication bias (see first limitation) and if p-hacking is suspected, the TES should
be preferred to the FAT under effect homogeneity. As the 5% CT offers more relaxed
assumptions it is therefore the first alternative for the FAT under effect heterogeneity if a
large number of studies is included in the meta-analysis.
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Despite the analysis focussed only on one-sided publication bias, also two-sided
publication bias, favouring significant results with either sign may also be present. As
PU and the FAT are not able to identify one-sided publication bias only the TES and the
CTs remain for two-sided publication bias. Therefore, fourthly, the TES is recommended
under effect homogeneity because of its larger statistical power compared to the CTs.
Fifthly, in the case of heterogeneous effect sizes and a sufficient number of observations
in the meta-analysis the 5% CT provides the best trade-off between a conservative false
positive rate and a decent statistical power.

The 5% CT is therefore best used to identify publication bias in an effect heterogeneous
discipline-wide setting which relies per definition on completely different underlying effects
but offers enough studies to compensate for the low statistical power. Because the wider
10% and 15% CTs yield inflated false positive rates, at least in some conditions, they are
not recommended to identify publication bias.

Identifying publication bias in substantial meta-analyses as well as focussing on
publication as a general problem within the scientific domain is necessary in order to
establish and retain trust in scientific results. Further research, however, should not only
focus on the diagnosis of publication bias just stating a problem that is well known (Morey,
2013). Beyond the nonetheless important diagnosis of the scientific ‘‘disease’’ a further
examination of the risk factors, either on the side of the involved actors or with regard to
the incentive structure within the discipline (see for example Auspurg & Hinz, 2011) seem
essential. This includes also the evaluation of possible interventions (e.g., an open data
policy). Research on publication bias is inevitable to maintain trust in scientific results and
avoid wasted research funds that also limit the efficiency of science as a whole.

Beside the diagnosis of publication bias and its risk factors, also estimators of the
unbiased effect, that are beyond the scope of this paper, like the effect estimates provided
by PU and the PET (for example the PET/PEESE procedure of Stanley & Doucouliagos,
2014) should be evaluated comparatively. This is at most important for meta-analyses with
a heterogeneous effect that try to uncover the underlying true effect rather than test for
publication bias alone.
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