
JOURNAL 
OF APPLIED 
PROBABILITY 
VOLUME 23 1986 

E D I T O R - I N - C H I E F J. GANI 



Volume 23 Number 2 

Research Papers 
265 A N D E R S MARTIN-LÖF. Symmetrie sampling procedures, general epidemic processes and 

their threshold limit theorems 
283 P E T E R D O N N E L L Y . A genealogical approach to variable-population-size models in popula-

tion genetics 
297 R E I N H A R D H Ö P F N E R . Some results on population-size-dependent Galton-Watson 

processes 
307 A . M . K E L L E R E R . The variance of a Poisson process of domains 
322 J Ü R G H U S L E R . On point processes on the circle 
332 C H E R N - C H I N G C H A O A N D J O H N S L I V K A . Some exaet distributions of a last one-sided 

exit time in the simple random walk 
341 G . M A Z Z I O T T O . Approximations of the optimal stopping probiem in partial Observation 
355 P A U L D E H E U V E L S A N D JOSEF S T E I N E B A C H . Exact convergence rate of an 

Erdos-Renyi strong law for moving quantiles 
370 P. L . D A V I E S . Rates of convergence to the stationary distribution for fc-dimensional diffusion 

processes 
385 E N Z O ORSINGHER. A planar random motion governed by the two-dimensional telegraph 

equation 
398 V , G I O R N O , A . G . N O B I L E , L . M . RICCIARDI A N D L . S A C E R D O T E . Some remarks on 

the Rayleigh process 
409 A . T H A V A N E S W A R E N A N D M . E . T H O M P S O N . Optimal estimation for semimartingales 
418 DENNIS V . L I N D L E Y A N D N O Z E R D . S I N G P U R W A L L A . Multivariate distributions for 

the life lengths of components of a System sharing a common environment 
432 T E R J E A V E N A N D B O B E R G M A N . Optimal reptacement times — a general set-up 
443 M A S A K I Y O M I Y A Z A W A . Approximations of the queue-length distribution of an M / G I / s 

queue by the basic equations 
459 V . V . K A L A S H N I K O V A N D S. T . R A C H E V . Characterizations of inverse problems in 

queueing and their stability 
474 J. G E O R G E S H A N T H I K U M A R A N D D A V I D D . Y A O . The eflect of increasing Service 

rates in a closed queueing network 
484 M . H . V A N H O O R N A N D L . P. S E E L E N . Approximations for the G I / G / c queue 
495 B R U N O VISCOLANI. A n adaptive multistage queueing System 

Short Communications 
504 N. C. W E B E R . The Wright-Fisher model with varying selection 
509 K I M - A N H D O A N D H E R B E R T S O L O M O N . A Simulation study of Sylvester's probiem in 

three dimensions 
514 D R O R Z U C K E R M A N . Optimal stopping in a continuous search model 
519 K Y L E SIEGRIST. Markov chains with binomial time change 
524 J . M I C H A E L S T E E L E A N D L U K E T I E R N E Y . Boundary domination and the distribution of 

the largest nearest-neighbor link in higher dimensions 
529 R. J. M A R T I N . A note on the asymptotic eigenvalues and eigenvectors of the dispersion matrix 

of a second-order stationary process on a d-dimensional lattice 
536 TOSHIO N A K A G A W A . Periodic and sequential preventive maintenance policies 
543 W I L L I A M A . M A S S E Y . A family of bounds for the transient behavior of a Jackson network 
550 R O B E R T B. C O O P E R A N D S H U N - C H E N NIU. BeneS's formula for M/G/1-FIFO 

'explained' by preemptive-resume LIFO 
555 R. SZEKLI . On the coneavity of the waiting-time distribution in some Gl IG l\ queues 
562 Correction 

Published by the Applied Probability Trust in association with the London Mathematical Society 
© 1 9 8 6 ISSN 0021-9002 



/. Appl. Prob. 23,307-321 (1986) 
P r i n t e d i n I s r a e l 

© Applied Probability T r u s t 1986 

THE VARIANCE OF A POISSON PROCESS OF DOMAINS 

A. M. K E L L E R E R , * University of Würzburg 

Abstract 

A familiär relation links the densities that result for the intersection of a 
convex body and straight lines under uniform isotropic randomness with those 
that result under weighted randomness. An extension of this relation to the 
intersection of more general domains is utilized to obtain the variance of the 
n-dimensional measure of the intersection of two bodies under uniform 
isotropic randomness. The formula for the variance contains the point-pair-
distance distributions for the two domains — or the closely related geometric 
reduction factors. The result is applied to derive the variance of the intersection 
of a Boolean scheme, i.e. a stationary, isotropic Poisson process of domains, 
with a fixed sampling region. 

RANDOM INTERSECTION OF GEOMETRIC OBJECTS; VARIANCE OF OVERLAP; LATTICE 
PROBLEM; POISSON PROCESS; BOOLEAN SCHEME; POINT-PAIR-DISTANCE DISTRIBU­
TION 

1. Introduction 

The fundamental formula of Blaschke [2] and Santalö [25] determines, for 
isotropic uniform randomness, the average Minkowski functionals of the inter­
section of two domains, F 0 and F , . The equation contains only the Minkowski 
functionals of F 0 and F , [2], [25]. The formula can be extended [5], [26] to the 
average of the Minkowski functionals of a Boolean scheme [16], [17] of 
geometric objects, i.e. a stationary Poisson process of independent geometric 
objects. The relations have been given also for the intersection of a Boolean 
scheme with a fixed sampling domain [9], [11]. No relations of comparable 
simplicity exist for the variance of the measures of the intersection. However, 
Robbins derived a general form of the integrals for the moments of the measure 
of random sets [21], and he [22], Bronowski and Neyman [3], Santalö [24], and 
Garwood [7] used his result to derive the variances of the overlap of circles and 
rectangles. Miles [18] has obtained formulae for the variance of the intercept of 
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convex bodies by linear subspaces. Pitts [20] has recently treated a probiem 
closely related to the random intersection of geometric objects, and he has given 
approximation formulae for the variance of the Poisson process. 

In the following an equation will be derived that is more specific than Robbins' 
theorem. It expresses the variance of the measure of the intersection of two 
domains in terms of the point-pair-distance distributions for the two domains. 
The result is then applied to the intersection of a Boolean scheme with a 
sampling domain, i.e. a finite field of Observation. The treatment utilizes a 
relation between densities for u n i f o r m i s o t r o p i c randomness and w e i g h t e d 
randomness of the intersection of two domains. This relation has been obtained 
by Kingman [15] for the intercept of straight lines and a convex body. It is here 
extended to the intercept of two piecewise smoothly bounded domains. 

2. Isotropic uniform randomness and weighted randomness 

The subsequent derivation parallels the one that Coleman [4] has utilized to 
demonstrate the relation between isotropic uniform randomness and weighted 
randomness of straight lines intercepting a domain. Two piecewise smoothly 
bounded domains, F0 and Fi, in Rn are considered. Each of the domains has a 
reference point. F0 is immobile with its reference point on the origin of a 
Cartesian coordinate System. F { is randomly placed; its position is determined by 
the coordinates, JC, of its reference point and by a parameter vector, u, which 
determines the orientation. The measures of F0 and Fi are A 0 and A x . Here and 
below the term measure is used for the n-dimensional measure. 

D e n s i t y f o r i s o t r o p i c u n i f o r m randomness. Isotropic uniform randomness 
(/it-randomness) is obtained by positioning Fi randomly oriented with its 
reference point randomly placed in a sufficiently large domain containing F0. 
Eliminating all positions with F0 D F x = 0 one has the density 

f M * l « ) ' M « ) for ( x , i i ) | F o n F i ^ 0 
(1) j v ( x f i i ) = | 

[ 0 otherwise. 

The non-zero part of the density is the product of 

(2) ^ ( x ' w ) = ^ö 
and 

(3) PA**)= y > 
h ( u ) is the density that corresponds to isotropic random orientation, y ( u ) is the 
measure of the Minkowski sum of F0 and Fi with inclination u, and y is the 
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average of y ( u ) over all inclinations: 

(4) r = J y ( u ) h ( u ) d u . 

Accordingly one has 

(5) M * > " ) = ^ for (x, « ) | F o n F , ^ 0 . 

D e n s i t y f o r w e i g h t e d randomness. W e i g h t e d randomness ( v - r a n d o m n e s s ) is 
obtaind by the selection of two independent random points, x 0 E F0 and Xi E Fi, 
and by positioning Fi with random inclination, u, so that the two points are 
superimposed. x 0 and Xi are the coordinates of the random points relative to the 
reference points of F0 and Fi. The resulting position of F i is (x, u) with 
x = x 0 - X i . The density is 

(6) p „ ( x 0 , x , , i i ) = 

' A M f o r x o E F o a n d x i E F , 
A o A i 

0 otherwise. 

Let a ( x , u ) be the measure of the intersection. The marginal density p„(x, i i ) is 
then 

/ \ a(x, u ) h ( u ) . x , x y 

(7) 
= a (x, u ) • pM (x, u ) / E ^ a . 

This is the /x-density biased with the measure, a ( x , u ) , of the intersection 
F 0 H F i . The normalization condition 

(8) E . a = ^ f 1 

is identical to the formula of Blaschke-Santalo for the average measure of 
F 0 n F ] under uniform randomness. 

From Equation (7) one obtains the corresponding relation between the 
/x-density and the y-density of the measure, a , of F 0 n F , : 

(9) Ma) = -^pAa) 
or, in the more general formulation that includes any singularities of the 
densities, 

(10) dP„(a) = - ^ d P A a ) 

where P v ( a ) and F^(a) are the distribution functions. 
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Equations (9) and (10) generalize the familiär relation for the intersection of 
straight random lines with convex bodies. 

3. Variance of the intersection of two domains 

From Equations (9) and (10) one obtains a relation for the second moment and 
the variance of the measure under ß-randomness: 

(11) E ^ a 2 - E v a E ^ a 

and 

(12) a \ = ( E v a - E ß a ) E ( J L a . 

E ^ a is known from Equation (8), and E v a will subsequently be expressed in 
terms of the point-pair-distance distributions of F 0 and Fi, or in terms of the 
closely linked geometric reduction factors. 

Robbins' theorem is required only in its simplest, intuitively evident form. It is 
nevertheless informative to recall the theorem, as it indicates, even without 
further consideration, implicit connections to the present result. 

R o b b i n s ' t h e o r e m . Consider a random measurable subset, F, of Rn with 
measure a ( F ) . For any set of points (JCI,X2, • •-,**) of Rn let p ( x u x 2 , * - - , x k ) = 
Pr(jti E F, and x2 E F, • • • and xk E F ) . Robbins [21] obtained the fcth moment of 
a ( F ) as an integral over the product space Rkn: 

(13) E a ( F ) k = p ( x u x 2 , • • - 1 x k ) d x l d x 2 - • • dxk. 
j R k n 

In actual cases it can be difficult to derive the function p ( x x , x 2 , • • *, x k ) . Solutions 
have, therefore, been obtained only for relatively simple cases involving spheres 
or aligned parallelepipeds [3], [21], [22], [24]. 

P o i n t - p a i r - d i s t a n c e d i s t r i b u t i o n s a n d g e o m e t r i c - r e d u c t i o n f a c t o r s . Let P be a 
random point, uniformly distributed in F, and let P ' be the translate of P by 
distance x in uniformly distributed random direction. The function U ( x ) is then 
defined as the probability that P ' is also a point of F : 

(14) £/(*) = P r ( P ' E F | P E F ) . 

In applications to radiation dosimetry U ( x ) has been termed the g e o m e t r i c 
r e d u c t i o n f a c t o r [1]. Enns and Ehlers [6] have utilized the same concept in 
considerations of chord-length distributions. 

U ( x ) is linked to the p o i n t - p a i r - d i s t a n c e d i s t r i b u t i o n of F, i.e. to the density, 
p(x), of distances, x, between pairs of random points distributed uniformly and 
independently in F. If wn is the surface of the unit ball in R" and A is the 
measure (length, area, volume in R\ i ? 2 , R 2 ) of F : 
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(15) p ( x ) = U ( x ) w n x n - l I A . 

Equation (15) holds because — in accordance with Robbins' theorem for k = 1 
— the term U ( x ) w n x n ~ 1 d x is the expected measure of F at distance x to x + dx 
from a random point in F. Geometric reduction factors or point-pair-distance 
distributions are known for a variety of simple geometric configurations, such as 
cylinders, spheroids, ellipses, or rectangles (see appendix). For more compli-
cated shapes they may require numerical integrations or Monte Carlo computa-
tions. 

F o r m u l a for t h e v a r i a n c e . According to the definition of weighted random­
ness two random points of F 0 and F i are superimposed. U 0 ( x ) and U i ( x ) are the 
probabilities that the translate, S\ by distance x in random direction of the 
point, S, of superposition leads to a point in F 0 and F u respectively. Due to the 
random orientation of F , relative to F 0 the two probabilities are uncorrelated; 
U 0 ( x ) U l ( x ) is therefore the probability of S' being contained in F o f l F i . 
Accordingly, and again with Robbins' theorem for k = 1, the expected measure 
of F 0 f l F i is 

(16) E v a = T w n x n - l U 0 ( x ) U i ( x ) d x = A 0 f * p 0 ( x ) U i ( x ) d x 
Jo Jo 

d = min(d 0 , di), with d0 and d i being the diameters, i.e. maximal point-pair 
distances, of F 0 and F i . 

Combining Equations (12) and (16) one obtains, either in terms of the 
geometric reduction factors or the point-pair-distance distributions, the relation 
for the variance of the measure of the intersection of two domains under 
uniform, isotropic randomness in Rn: 

(17) 

= (T W n X " ~ l U o ( * ) U i ( x ) d x - E ^ a j E»a 

= ^ A 0 J p 0 ( x ) U i ( x ) d x - E ^ E ^ a 

With W] = 2, VV2 = 27T, VV3 = 477. 
A s stated in Equation (8), one has E ^ a = A o A J y . For convex regions, F 0 and 

Fi, one can give the explicit relations. In Jf? \ with A 0 and Ai being the lengths of 
F 0 and F , , 

(18) y = A 0 + A i . 

In R2, with A 0 and A i the areas, and S 0 and Sx the perimeters of F 0 and F u 

(19) y = AO + SOSI/ITT + AI. 
In R3, with A 0 and A i the volumes, S0 and Si the surface areas, and M 0 and M i 
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the integral mean curvatures of F0 and Fi: 
(20) y = A 0 + (SoM, + S,Mo)/47r + 

4. Extension of the result to the Poisson process 

G e o m e t r i c r e d u c t i o n f a c t o r f o r t h e r e a l i z a t i o n of a B o o l e a n scheme. A 
Boolean scheme in R" is generated by the domains C(p). Their shape is taken to 
be sufficiently regulär and to depend on the parameter vector p . Each domain 
has a reference point, termed the centre, and is randomly oriented. The positions 
of the centres and the inclinations are uniformly, isotropically and independently 
distributed. The density of the Poisson intensity in the parameter space is A(p), 
i.e., the expected number of centres per unit volume of JR" is \ ( p ) d p for 
domains corresponding to the element d p of the parameter space. B is the union 
of all domains that form the Poisson process, and the geometric reduction factor 
of B is denoted by U B ( x ) : 

(21) U B ( x ) = ? r ( P ' E B \ P E B ) 

where P is a point uniformly distributed in and P ' is its translate by distance 
x in randoiti direction. 

The expected number of domains that cover — i.e., contain — the point P is 
y¥ = f A ( p ) \ ( p ) d p , where A ( p ) is the measure of C ( p ) . The quantity ¥ is 
termed n o m i n a l c o v e r a g e . Due to the independence of the domains in the 
Poisson process, one has the probabilities for P being covered or uncovered: 

(22) p = P r ( P G ß ) = l - e x p ( - y ) and q — Pr(P E ß ) = exp( — y i r ) . 

With 

(23) Pr(P ' G B ) = p • Pr(P ' G B \ P G B ) + q • Pr(P ' G B \ P G B ) 

and with the abbreviation 

(24) T B ( j t ) = P r ( P ' G ß | P G ß ) 

one obtains 

(25) p = p U B ( x ) + q ( l - T B ( x ) ) 

or 

(26) U B ( x ) = 1 - (1 - TB (x)) / (exp(^)- 1). 

A n additional consideration provides the function T B ( x ) . Let v - vx + v2 be 
the number of domains that cover P \ where v2 is the number of domains that 
cover both P and P ' , while vx is the number of domains that cover P ' but not P. 
The expectation of v2 is 
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(27) Ev2 = $ A ( p ) \ ( p ) U ( x , p ) d p = U ( x ) V 

where U ( x , p ) is the geometric reduction factor of the domain C(p) , and U ( x ) is 
the weighted average of the geometric reduction factors for all domains: 

(28) U ( x ) = j A ( p ) \ ( p ) U ( x 9 p ) d p / J A ( p ) \ ( p ) d p . 

With Ev = ^ one obtains 

(29) Evx = Ev- Ev2 = (1 - U ( x ) ) V . 

Due, again, to the independence of the domains in the Poisson process one has 

(30) T B ( x ) = Pr(i/ | = 01 P G B ) = Pr(i/, = 0 ) = e x p ( - (1 - U ( x ) ) V ) . 

The geometric reduction factor for the configuration, ß , formed by the Poisson 
process is, therefore, 

(31) UB (X) = 1 - e x p ( - + e x p ( - ¥ ) ( e x p ( ¥ U ( x ) ) - l)/(exp(*) - 1). 

The last term vanishes for distances, JC, exceeding the maximum diameter of the 
domains C ( p ) . 

V a r i a n c e o f t h e i n t e r s e c t i o n w i t h a s a m p l i n g d o m a i n . In practical applications 
one registers the configuration, I = B Ci W, formed by the Poisson process in a 
window, W, that serves as sampling domain. Let A w be the measure of W, and 
p w ( x ) and U w ( x ) its point-pair-distance density and geometric reduction factor. 
The measure, a, of / has the expectation E a = A w ( l - exp( - ^ ) ) . Inserting E a 
for E a ^ in Equation (17) and p w ( x \ U w ( x ) and U B ( x ) for p 0 ( x ) , U Q ( x ) and 
L/J(JC), and utilizing the relation 

(32) ( l - e x p ( - ^ ) ) A w | p w ( x ) d x = ( l - e x p ( - * ) ) A w = E A 

one obtains the variance, a 2

h of the measure of / in R n : 

a ) = Alexp(- 2 ^ ) f* p w ( x ) ( e x p ( V U ( x ) ) - l ) d x 
Jo 

(33) 

= A w e x p ( - 2 * ) w n x n ~ l U w ( x ) ( t x p ( V U ( x ) ) - l ) d x 
Jo 

with Wi = 2, w 2 = 27T, vv3 = 47T. The Upper limit of the integration, z, is the largest 
point-pair distance of W or, if smaller, the largest point-pair distance of the 
domains generating the Poisson process. 

Pitts has treated a related probiem of a Poisson process of diffuse entities with 
spherical symmetry. His result ([20], Equations (7), (8)) agrees with Equation 

% 
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(33) for the case of n-spheres and for the limit of a large domain W (i.e. 

5. Conclusions 

Formulae have been derived for the variance of the random intersection of 
two domains and for the variance of a Boolean scheme intersecting a sampling 
domain. The formulae contain the geometric reduction factors — or the closely 
related point-pair-distance distributions — of the domains. 

Although this is not considered in the present paper, the results can be 
extended. One generalization is the inclusion of those cases where the intersect­
ing regions are subdimensional. Another generalization is the admission of 
non-isotropic orientation of the intersecting domains. The geometric reduction 
factors depend then on distance and direction, and the integrations in Equations 
(17) and (33) run over both variables. Finally one can derive analogous formulae 
for the variances or the covariances of Minkowski functionals other than the 
n-dimensional measures. However, this last extension is restricted by the 
requirement that the measures — or, in the case of the covariances, one of the 
measures — need to be non-negative. Accordingly, it appears impossible to 
obtain comparable formulae for the variance of the Euler-Poincare 
characteristic. 

The subsequent applications exemplify the relations for the variance of the 
intercept of two domains and for the variance of a Boolean scheme. The familiär 
lattice probiem will be considered first, in order to indicate — without detailed 
treatment — the extension of Equation (17) to the case of subdimensional 
configurations. 

A p p l i c a t i o n of E q u a t i o n (17) t o t h e l a t t i c e p r o b i e m . Consider the uniform and 
isotropic random placement of a domain, Fi, on a point grid. The variance, a 2 , of 
the number of covered grid points is to be determined. 

Let P ( x ) be the non-normalized distribution function of the point-pair 
distances of the F0: 

P ( x ) is the expected measure of F0 at distances up to x from a random point of 
F0. With this function for F0 and the geometric reduction factor U ( x ) for the 
domain F u Equation (17) takes the form 

t / w ( z ) « l ) . 

Appendix 

( A . l ) 

(A.2) 

0 
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The function P ( x ) has the advantage that it applies also to a point grid. If each 
grid point is assigned unit measure, P ( x ) is the number of grid points — or, 
depending on the type of grid, the mean number of grid points — within a circle 
of radius x centred at a grid point, and E ^ a is the mean number of grid points 
covered by Fi. For a grid with one point per unit area E ß a equals the measure, 
A , of Fi (see, for example, [12]). 

For a square grid of unit cell size in R2 one has 

(A.3) P ( * ) = X (summation over all i n t e g e r s , w i t h / 2 + / 2 ^ JC2). 

Accordingly one has the variance of the number of grid points covered: 

The summation runs over all pairs (i, j ) of integers with v i 2 + j 2 smaller than the 
maximum point-pair distance, z, of the figure. In numerical evaluations one 
enumerates only the combinations with 0 ^ / ^ / , accounting for the omitted 
combinations by proper multiplicity factors. The resulting reduction of the 
number of terms is important for the analogous computations in /? 3 . 

To apply Equation (A.4) to domains of Standard geometry one uses the 
functions U ( x ) which are listed in Equations (A.5)-(A.9). Figure 1 represents for 
circles of specified diameter, d, for Squares of side length d, and for rectangles of 
side lengths d and V 2 d the variance, er2, divided by the perimeter, P, of the 
figures. These and the analogous computations in i ? 3 were performed for 
different values d in increments 0.02. A square grid or a eubie grid of unit cell 
size has been assumed. The results for the circle are in agreement with the 
analytical treatment of Kendali [12] and Kendali and Rankin [13], and are also in 
general aecord with the numerical data which Russell and Josephson [23] have 
given. The seeming irregularity of the dependence of er2 on d is linked to the 
irregularity of the function P ( x ) . The broken lines in the graphs give the mean of 
cr 2 /P up to the specified value d. A s averages of this mean over the interval 
d = 30 to 40 the values 0.07288, 0.07271, and 0.07286 were obtained (values 
rounded to four digits). From the theory of Kendall for random ovals one derives 
the asymptotic value a2/P = 0.0728369. 

In the computations one utilizes the geometric reduction factor for the disc of 
diameter d, (see e.g. [14]): 

(A.4) 

(A.5) 

Here and in formulae (A.7)-(A.9) the abbreviation X = x / d is used. 
The geometric reduction factor for a rectangle of side lengths a and b is 
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0.14 

Figure 1. The variance, divided by F, of the number of grid points covered by a randomly placed 
figure with random inclination. P is the perimeter of the figure. d is the diameter of the circle, the 
side length of the square, or the smaller side length of a rectangle with larger side length V 2 * d. The 
square point grid has unit cell size. 

Although the dependences on d appear irregulär, they are exact within the resolution of the 
graphs. The broken line gives the average of < r 2 I P up to the abscissa value 

obtained by a method that has been described earlier [8]: 

for 0 < x < a 

(A.6) 

U ( x ) = ± i 
TT 

2 ( a + b ) x { x 2 

w a b a b 

+ 2 ( \ Z p - 1 + V 7 - ' ) - S ^ - ^ ' o , i . < x < V F T P . 

For the square of side length d this reduces to: 

V - 4 X + X 2 

(A.7) U ( x ) -
TT 

for 0 g x g d 

2 s i n - ' ( 2 / X 2 - l ) + 4 ( X 2 - l ) 0 5 - 2 - X 2 for d S x S \ f l d . 
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A cube of side length d has the geometric reduction factor [19]: 

for 0 ^ x ^ d 

(A.8) l / (x ) = 

l 3 X } 2X2 X 3 

2 rr A i r 

6 T T - 1 _ 3 X X 3 6 X 
, v - 2 4 - — + — + — cos 

4 7 T A Z7T Z7T TT 

- 2 ( 2 X 2 + 1 ) ( X 2 - 1 ) 0 5 

6 T T - 5 | t 3(1 + T T ) X X 3 

47rX 27T 47T 

+ 
2 ( X 2 + l ) ( X 2 - 2 ) 0 5 6 A ( X ) 

TTX T T X 

for d ^ JC ^ V 2 d 

for V 2 d < x < V 3 d 

with f : 

A ( X ) = t g _ 1 ( ( X 2 - 2)° 5) + 2 + t g _ , ( X 2 - 1 - X ( X 2 - 2)° 5) - X 2 t g _ , ( X 2 - 2)~° 5). 

For the sphere of diameter d one has the simple relation 

(A.9) U ( j c ) = l - i X + i X 3 f o r O ^ x ^ d . 

The Solutions for spheroids have been given elsewhere (prolate spheroid [6] and 
general case [10]). 

Figure 2 gives for the cube of side length d, the sphere of diameter d, and for a 
prolate spheroid with the minor axes d and larger axis V l d the variance, er , 
divided by the surface, S, of the bodies. For the cube and the sphere there are 
similar oscillations of the variance around its mean value as in the two-
dimensional case. For the spheroid — and the same has been found for oblate 
spheroids and prolate spheroids of other elongations — the amplitude of the 
oscillations decreases with increasing diameter. A s in Figure 1, the broken lines 
give the mean values up to the specified values of d. A s averages of this mean 
over the interval d = 30 to 40 the values 0.06646, 0.06680, and 0.06684 were 
obtained for the cube, the sphere, and the prolate spheroid of elongation V 2 
(values rounded to four digits). 

N u m e r i c a l values f o r the Poisson process of d o m a i n s . The subsequent exam-
ples serve to illustrate the magnitude of the variance of the Poisson process in 
typical cases. They also provide approximations applicable without precise 
evaluation of Equation (33). 

Equation (33) can be rewritten in the modified form 

(A.10) = A c A w * e x p ( - 2 * ) C , C 2 

f A typographical error in A ( X ) in the original reference is here corrected. 
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0.14 
a 2 

S 
0.07 

0.14 

SPHEROID 

Figure 2. The variance, divided by S, of the number of grid points covered by a randomly placed body 
of random inclination. S is the surface of the body. d is the side length of the cube, the diameter of 
the sphere, or the length of the two minor axes of the spheroid with major axis V i • d. The cubic 
point grid has unit cell size. 

The broken line gives the average of <r2fS up to the abscissa value 

with 

(A.11) C l = A ^ j \ e x p ( V U ( x ) ) - l ) w n x n - l d x 

(A.12) C 2 = j Z ( e x p i ^ U i x ^ - ^ U ^ w ^ - ' d x / j \ e x p ( V U ( x ) ) - l ) w n x " - l d x . 

z is the maximum point-pair distance of the domains generating the Poisson 
process. A c is the weighted average of the measure of the domains generating 
the Poisson process: 

(A.13) A c = | A2(p)k(p)dp/1 A ( p ) k ( p ) d p = £ U ( x ) w n x n - i d x . 

The last identity results from Equation (28) and the relation 

(A.14) | U ( x , p ) w n x n l d x = A ( p y 

The specific form of Equation (A.10) is chosen because the terms G and C 2 can 
be disregarded or can be treated as mere correction factors in certain instances. 
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O 1 2 3 

Nominal coverage, W 

Figure 3. The value C, (see Equations (A.10) and (A.ll)) for ellipses, and for rectangles of specified 
ratio, e, of the axes at different values of the nominal coverage 

The term G is always larger than unity. Figure 3 gives its value for ellipses and 
rectangles at different nominal coverages. The geometrical reduction factor for 
rectangles has been given in Equation (A.5); for ellipses it requires a numerical 
integration (see e.g. [10]). 

A s seen in Figure 3, G is close to unity at moderate nominal coverages (^ < 1) 
which are common in applications. A t specified ^ the largest values occur for the 
circle. A n analogous Statement applies for / ? \ although the data, which are of 
less pragmatic importance, are not shown. Deviations from the circular or 
spherical form lead to smaller values of G , and reduced values of G result also 
when the Boolean scheme is generated by circles or spheres of variable size. 
Although no proof is offered, one may surmise that the values for the n-sphere 
are generally Upper bounds for G . 

0 

: : 1 . 1 0 0 - . : : 

" "3 

Square window 

1 i 

Circle 
Rectangle 

- - 1 1 1 1 1 1 1 1 I I 
0 1 2 3 

Nominal coverage, 

Figure 4. The value C2 (see Equations (A.10) and (A.12)) for circles, and for rectangles with a ratio 4 
of side lengths. 

The curves result for a square window and for the specified ratio, R, of the area of the window to 
the area of the figure. The curves for a square are indistinguishable on this graph from those for the 

circle 



320 A. M . K E L L E R E R 

The approximation proposed by Pitts [20] corresponds to the relation G = 
(1-0.1149-^)"2; this happens to be indistinguishable in Figure 3 from the curve 
for the square. 

G tends towards unity if — as has been generally assumed in earlier 
treatments — the sampling region, W, is large compared to the domains that 
generate the Poisson process ( U w ( z ) ^ l ) . For a finite window G is less than 
unity. Figure 4 gives numerical values for circles and for rectangles with ratio 4 of 
side lengths, and for a square window. The parameter R is the ratio of the area 
of the window and the area of the figures generating the Poisson process. 
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