Chemische Berichte

Contents

Teil A: Anorganische und elementorganische Chemie / Part A: Inorganic and Organometallic Chemistry

Inhalt

Tapper, A., Schmitz, T., Paetzold, P.	595	۲	Reaktionen an der BC-Doppelbindung von $iPr_2N = B = C(SiMe_3)_2$	Reactions at the BC Double Bond of iPr_{2^*} N = B = C(SiMe_3) ₂
Veith, M., Böhnlein, J.	603	►	Alkalimetallderivate eines Alkoxysilazans	Alkali Metal Derivatives of an Alkoxysi- lazane
Sünkel, K., Steiner, D.	609	•	Komplexchemie perhalogenierter Cyclo- pentadiene und Alkine, IV. – Darstellung, Reaktionen und Strukturen von Alkylthio- und Phenylthio-substituierten (Cyclopen- tadienyl)mangan- und -rhodiumkomple- xen	Chemistry of Complexes of Perhalogen- ated Cyclopentadienes and Alkynes, IV. – Preparation, Reactions, and Structures of Alkylthio- and Phenylthio-Substituted (Cyclopentadienyl)manganese and -rho- dium Complexes
Herberich, G. E., Büschges, U.	615	•	Tripeldecker-Komplexe, V. – Der Me- chanismus des nucleophilen Abbaus von μ -[η^{5} -(1-Phenylborol)]bis[η^{5} -(1-phenylbo- rol)rhodium]	Triple-Decked Complexes, V. – The Mechanism of the Nucleophilic Degradation of μ -[η^{5} -(1-Phenylborole)]bis[η^{5} -(1-phenylborole)rhodium]
Hetterich, W., Kisch, H.	621	•	Heterogene Photokatalyse, VI. – Cad- miumsulfid-assistierte Photoreduktion von molekularem Stickstoff	Cadmium-Sulfide-Assisted Photoreduc- tion of Dinitrogen
Jutzi, P., Schnittger, J.	629	•	Tetra-tert-butylpentafulvalen als Ligand in Zweikern-Carbonylkomplexen von Chrom, Molybdän, Wolfram und Eisen	Tetra- <i>tert</i> -butylpentafulvalene as Ligand in Dinuclear Carbonyl Complexes of Chromium, Molybdenum, Tungsten, and Iron
Notiz / Note				
Brodt, G., Siebert, W.	633	•	Carbonyleisen-Komplexe eines 1,3-Dihy- dro-1,3-diborapentafulven-Derivates	Carbonyliron Complexes of a 1,3-Dihy- dro-1,3-diborapentafulvene Derivative

B Teil B: Organisch	e Chei	mie	e / Part B: Organic Chemistry		
Walsh, R., Untiedt, S., Stohlmeier, M., de Meijere, A.	637		Gas-Phasen-Kinetik der Pyrolyse von 3,3- Dimethylcyclopropen und seinem 1-Tri- methylsilyl-Derivat. – Der Effekt der Si- lyl-Substitution auf die Cyclopropen-Iso- merisierung	•	Gas-Phase Kinetics of Pyrolysis of 3,3-Di- methylcyclopropene and Its 1-Trimethyl- silyl Derivative. – The Effect of Silyl Sub- stitution on Cyclopropene Isomerisation
Tietze, L. F., Meier, H., Nutt, H.	643		Inter- und intramolekulare Hetero-Diels- Alder-Reaktionen, XXV. – Tandem- Knoevenagel-Hetero-Diels-Alder-Reak- tion mit einem Formylessigsäure-Äquiva- lent. Synthese von Dihydropyrancarbon- säureesetern	•	Inter- and Intramolecular Hetero Diels- Alder Reactions, XXV. – The Tandem Knoevenagel Hetero Diels-Alder Reaction with a Formylacetic Acid Equivalent. Syn- thesis of Dihydropyrancarboxylates
Perjési, P., Földesi, A., Batta, G., Tamás, J.	651		Synthese und Stereochemie gesättigter und partiell gesättigter 4-Aryl-4 <i>H</i> -3,1-benzo-thiazin-2(1 <i>H</i>)-thione	•	Synthesis and Stereochemistry of Saturated and Partially Saturated 4-Aryl-4H- 3,1-benzothiazine-2(1H)-thiones
Hartke, K., Richter, W. F., Massa, W., Baum, G.	657	•	<i>O</i> -(Alkylidenpropandinitril)- und <i>O</i> -(Al- kylidencyanamid)tropolonate, Tautomerie und intramolekulare Diels-Alder-Reaktio- nen		O-(Alkylidenepropanedinitrile)- and O-(Al- kylidenecyanamide)tropolonates, Tauto- merism and Intramolecular Diels-Alder Reactions
		•	Publikationssprache	▶	Language of Publication

Inhalt (Fortsetzung)

r.					
Hartke, K., Richter, W. F., Kämpchen, T.	669	•	Zur Tautomerie von O-Alkylidenpropan- dinitril- und O-Alkylidencyanamid-Grup- pen in O-substituierten Acetylacetonen		Tautomerism of O-Alkylidenepropanedi- nitrile and O-Alkylidenecyanamide Groups in O-Substituted Acetylacetones
Köster, R., Schüßler, W., Yalpani, M.	677	•	Reduktion kondensierter Arene mit BH- Boranen, I. – Reaktionen von Naphtha- lin, Anthracen und Phenanthren mit Te- traalkyldiboranen(6)		Reduction of Polycyclic Arenes with BH- Boranes, I. – Reactions of Naphthalene, Anthracene, and Phenanthrene with Te- traalkyldiboranes(6)
Yalpani, M., Lunow, T., Köster, R.	687		Reduktionen kondensierter Arene mit BH-Boranen, II. – Borankatalysierte Hydrierung von Naphthalinen zu Tetrali- nen	•	Reduction of Polycyclic Arenes by BH- Boranes, II. – Borane Catalyzed Hydro- genation of Naphthalenes to Tetralins
Christl, M., Brunn, E., Kraft, A., Irngartinger, H., Huber-Patz, U.	695	•	Nichtbindende Wechselwirkungen in zwei 7-Spirotetracyclo[4.1.0.0 ^{2,4} .0 ^{3,5}]heptanen		Nonbonded Interactions in Two 7-Spirotetracyclo[$4.1.0.0^{2,4}.0^{3,5}$]heptanes
Brückner, R.	703		Asymmetrische Induktion und einfache Diastereoselektivität bei der [2,3]-Wittig- Umlagerung von Esterenolaten	•	Asymmetric Induction and Simple Dia- stereoselectivity in the [2,3] Wittig Rear- rangement of Ester Enolates
Hoferichter, R., Seitz, G., Waßmuth, H.	711	•	Azulen und 1,6-Methano[10]annulen als Dienophile in der Diels-Alder-Reaktion mit 3,6-Bis(trifluormethyl)-1,2,4,5-tetrazin		Azulene and 1,6-Methano[10]annulene as Dienophiles in the Diels-Alder Reaction with 3,6-Bis(trifluoromethyl)-1,2,4,5-tetra- zine
Ondruschka, B., Zimmermann, G., Remmler, M., Ziegler, U., Kopinke, FD., Olk, B., Findeisen, M.	715		Über die thermische Cycloisomerisierung langkettiger Alkylacetylene in der Gas- phase	•	On the Thermal Cycloisomerization of Long-Chain Alkylacetylenes in the Gas Phase
Kopinke, FD., Zimmermann, G., Aust, J., Scherzer, K.	721	•	Gasphasenpyrolyse von $[2,2,3,3-D_4]$ Phenylcyclopropan		Gas Phase Pyrolysis of [2,2,3,3-D ₄]Phenyl- cyclopropane
Daub, J., Salbeck, J.	727	•	Elektronentransferchemie chinoider Ver- bindungen: Chemische, elektrochemische und UV/VIS-spektroelektrochemische Un- tersuchungen von Acenazulendionen		Electron-Transfer Behaviour of Quinoid Compounds: Acenazulenediones – A Study by Chemical and Electrochemical Methods and by UV/VIS Spectroelectro- chemistry
Frim, R., Rabinovitz, M., Bodwell, G., Raulfs, FW., Hopf, H.	737		Cyclophane, XXVII. – [2.2]Indenophan- Mono- und Dianionen: Darstellung und kernmagnetische Resonanz-Spektren	•	Cyclophanes, XXVII. – [2.2]Indenophane Mono- and Dianions: Preparation and Nuclear Magnetic Resonance Spectra
Teles, J. H., Maier, G.	745		Methoxy- und Aminoisocyanat	▶	Methoxy- and Aminoisocyanate
Teles, J. H., Maier, G., Hess, Jr., B. A., Schaad, L. J.	749		Infrarot-Spektren und Photochemie von Isodiazen und seinen deuterierten Isoto- pomeren	•	Infrared Spectra and Photochemistry of Isodiazene and Its Deuterated Isotopo- mers
Teles, J. H., Maier, G., Hess, Jr., B. A., Schaad, L. J., Winnewisser, M., Winnewisser, B. P.	753		Die CHNO-Isomeren	•	The CHNO Isomers
Maier, G., Wiegand, N. H., Baum, S., Wüllner, R., Mayer, W., Boese, R.	767	•	Valenzisomerisierungen, 17. – Persubsti- tuierte <i>cis</i> -9,10-Dihydronaphthaline und ihre Valenzisomerisierungen		Valence Isomerizations, 17. – Persubsti- tuted <i>cis</i> -9,10-Dihydronaphthalenes and Their Valence Isomerizations
Maier, G., Wiegand, N. H., Baum, S., Wüllner, R.	781	•	Valenzisomerisierungen, 18. – Valenzisomerisierungen persubstituierter $(CH)_{10}$ -Systeme		Valence Isomerizations, 18. – Valence Isomerizations of Persubstituted (CH) ₁₀ Systems
Kurzmitteilungen / Short Comm	unica	tio	ıs		
Széll, T., Sweeney, M., Chadha, S., Sohár, P.	795		Weitere Thienylchalcone, II	•	Further Thienylchalcones, II
Balkenhohl, F., Bohnenpoll, M., Winterfeldt, E.	797		Cyclopentenon-Derivate, XIV. – Stereo- selektive Bildung von Prostacyclin-Zwi- schenstufen	•	Cyclopentenone Derivatives, XIV. – Ste- reoselective Formation of Prostacyclin In- termediates

Publikationssprache

Language of Publication

Contents (Continued)

Komplexchemie perhalogenierter Cyclopentadiene und Alkine, IV¹⁾

Darstellung, Reaktionen und Strukturen von Alkylthio- und Phenylthiosubstituierten (Cyclopentadienyl)mangan- und -rhodiumkomplexen

Karlheinz Sünkel* und Doris Steiner

Institut für anorganische Chemie der Universität München, Meiserstr. 1, D-8000 München 2

Eingegangen am 24. Oktober 1988

Keywords: (Cyclopentadienyl)manganese complexes / (Cyclopentadienyl)rhodium complexes / Perhalogenocyclopentadienyl complexes

Die Darstellung und die Kristallstrukturen von $(C_5Cl_4SPh)Rh(1,5-COD)$ (**2b**), $[C_5Cl_3(SR)_2Mn(CO)_3$ [R = Ph (**4a**), Me (**4b**)] und $[C_5Cl_2(SPh)_3]Mn(CO)_3$ (**5a**) sowie die Darstellung von $[C_5Cl_5 - x^{-1}(SBu)_x]Mn(CO)_3$ [x = 1 (**3b**), 2 (**4c**), 3 (**5b**)], ferner Reaktionen von $[C_5Cl_2(SR)_3]Mn(CO)_3$ und $[C_5(SMe)_5]Mn(CO)_3$ mit PdCl₂-(PhCN)₂ werden beschrieben. In **2b** ist der Cyclopentadienylring nicht planar, und in **5a** stehen die drei Phenylringe nahezu parallel.

Chemistry of Complexes of Perhalogenated Cyclopentadienes and Alkynes, IV¹⁾. – Preparation, Reactions, and Structures of Alkylthio- and Phenylthio-Substituted (Cyclopentadienyl)manganese and -rhodium Complexes

The syntheses and crystal structures of $(C_5Cl_4SPh)Rh(1,5-COD)$ (2b), $[C_5Cl_3(SR)_2Mn(CO)_3$ [R = Ph (4a), Me (4b)] and $[C_5Cl_2-(SPh)_3]Mn(CO)_3$ (5a) as well as the syntheses of $[C_5Cl_5 - x^{-1}(SBu)_x]Mn(CO)_3$ [x = 1 (3b), 2 (4c), 3 (5b)] and the reactions of $[C_5Cl_2(SR)_3]Mn(CO)_3$ and $[C_5(SMe)_5]Mn(CO)_3$ with PdCl₂(Ph-CN)₂ are described. The cyclopentadienyl ring in 2b is not planar, and the three phenyl rings of 5a are parallel to each other.

Bei Strukturbestimmungen von Cyclopentadienylkomplexen wird vielfach zur Verkürzung der Rechenzeit der Cyclopentadienylring als planares regelmäßiges Fünfeck starr eingegeben²⁾. Während ungleichmäßige C-C-Bindungslängen zwischen 138 und 144 pm oft beobachtet werden, sind deutliche Abweichungen von der Planarität selten³⁾. Ein solches Beispiel ist in $(C_5Cl_5)Rh(1,5-COD)$ (COD = 1,5-Cyclooctadien) (1a) zu finden. Im Rahmen unserer Untersuchungen über die Reaktivität von perhalogenierten Cyclopentadienvlverbindungen interessierte uns der Einfluß der Einführung von Schwefelsubstituenten in den Fünfring auf dessen Geometrie. Außerdem versuchten wir, weitere Beispiele für Alkylthio-substituierte Cymantrenderivate zu finden und das Komplexbildungsverhalten von Tris- und Pentakismercapto-substituierten (Cyclopentadienyl)mangankomplexen gegenüber PdCl₂ zu untersuchen.

Ergebnisse und Diskussion

Wie wir bereits früher zeigten, läßt sich in (C_5Cl_4Br) -Mn(CO)₃ (1b) durch *n*-Butyllithium das Brom gegen Lithium austauschen⁴⁾, das dann seinerseits durch Elektrophile substituiert werden kann. Dies gelingt durch Umsetzung mit Dimethyldisulfid, wobei sich nacheinander alle fünf Halogensubstituenten durch Methylthiogruppen ersetzen lassen⁵⁾. Wir versuchten nun, dieses Syntheseprinzip einerseits auch auf den eingangs erwähnten Rhodiumkomplex 1a, andererseits auch auf andere Disulfide auszuweiten. In der Tat läßt sich auch an 1a ein Chlor durch Lithium ersetzen und dann mit Disulfiden zu den Methylthio- und Phenylthiosubstituierten Derivaten 2a, b umsetzen. $(C_5Cl_2X_2Y)ML_n \xrightarrow{1. BuLi} (C_5Cl_2X_2SR)ML_n$ (GI.1)

	ML	X1	X2	Y		ML _n	X1	χ2	Y
1b	Rh(COD)	CI	CI	CI	4a	Mn(CO)3	SPh	CI	SPh
1b	Mn(CO)3	CI	CI	Br	4b	Mn(CO)3	SMe	CI	SMe
2a	Rh(COD)	СІ	CI	SMe	4c	Mn(CO)3	SBu	CI	SBu
2ь	Rh(COD)	СІ	CI	SPh	5a	Mn(CO) ₃	SPh	SPh	SPh
3a	Mn(CO)3	СІ	CI	SPh	5b	Mn(CO) ₃	SBu	SBu	SBu
3ь	Mn(CO)3	CI	CI	SBu	5c	Mn(CO) ₃	SMe	SMe	SMe

Im Unterschied zu der entsprechenden Reaktion am Mangankomplex 1b fallen die Produkte 2 nur in geringen Ausbeuten an und zersetzen sich in Lösung, vor allem am Licht, innerhalb weniger Tage vollständig.

Ausgehend von dem von uns bereits früher beschriebenen⁴⁾ (C₅Cl₄SPh)Mn(CO)₃ (**3a**) war es möglich, durch Umsetzung mit Butyllithium und Diphenyldisulfid sowohl [C₅Cl₃-(SPh)₂]Mn(CO)₃ (**4a**) als auch [C₅Cl₂(SPh)₃]Mn(CO)₃ (**5a**) zu erhalten. Es gelang jedoch nicht, noch mehr Phenylthio-Substituenten einzuführen. In ähnlicher Weise lassen sich aus **1b** auch die *n*-Butyl-Derivate [C₅Cl_{5-x}(SBu)_x]Mn(CO)₃ (x = 1: 3b; x = 2: 4c, x = 3: 5b), als allerdings mit *n*-Bu₂S₂ verunreinigte Öle erhalten, die lediglich anhand ihrer IR- und ¹³C-NMR-Spektren charakterisiert werden konnten. Der Versuch, weitere Butylthiogruppen einzuführen, führte zu einem Mehrkomponentengemisch unbekannter Zusammensetzung.

Von 2b, 4a, 5a und dem zu 4a analogen Bismethylthioderivat $4b^{5}$ konnten Kristalle erhalten und ihre Strukturen bestimmt werden. In Tab. 1 sind die Daten zur Röntgenstrukturanalyse zusammengestellt.

Eines der beiden unabhängigen Moleküle von 2b ist in Abb. 1 dargestellt (das andere Molekül unterscheidet sich geringfügig in der Orientierung des Cyclooctadienrings und des Phenylrings bezüglich der Cyclopentadienylebene). Wie bei der Ausgangsverbindung $1a^{3a}$ ist auch in 2b ein C-Atom

des Fünfrings deutlich näher am Rhodium-Atom [220.1(6) bzw. 219.7(6) pm] als die anderen vier C-Atome [in beiden unabhängigen Molekülen durchschnittlich 227.8(6) pm]: Es ist dem Atom, das den Schwefelsubstituenten trägt, benachbart. Die Substituenten am planaren Teil des Fünfrings sind alle deutlich aus der Ebene vom Rhodium-Atom weg verschoben. Im Unterschied zur Struktur von $1a^{3a}$ ist die C-Cl-Bindung des nicht coplanaren C-Atoms nicht deutlich länger als die anderen C-Cl-Bindungen.

In 4a (Abb. 2) sind die Abweichungen von der Planarität⁶ im Fünfring bis maximal 3 pm nach beiden Seiten gering. In 5a (Abb. 3) sind die drei schwefeltragenden C-Atome etwas weiter vom Mangan entfernt, so daß eine geringfügige Faltung des Fünfrings entlang der Achse C13-C15 zu beobachten ist.

Die Phenylringe stehen sowohl in 2b, 4a als auch in 5a senkrecht auf der Ebene des Cyclopentadienylrings⁶. Sie

Abb. 1. Kristallstruktur von **2b**, Molekül I, thermische Ellipsoide bei 20% Aufenthaltswahrscheinlichkeit. H-Atome weggelassen. Abstände (in pm) von Rh1: C11 211.1(9); C12 210.7(6); C15 210.8(8); C16 211.1(8)

Abb. 2. Kristallstruktur von 4a, thermische Ellipsoide bei 20% Aufenthaltswahrscheinlichkeit. H-Atome weggelassen. Abstände (in pm) von Mn1: C11 213.9(12); C12 214.0(12); C13 216.3(12); C14 214.1(13); C15 214.1(11)

Гаb. 1. Kristallographische An	aben zu den Strukturuntersuchungen ¹⁰
--------------------------------	--

	2b	4a	4b	5a
Molekülformel	C19H17Cl4RhS	C20H10Cl3MnO3S2	C10H6Cl3MnO3S2	C ₂₆ H ₁₅ Cl ₂ MnO ₃ S ₃
Molmasse	522.11	523.72	399.57	597.43
Kristallgröβe (mm)	.55x.38x.20	.4x.45x.15	.35x.30x.10	.35x.32x.10
Raumgruppe	PĨ	P21/c	P21/c	C2/c
a(pm)	847.5(3)	772.1(8)	1246.3(8)	2299.1(6)
b	1555.4(5)	792.9(9)	954.8(3)	775.0(3)
с	1742.1(5)	3658.8(21)	1391.9(8)	2941.9(3)
a (°)	112.89(2)			
β	102.81(2)	95.28(7)	113.63(4)	95.13(3)
γ	98.47(2)			
V (pm ³)	1.992(1)	2.245(3)	1.517(1)	5.221(3)
Z	4	4	4	8
μ(Μο-Κα)	14.87	11.30	16.31	9.49
Absorptionskorr.	El	-	El	El
min.Transm.	.145		.229	.072
max.Transm.	.194		.275	.088
gemessene Reflexe	6765	3836	2588	3658
20-Bereich	4-50°	4-50°	4-40°	4-35°
Indexbereich	+h,±k,±l	+h,+k,±l	±h,+k,±1	+h,±k,±1
davon unabhängig	6167	3283	1336	1625
davon beobachtet	5538	1344	1058	1111
Anzahl verf.Parameter	261	177	107	201
Lösungsmethode	Patterson	direkt	direkt	direkt
anisotrope Atome	Rh,S,Cl	Mn,S,Cl,(CO)	Mn,S,Cl	Mn,S,Cl,(CO)
H-Atome berechnet	ja	ja	ja	ja
R	.0462	.0773	.0432	.0762
Rw	. 0519	.0752	.0451	.0765
Restelektronendichte	1.32	0.47	0.45	0.38

Abb. 4. Projektion der Einheitszelle von 5a

sind bei 5a im Unterschied zu 4a allerdings parallel zueinander ausgerichtet. Wie man aus der Projektion der ganzen Einheitszelle entnehmen kann (Abb. 4), stehen wegen deren Zentrosymmetrie eine Vielzahl von Ringen zueinander parallel.

In der Bis(methylthio)-Verbindung **4b** orientieren sich die Methylgruppen ebenfalls so, daß die Ebenen C(Ring)-S-C(Methyl) nahezu senkrecht zur Ebene des Fünfrings stehen (Abb. 5).

In Tab. 2 sind alle relevanten Strukturmerkmale von 2b, 4a, 4b und 5a zusammengestellt und in Vergleich mit der von uns schon früher beschriebenen⁵⁾ Pentakis(methylthio)-Verbindung $[C_5(SMe)_5]Mn(CO)_3$ (6) gesetzt. Im Rahmen der Standardabweichungen sind die gemittelten Bindungslängen am Cyclopentadienylliganden in allen fünf Verbindungen gleich. Betrachtet man die individuellen C-C-Abstände

Abb. 5. Kristallstruktur von 4b, thermische Ellipsoide bei 20% Aufenthaltswahrscheinlichkeit. H-Atome weggelassen. Abstände (in pm) der Ringatome von Mn1: C11 215.1(8); C12 214.7(8); C13 213.8(9); C14 214.4(9); C15 216.1(8)

der planaren Fünfringe in 4a, 4b und 5a, so ist zwar eine gewisse Streubreite von 138 (C12-C13 in 5a) bis 144.4 pm (C14-C15 in 4a) zu beobachten, systematische Zusammenhänge zwischen Substituentenmuster und Bindungslängen lassen sich aber nicht erkennen. Aus der relativen Orientierung der Mn-CO-Vektoren bezüglich des Fünfrings erkennt man, daß jeweis zwei Vektoren in etwa coplanar mit C-Cl-Vektoren am Ring sind. Die Projektion des dritten Vektors "halbiert" eine C-C-Bindung. Wie schon bei substituierten $CpM(CO)_2$ -Derivaten beschrieben (M = Co^{3c}), Rh^{3c)}, ist auch in **4a** und **5a** die so "halbierte" Bindung die relativ längste der fünf C-C-Bindungen, nicht jedoch in 4b. Für die Verbindungen $(C_5R_5)Co(COD)$ ließen sich zwei grundsätzliche Strukturtypen unterscheiden, je nachdem ob ein Vektor C-R des Fünfrings senkrecht oder parallel zu den Doppelbindungen des COD-Liganden steht⁷. Unsere Rhodiumverbindung 2b ist bezüglich des Phenylthio-Substituenten vom letzten Typ ("Typ IIa"). Komplexe vom Typ IIa sollen besonders aktive Katalysatoren für die Pyridinsynthese sein 7 . Ob sich die Befunde von Cobalt-Komplexen auf unsere doch sehr modifizierten Rhodiumsysteme übertragen lassen, muß noch geklärt werden.

Tab. 2. Ausgewählte Strukturmerkmale von 2b, 4a, 4b, 5a und 6

	D(M-Ccn)	D(C-Ccp)	$D(C_{cp}-C1)$	D(Ccp-S)	D(S-CR)
2b(T)	226.2(6)	143.0(10)	171.0(7)	174.4(7)	180.7(7)
2b(II)	226.1(7)	142.7(10)	170.8(7)	175.9(4)	180.2(6)
44	214.2(13)	143.0(17)	171.0(13)	176.1(11)	176.7(12)
4b	214.8(9)	143.1(11)	171.3(8)	174.8(8)	179.1(12)
5.	213.2(15)	141.0(22)	172.6(16)	176.4(16)	178.3(18)
6 •)	214.7(9)	142.7(12)		176.5(9)	177.4(12)
	R (Ecp-Ccp)	R(Ecp-Cl)	R(Ecp-S)	R(Ecp-Cr)	R (Ecp-M)
2b(I)	0.0/8.1	-17.2/4.8	-10.5	-189.3	192.3
2b(II)	-0.1/8.8	-20.2/2.6	-21.9	-199.4	192.7
4.	-1.4/1.6	-18.3/-14.3	-8.2/2.5	-175.2	176.6
45	-1.4/1.3	-17.0/-12.6	-5.7/4.2	-181.0/-168.9	177.0
5.	-0.3/0.2	-16.7/-12.1	-9.3/-1.7	-185.8/-177.5	176.2
6 1)	-0.4/0.3		-19.8/18.1	-179.3/122.6	178.3

 $D(C_{cp} - X)$: mittlerer Abstand der Atome X von einem Cyclopentadienyl-C-Atom. – $D(S - C_R)$: mittlerer Abstand der Schwefelatome von ihren Substituenten. – $R(E_{cp} - X)$: Abstandsbereich der Atome X von der Cyclopentadienylringebene⁶.

Zusammenfassend läßt sich sagen, daß Komplexe mit Halogen- und Alkylthio/Arylthio-substituierten Cyclopentadienylliganden hinsichtlich ihrer gemittelten Bindungsparameter sehr ähnlich sind. Rhodium-Komplexe dieses Typs scheinen als grundlegende Eigenart die deutliche Verschiebung eines C-Atoms aus der Ringebene zu haben, während bei den Manganderivaten nur bei **5a** durch die Faltung eine systematische Abweichung von der Planarität auftritt. Phenylthio-Substituenten zeigen eine nahezu orthogonale Einstellung der Phenylringe zur Ebene des Fünfrings. Künftige Untersuchungen werden deshalb auch Struktur-Reaktivitäts-Beziehungen zum Gegenstand haben.

Da Thioether eher zu den "schwachen Liganden" gehören, versuchten wir, das Komplexbildungsverhalten unserer Systeme zunächst an den zur Chelatbildung befähigten Komplexen 5 und 6 zu untersuchen. In der Tat reagieren 5a, 5b, 5c und 6 mit PdCl₂(PhCN)₂ zu den Chelatkomplexen 7a-d, die in sauberer analysenreiner Form anfallen und in einem Fall durch Röntgenstrukturanalyse charakterisiert werden konnten⁸⁾.

Herrn Prof. Dr. W. Beck danken wir für sein förderndes Interesse und die Unterstützung mit Institutsmitteln.

Experimenteller Teil

Alle Reaktionen wurden unter N₂ in Schlenk-Rohren mit N₂gesättigten und nach Standardverfahren getrockneten Lösungsmitteln durchgeführt. (C₅Cl₃)Rh(COD) (**1** a) und (C₅Cl₄Br)Mn(CO)₃ (**1** b) wurden nach Literaturvorschrift⁹⁾ hergestellt. Alle verwendeten Reagenzien waren handelsübliche Produkte und wurden ohne weitere Reinigung eingesetzt. Die Butyllithium-Lösung war 1.6 m, als Kieselgel wurde Kieselgel 60 von Merck verwendet. NMR-Spektren wurden an einem JEOL FX-90-Gerät (90 MHz) aufgenommen.

(1.5-Cyclooctadien) [tetrachlor (methylthio) cyclopentadienyl]rhodium (2a): Eine Lösung von 510 mg 1a (1.14 mmol) in 10 ml Et₂O wird auf -60° C gekühlt. Nach Zugabe von 0.71 ml Butyllithium-Lösung (1.14 mmol) wird 15 min bei dieser Temp. gerührt und dann mit 0.1 ml Me₂S₂ (1.14 mmol) versetzt. Es wird langsam auf Raumtemp. erwärmt und dann das Lösungsmittel i. Vak. entfernt. Das zurückbleibende gelbe Öl wird zweimal mit je 20 ml Hexan extrahiert. Die vereinigten Extrakte werden eingeengt und an Kieselgel (5 × 2 cm) chromatographiert. Das Eluat mit Hexan wird zur Trockene gebracht, wobei ein gelbes Pulver zurückbleibt. Ausb. 150 mg (28%), Schmp. 50°C (Zers.). - ¹H-NMR (C₆D₆): δ = 3.68 m (HC=), 1.79 m (H₂C), 2.04 s (SCH₃). - ¹³C-NMR (C₆D₆): δ = 79.5 d (¹J_{RhC} = 14 Hz, HC=), 32.1 s (H₂C), 99.4, 96.3 d (¹J_{RhC} = 4.5 Hz, C₃R₅), 21.7 s (SCH₃).

 $\begin{array}{rll} C_{14}H_{15}Cl_4RhS \ (460.1) & \mbox{Ber. C} & 36.55 \ H \ 3.29 \\ & \mbox{Gef. C} & 36.31 \ H \ 3.24 \end{array}$

(1.5-Cyclooctadien)[tetrachlor(phenylthio)cyclopentadienyl]rhodium (2b): Eine Lösung von 450 mg 1a (1.00 mmol) in 10 ml Et₂O wird auf -60 °C gekühlt, mit 0.63 ml Butyllithiumlösung (1.00 mmol) und dann 0.22 g Ph₂S₂ (1.00 mmol) versetzt und langsam bis auf -20 °C erwärmt. Bei Raumtemp. wird das Lösungsmittel i. Vak. entfernt, wobei ein schwarzes Öl zurückbleibt. Dieses wird mit dreimal je 15 ml Hexan extrahiert. Der Extrakt wird dann bis auf 5 ml eingeengt und anschließend an Kieselgel (5 × 2 cm) chromatographiert. Das Eluat mit Hexan wird bis auf ungefähr 1 ml eingeengt und auf -30 °C gekühlt. Es bilden sich kleine gelbe Kristalle. Ausb. 100 mg (19%). $-^{13}$ C-NMR (C₆D₆): $\delta = 79.1$ d (¹J_{RhC} = 14 Hz, HC=), 32.0 s (H₂C), 100.2 d (¹J_{RhC} = 4.5 Hz), 97.8 d (¹J_{RhC} = 3.6 Hz), 90.7 d (¹J_{RhC} = 4.4 Hz, C₅R₅).

Tricarbonyl[(butylthio) tetrachlorcyclopentadienyl]mangan (3b): Eine Lösung von 550 mg 1b (1.30 mmol) in 10 ml Et₂O wird auf -60° C gekühlt und mit 0.81 ml Butyllithium-Lösung (1.30 mmol) versetzt. Nach kurzem Rühren werden 0.26 ml nBu_2S_2 (1.37 mmol) zugegeben, und langsam wird auf Raumtemp. erwärmt. Das Lösungsmittel wird i. Vak. entfernt, das zurückbleibende Öl dann dreimal mit je 10 ml Hexan extrahiert. Die vereinigten Extrakte werden bis auf 5 ml eingeengt. Chromatographie an Kieselgel (5 × 2 cm, Eluens Hexan) liefert nach Entfernen des Lösungsmittels i. Vak. ein grüngelbes Öl als Rückstand. Ausb. 395 mg, mit nBu_2S_2 verunreinigtes Produkt. – IR (Hexan): 2041, 1969 cm⁻¹ (vCO). – ¹³C-NMR (C₆D₆): $\delta(C_3R_5) = 104.3, 95.9, 85.7.$

Tricarbonyl[trichlorbis(phenylthio)cyclopentadienyl]mangan (4a): Aus 1.14 g 1b (2.7 mmol) in 15 ml Et₂O, 1.69 ml Butyllithiumlösung (2.7 mmol) und 585 mg Ph₂S₂ (2.7 mmol) wird nach Entfernen des Lösungsmittels i. Vak. und Extraktion mit Hexan wie beschrieben⁵⁾ 3a in unreiner Form erhalten. Das Rohprodukt wird in 15 ml Et₂O aufgenommen, die Lösung auf -60° C gekühlt und mit 1.69 ml Butyllithiumlösung (2.7 mmol) versetzt. Nach 5 min werden 585 mg Ph₂S₂ (2.7 mmol) zugegeben, und während 3 d wird auf Raumtemp. erwärmt. Nach Entfernen des Lösungsmittels i. Vak. wird der Rückstand fünfmal mit je 10 ml Hexan extrahiert. Die vereinigten Extrakte werden auf ca. 5 ml eingeengt und an Kieselgel chromatographiert (8 \times 2 cm). Mit Hexan/Et₂O (1:1) wird eine orange Lösung erhalten, die zur Trockene gebracht wird. Anschließend wird aus 25 ml Hexan umkristallisiert. Ausb. 300 mg (21%, bezogen auf 1b), Schmp. 113-114°C. - IR (Hexan): 2046 cm⁻¹, 2035, 1981, 1945 (vCO). $-^{13}$ C-NMR (C₆D₆): $\delta(C_5R_5) = 114.5$, 105.1, 86.9.

[Bis(butylthio)trichlorcyclopentadienyl]tricarbonylmangan (4c): Man gibt zu einer Lösung von 640 mg **3b** (ca. 1.49 mmol) in 15 ml Et₂O bei -60 °C 0.93 ml Butyllithium-Lösung (1.49 mmol), rührt 10 min und versetzt dann mit 0.30 ml Bu₂S₂. Es wird während ca. 12 h auf Raumtemp. gebracht und dann das Lösungsmittel i. Vak. entfernt. Der Rückstand wird zweimal mit je 15 ml Hexan ausgerührt. Der Extrakt wird eingeengt und an Kieselgel (5 × 2 cm, Eluens Hexan) chromatographiert. Nach Entfernen des Lösungsmittels i. Vak. hinterbleibt ein oranges Öl, welches lt. ¹³C-NMR-Spektrum mit Bu₂S₂ verunreinigt ist. Ausb. 590 mg (\leq 82%). – IR (Hexan): 2044 cm⁻¹, 1977, 1942 (vCO). – ¹³C-NMR (C₆D₆): $\delta(C_3R_5) = 112.9, 104.6, 88.1.$

Tricarbonyl[dichlortris(phenylthio)cyclopentadienyl]mangan (5a): 300 mg 4a (0.57 mmol) in 10 ml Et₂O werden bei -60° C mit 0.36 ml Butyllithiumlösung versetzt. Nach 10 min Rühren werden 125 mg Ph₂S₂ (0.57 mmol) zugegeben. Nach weiteren 30 min wird auf Raumtemp. gebracht, und das Lösungsmittel wird i. Vak. entfernt. Der gelbbraune Rückstand wird mit zunächst 20 ml Hexan, dann 20 ml Et₂O/Hexan (1:1) extrahiert. Nach Einengen der Extrakte bis zur Trockene wird an Kieselgel [8 × 2 cm, Eluens Hexan/ Et₂O (10:1)] chromatographiert. Das Eluat wird zur Trockene gebracht, der Rückstand mit 10 ml Hexan extrahiert und der Extrakt auf -30 °C gekühlt. Es bilden sich gelbe Kristalle. Ausb. 220 mg (64%), Schmp. 113–114 °C. – IR (Hexan): 2043, 1979 cm⁻¹ (vCO). – ¹³C-NMR (C₆D₆): $\delta(C_5R_5) = 115.7, 94.8, 90.0$.

Tricarbonyl[tris(butylthio)dichlorcyclopentadienyl]mangan (5b): 500 mg 4c (1.03 mmol) werden in 15 ml Et₂O bei -60° C mit 0.64 ml Butyllithium-Lösung (1.03 mmol) und 0.64 ml nBu₂S₂ (1.03 mmol) zur Umsetzung gebracht. Es wird langsam auf Raumtemp. erwärmt und dann das Lösungsmittel i. Vak. entfernt. Das zurückbleibende orangebraune Öl wird auf eine Kieselgelsäule (5 × 2 cm) aufgebracht. Nach Elution mit Hexan wird das Eluat i. Vak. eingeengt, wobei ein braunes Öl zurückbleibt. Ausb. etwa 100 mg, lt. ¹³C-NMR noch mit Bu₂S₂ verunreinigt. – IR (Hexan): 2035, 1964 cm⁻¹ (vCO). – ¹³C-NMR (C₆D₆): $\delta(C_5R_5) = 113.1, 97.2, 89.8.$

Tricarbonyl[dichlortris(methylthio)cyclopentadienyl][palladium-(II)dichlorid]mangan: Eine Lösung von 100 mg 5c (0.25 mmol) in 10 ml Benzol wird zu 100 mg PdCl₂(PhCN)₂, ebenfalls in 10 ml Benzol gelöst, getropft. Nach 24 h wird der entstandene Niederschlag isoliert, mit 10 ml Hexan gewaschen und aus 5 ml CH₂Cl₂/

Tab. 3. Atomkoordinaten (× 10⁴) und isotrope thermische Parameter (pm² × 10⁻¹) in **2b**

	x	У	z	U
Rh(1)	240(1)	2352(1)	252(1)	38(1)*
C(1)	-1942(7)	2715(4)	-488(4)	43(1)
C(2)	-2505(7)	1793(4)	-512(4)	44(1)
C(3)	-2352(7)	1902(4)	367(4)	44(1)
C(4)	-1684(7)	2888(4)	935(4)	45(1)
C(5)	-1322(7)	3384(4)	427(4)	47(1)
S(1)	-2003(2)	2964(1)	-1386(1)	58(1)*
C(31)	-4330(9)	4030(5)	-1127(4)	65(2)
C(32)	-5909(10)	4195(6)	-1273(5)	81(2)
C(33)	-7222(11)	3459(6)	-1922(5)	85(2)
C(34)	-7014(10)	2564(6)	-2403(5)	85(2)
C(35)	-5398(9)	2419(5)	-2251(5)	71(2)
C(36)	-4068(7)	3165(4)	-1601(4)	51(1)
Cl(2)	-3470(2)	733(1)	-1426(1)	68(1)*
Cl(3)	-3020(2)	1010(1)	644(1)	68(1)*
Cl(4)	-1415(2)	3417(1)	2039(1)	72(1)*
Cl(5)	-563(2)	4613(1)	833(1)	66(1)*
C(11)	2622(10)	3138(6)	390(5)	81(2)
C(12)	2564(9)	3220(5)	1186(5)	74(2)
C(13)	3370(11)	2639(6)	1657(6)	98(3)
C(14)	2953(9)	1602(5)	1094(5)	77(2)
C(15)	1308(8)	1247(5)	376(4)	61(2)
C(16)	1139(9)	1175(5)	-428(5)	67(2)
C(17)	2565(11)	1509(6)	-726(6)	100(3)
C(18)	3556(11)	2458(6)	-172(6)	96(3)
Rh(2)	215(1)	8111(1)	5568(1)	37(1)*
C(6)	1861(7)	7137(4)	5522(3)	42(1)
C(7)	2907(7)	8103(4)	6109(3)	42(1)
C(8)	2889(7)	8633(4)	5615(4)	46(1)
C(9)	1933(7)	7993(4)	4722(3)	44(1)
C(10)	1360(7)	7052(4)	4654(3)	41(1)
Cl(6)	1610(2)	6209(1)	5814(1)	61(1)*
C1(7)	3992(2)	8494(1)	7181(1)	71(1)*
Cl(8)	3989(2)	9804(1)	5979(1)	70(1)*
Cl(9)	1797(2)	8298(1)	3870(1)	65(1)*
S(2)	383(2)	5973(1)	3694(1)	54(1)*
C(41)	3222(8)	5903(5)	3172(4)	63(2)
C(42)	4687(9)	5629(5)	3121(5)	73(2)
C(43)	5126(9)	4984(5)	3446(5)	72(2)
C(44)	4117(9)	4632(5)	3818(5)	71(2)
C(45)	2667(9)	4915(5)	3883(4)	65(2)
C(46)	2228(7)	5558(4)	3570(4)	45(1)
C(21)	-855(8)	7971(4)	6509(4)	60(2)
C(22)	-1997(8)	7405(5)	5689(4)	58(2)
C(23)	-3565(9)	7696(5)	5345(5)	71 (2)
C(24)	-3267(9)	8246(5)	4824(5)	71(2)
C(25)	-1456(8)	8825(4)	5122(4)	55(1)
C(26)	-513(8)	9423 (5)	5967(4)	57(2)
C(27)	-1187(10)	9641(5)	6760 (5)	75 (2)
C(28)	-917(10)	8958(5)	7159(5)	77 (2)

* Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij}-Tensors. 15 ml Hexan umkristallisiert. Schmp. 180 °C (Zers.). – IR (CH₂Cl₂): 2051 cm⁻¹, 1984 (vCO). – ¹H-NMR (CD₂Cl₂): δ (SCH₃) = 3.07 (6H), 2.49 (3H).

 $\begin{array}{c} C_{11}H_9Cl_4MnO_3PdS_3 \ (588.5) & \text{Ber. C} \ 22.45 \ H \ 1.54 \ S \ 16.34 \\ & \text{Gef. C} \ 23.76 \ H \ 2.10 \ S \ 16.34 \end{array}$

Tricarbonyl[dichlortris(phenylthio)cyclopentadienyl][palladium-(II)dichlorid]mangan: Die Lösung von 60 mg **5a** (0.10 mmol) in 15 ml Toluol wird mit einer Lösung von 50 mg $PdCl_2(PhCN)_2$ in 10 ml Toluol versetzt. Nach 14 d Rühren wird der entstandene Niederschlag isoliert, mit 10 ml Hexan gewaschen und aus Aceton/ Hexan umkristallisiert. Schmp. 180°C (Zers.). – IR (CH₂Cl₂): 2051 cm⁻¹, 1989 (vCO).

Tab. 4. Atomkoordinaten (× 10⁴) und isotrope thermische Parameter ($pm^2 \times 10^{-1}$) in **4a**

	x	У	z	υ
Mn (1)	45(2)	4284(2)	3790(1)	58(1)*
C(1)	-2053(19)	3270(19)	3776 (4)	74(6)*
0(1)	-3371(12)	2579(13)	3767(3)	106(5)*
C(2)	-400(16)	5570(16)	4180(3)	74(5)*
0(2)	-686(13)	6356(14)	4428(3)	108(5)*
C(3)	-814(20)	5897(20)	3464 (4)	85(6)*
0(3)	-1325(16)	6827(14)	3245(3)	128(6)*
C(11)	1379(15)	1930(14)	3825(3)	52(3)
C(12)	1464(14)	2631(14)	3466(3)	54(3)
C(13)	2409(15)	4180(15)	3515(3)	55(3)
C(14)	2815(16)	4458(16)	3892(3)	64(3)
C(15)	2187(14)	3063(14)	4097(3)	51(3)
Cl(11)	598(5)	-27(4)	3912(1)	73(1)*
S(12)	634(5)	1689(5)	3050(1)	74(1)*
C(21)	4023(17)	397(16)	3123(3)	71(4)
C(22)	5390(18)	-558(16)	3003(3)	75(4)
C(23)	5061(21)	-1449(19)	2683(4)	90(5)
C(24)	3494(19)	-1387(18)	2495(4)	88(5)
C(25)	2164(18)	-448(16)	2612(3)	76(4)
C(26)	2427(15)	465(15)	2927(3)	54(3)
Cl(13)	3033(6)	5414(5)	3167(1)	102(2)*
C1(14)	4083(5)	6065(5)	4082(1)	96(2)*
S(15)	2502(4)	2757(5)	4575(1)	66(1)*
C(31)	6070(18)	2789(18)	4774(3)	79(4)
C(32)	7743(20)	2129(19)	4807(4)	91(5)
C(33)	7931(18)	538(18)	4675(3)	75(4)
C(34)	6631(18)	-397(19)	4517(4)	86(4)
C(35)	4944(19)	333(16)	4484(3)	77(4)
C(36)	4593(15)	1886(14)	4609(3)	57(3)

* Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors.

Tab. 5. Atomkoordinaten (× 10^4) und isotrope thermische Parameter (pm² × 10^{-1}) in **4b**

	x	У	z	U
(n(1)	2655(1)	6502(1)	5914(1)	42(1)*
:(11)	3328(6)	7363(8)	7472(6)	43(2)
(12)	2855(6)	5994(8)	7479(6)	42(2)
:(13)	1636(6)	6087(8)	6806(6)	41(2)
(14)	1392(6)	7456(8)	6393(6)	45(2)
2(15)	2453(6)	8283(8)	6785(6)	40(2)
21(1)	4742(2)	7847(2)	8228(2)	60(1)*
5(2)	3611(2)	4526(2)	8171(2)	56(1)*
C(2m)	3251(8)	4573(11)	9294(7)	76(3)
:1(3)	623(2)	4810(2)	6647(2)	67(1)*
21(4)	27(2)	8119(3)	5638(2)	73(1)*
5(5)	2594(2)	10057(2)	6548(2)	61(1)*
C (5m)	2079(8)	10843(11)	7451(7)	86(3)
2(1)	4031(7)	6664(9)	5828(6)	53(2)
)(1)	4958(5)	6711(7)	5798(5)	77(2)
2(2)	1905(7)	7108(9)	4625(7)	59(2)
)(2)	1363(5)	7528(7)	3765(5)	75(2)
:(3)	2557(7)	4742(9)	5504(7)	53(2)
)(3)	2508(5)	3568(7)	5248(5)	76(2)

* Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ii}-Tensors.

_	x	У	Z	υ
Mn (1)	1980(1)	4608(3)	4188(1)	70(1)*
C(11)	1099(6)	4827(18)	3886(5)	58(5)
C(12)	1143(6)	3424(19)	4206(5)	55(4)
C(13)	1535(6)	2226(18)	4066(5)	50(4)
C(14)	1756(6)	2755(19)	3660(5)	57(5)
C(15)	1481(7)	4366(21)	3556(5)	67(5)
S(11)	633(2)	6622(6)	3888(2)	77(2)*
C(112)	-509(7)	5684(21)	3908(6)	82(6)
C(113)	-1046(8)	4981(22)	3713(6)	94(6)
C(114)	-1066(8)	4245 (22)	3301(6)	90(6)
C(115)	-604(8)	4163(23)	3050(7)	105(7)
C(116)	-74(8)	4922(22)	3234(6)	96(6)
C(111)	-38(6)	5650(19)	3652(5)	61(5)
S(12)	745(2)	3291(6)	4701(2)	78(2)*
C(122)	-313(7)	1910(21)	4775(6)	82(6)
C(123)	-797(8)	963(22)	4601(6)	94(6)
C(124)	-836(7)	197(23)	4182(6)	96(6)
C(125)	-425(7)	419(21)	3894(6)	84(6)
C(126)	80(7)	1322(20)	4053(5)	75(5)
C(121)	125(7)	2077(20)	4475(5)	74(5)
Cl(13)	1693(2)	253(6)	4315(2)	98(2)*
S(14)	2239(2)	1688(7)	3331(2)	101(3)*
C(142)	1203(8)	203(26)	2986(7)	122(7)
C(143)	828(10)	-721(28)	2664(7)	141(8)
C(144)	1052(8)	-1221(28)	2277(7)	130(8)
C(145)	1592(10)	-660(29)	2218(8)	144(8)
C(146)	1964(9)	246(26)	2517(7)	124(7)
C(141)	1748(7)	661(23)	2923(6)	89(6)
Cl(15)	1546(2)	5496(7)	3056(2)	108(2)*
C(1)	2596(8)	3496(26)	4437(7)	86(10)*
0(1)	3000(6)	2706(19)	4592(5)	113(7)*
C(2)	1916(7)	5856(22)	4691(6)	96(9)*
0(2)	1879(6)	6591(20)	5025(6)	120(8)*
C(3)	2427(7)	6239(23)	3958(6)	95(8)*
0(3)	2698(5)	7254(17)	3788(5)	131(7)*

* Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ii} -Tensors.

Tricarbonyl [tris(butylthio) dichlorcyclopentadienyl] [palladium-(II) dichlorid] mangan: Eine Lösung von 100 mg (unreinem) 5b in 10 ml Benzol wird mit ungefähr 100 mg PdCl₂(PhCN)₂ versetzt und 24 h bei Raumtemp, gerührt. Anschließend wird das Lösungsmittel i. Vak. entfernt. Der Rückstand wird mit 10 ml Hexan gewaschen und aus 1 ml CH₂Cl₂/40 ml Hexan umkristallisiert. Ausb. 50 mg (37%), Schmp. $154 - 156 \,^{\circ}$ C (Zers.). - IR (CH₂Cl₂): 2049 cm⁻¹, 1982 (vCO).

C₂₀H₂₇Cl₄MnO₃PdS₃ (714.8) Ber. C 33.61 H 3.81 S 13.46 Gef. C 32.60 H 3.29 S 12.88

Tricarbonyl[pentakis(methylthio)cyclopentadienyl][palladium-(II) dichlorid | mangan: Eine Lösung von 60 mg [C₅(SMe)₅]-Mn(CO)₃ (6) (0.14 mmol) in 5 ml Benzol wird mit einer Lösung von 115 mg PdCl₂(PhCN)₂ (0.28 mmol) in 5 ml Benzol versetzt. Nach 24 h Rühren bei Raumtemp, wird das Lösungsmittel i. Vak. entfernt. Der Rückstand wird mit 10 ml Hexan gewaschen und

aus CH₂Cl₂/Hexan umkristallisiert. Schmp. 170°C (Zers.). - IR (CH_2Cl_2) : 2040 cm⁻¹, 1972 (vCO). – ¹H-NMR (CD_2Cl_2) : $\delta(SCH_3) = 3.09 (6 \text{ H}), 2.59 (9 \text{ H}).$

C₁₃H₁₅Cl₂MnO₃PdS₅ (611.8) Ber. C 25.52 H 2.46 S 26.20 Gef. C 25.78 H 2.88 S 23.13

CAS-Registry-Nummern

1a: 56282-20-3 / 1b: 56282-22-5 / 2a: 118538-48-0 / 2b: 118538-**45**-7 / **3b**: 118538-49-1 / **4a**: 118538-46-8 / **4b**: 114928-66-4 / **4c**: 118538-50-4 / **5a**: 118538-47-9 / **5b**: 118538-51-5 / **5c**: 114928-67-5 / 6: 114944-19-3 / 7a: 118538-52-6 / 7b: 118538-53-7 / 7c: 118538-54-8 / 7d: 118538-55-9 / Me_2S_2 : 624-92-0 / Ph_2S_2 : 882- $33-7 / nBu_2S_2$: 629-45-8

- ¹⁾ III. Mitteilung: K. Sünkel, J. Organomet. Chem. 348 (1988) C12. ²⁾ Siehe z. B. G. M. Sheldrick, Computing in Crystallography, Delft
- Julie Z. B. G. M. Bullet 1978.
 ^{3) 3a)} V. W. Day, K. J. Reimer, A. Shaver, J. Chem. Soc., Chem. Commun. 1975, 403. ^{3b)} D. L. DuBois, L. W. Eigenbrot, jr., A. Miedaner, J. C. Smart, R. C. Haltiwanger, Organometallics 5 (1986) 1405. – ^{3e)} D. L. Lichtenberger, C. H. Blevins II, R. P. Ortega, Organometallics 3 (1984) 1614. – ^{3d)} M. Arthurs, H. Karodia, M. Sedgwick, D. A. Morton-Blake, C. J. Cardin, H. Parge, J. Organomet. Chem. **291** (1985) 231. -3^{el} J. W. Chambers, A. J. Baskar, S. G. Bott, J. C. Atwood, M. D. Rausch, Organometallics 5 (1986) 1635.
- 4) K. Sünkel, D. Motz, Chem. Ber. 121 (1988) 799.
- ⁵⁾ K. Sünkel, D. Motz, Angew. Chem. 100 (1988) 970; Angew. Chem. Int. Ed. Engl. 27 (1988) 939.
- ⁶⁾ Ebenengleichungen (in Kristallkoordinaten) und Zwischenebenenwinkel:
 - **2b**: E1 (C1 C4): E2 (C7 C10): E3 (C31 – C36): E4 (C41 – C46): 1.448x + 6.062y + 9.848z - 7.1670 = 0Winkel E1/E3: 95.7°; E2/E4: 93.8°. 6.781x - 3.791y - 4.964z + 1.7087 = 04a: E5 (C11-C15): 2.638x + 6.241y - 20.148z + 4.9720 = 0E6 (C21 - C26): E7 (C31-C36): 1.899x + 3.026y - 33.325z + 13.9090 = 0
 - Winkel E5/E6: 92.4°; E5/E7: 85.1°; E6/E7: 32.3 4b: E8 (C11-C15): -7.093x + 2.694y + 13.024z - 9.3408 = 0
 - $\begin{array}{l} 16.190x + 3.656y + 13.697z 8.8648 = 0\\ 7.218x 6.624y + 11.287z 4.1058 = 0\\ 5.328x + 6.818y 11.553z + 0.3512 = 0\\ 7.218x 6.624_y + 11.287z 4.1058 = 0 \end{array}$ E9 (C11-C15): E10 (Cl11 -- Cl16): E11 (Cl21 -- Cl26): E12 (Cl31 – Cl36): Winkel: E9/E10: 88.2°; E9/E11: 84.7°; E9/E12: 87.9°; E10/E11: 169.6°; E10/E12: 175.1°; E11/E12: 5.6
- ⁷⁾ H. Bönnemann, Angew. Chem. **97** (1985) 264; Angew. Chem. Int. Ed. Engl. **24** (1985) 248.
- ⁸⁾ K. Sünkel, D. Steiner, unveröffentlicht.
- ⁹ K. J. Reimer, A. Shaver, *Inorg. Synth.* **20** (1980) 190. ¹⁰ Syntex P2₁-Diffraktometer, Mo- K_{α} -Strahlung; Graphitmono-chromator; ω -scan; Reflexe mit $I \ge 2\sigma(I)$ gelten als beobachtet; Strukturlösung mit Programm SHELXTL 4.1. Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-53393, der Autoren und des Zeitschriftenzitats angefordert werden.

[290/88]