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Abstract

Programmed cell death (PCD) is a prerequisite for successful development and it limits the

spread of biotrophic pathogens in a rapid hypersensitive response at the site of infection.

KDEL-tailed cysteine endopeptidases (KDEL CysEP) are a subgroup of papain-type cyste-

ine endopeptidases expressed in tissues undergoing PCD. In Arabidopsis, three KDEL

CysEPs (AtCEP1, AtCEP2, and AtCEP3) are expressed. We have previously shown that

AtCEP1 is a factor of basal resistance to powdery mildew caused by the biotrophic ascomy-

cete Erysiphe cruciferarum, and is expressed in spatiotemporal association with the late fun-

gal development on Arabidopsis leaves. The endoplasmic reticulum-localized proenzyme of

AtCEP1 was further visualized at the haustorial complex encased with callose. The AtCPR5

gene (CONSTITUTIVE EXPRESSION OF PR GENES 5) is a regulator of expression of

pathogenesis related genes. Loss of AtCPR5 leads to spontaneous expression of chlorotic

lesions which was associated with enhanced expression of AtCEP1. We used the atcpr5-2

mutant plants and the atcep1 atcpr5-2 double mutants harboring a non-functional reporter

(PCEP1::pre-pro-3xHA-EGFP-KDEL) for visualization of AtCEP1 promoter activity. We

found the specific up-regulation of AtCEP1 in direct neighborhood of spreading leaf lesions

thus likely representing cells undergoing PCD. Furthermore, we found a strong resistance of

atcpr5 mutant plants against infection with E. cruciferarum. Loss of AtCEP1 had no obvious

influence on the strong resistance of atcpr5-2 mutant plants against infection with E. cruci-

ferarum. However, the area of necrotic leaf lesions associated with E. cruciferarum colonies

was significantly larger in atcpr5-2 as compared to atcep1 atcpr5-2 double mutant plants.

The presence of AtCEP1 thus contributes to AtCPR5-controlled PCD at the sites of powdery

mildew infection.
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Introduction

Programmed cell death (PCD) is a genetically determined, highly regulated process in all mul-

ticellular organisms and a prerequisite for successful development. PCD eliminates tissues and

cells serving temporary functions during development such as tapetum cells in anthers and

suspensor cells connecting the embryo to the mother plant or nucellus cells of a mature ovule

[1–4]. Plants furthermore limit the spread of fungal or bacterial pathogens under execution of

PCD at the site of infection in a mechanism called the hypersensitive response (HR) [5].

Diverse classes of proteases are involved in PCD, including cysteine proteases, serine prote-

ases, aspartic proteases and metalloproteases [6,7]. A unique group of papain-type cysteine

endopeptidases (CysEPs) is specific for plant PCD and characterized by a C-terminal KDEL

endoplasmic reticulum (ER) retention signal (KDEL CysEPs) with RcCysEP from castor bean

(Ricinus communis) as the founding member [8–10]. KDEL CysEPs are not present in mam-

mals or fungi, but are ubiquitous in plants [11]. KDEL CysEPs are synthesized as pre-pro-

enzymes and are co-translationally transferred into the ER, where the pre-sequence signal pep-

tide is removed. KDEL CysEPs can be stored as enzymatically inactive pro-enzymes in ER-

derived compartments [10,12–14]; upon acidification, the KDEL CysEPs are released and the

pro-sequence together with the C-terminal KDEL endoplasmtic reticulum retention signal are

removed for activation of the enzyme [10,15] (as described in detail previously [13]). The

mature, enzymatically active KDEL CysEPs exhibit unusual broad substrate specificity. KDEL

CysEPs are unique in being able to digest not only cytoplasmic components in tissues that col-

lapse during final stages of PCD; they furthermore are able to digest extensins that form the

basic scaffold for cell wall formation (as described in detail previously [16]). The broad sub-

strate specificity is due to the active site cleft of the KDEL CysEPs that accepts a wide variety of

amino acids including proline and glycosylated hydroxyproline of the hydroxyproline rich gly-

coproteins of the cell wall [17]. The respective amino acids, which are decisive for this gener-

ally more open appearance of the active site cleft, together with the amino acids defining the

catalytic pocket are highly conserved among all known KDEL CysEPs [11].

In Arabidopsis, three KDEL CysEPs—CEP1 (At5g50260), CEP2 (At3g48340), and CEP3

(At3g48350)—have been identified that are expressed in tissues undergoing developmental

PCD (as described in detail previously [13,16]). Furthermore, CEP1was found to be expressed

in late response to biotic stress stimuli in the leaf (as described in detail previously [18]). Two

CEP1 T-DNA insertion lines (SAIL_158_B06 and SALK_01306, both carrying the T-DNA

insertion within the 3rd exon) showed enhanced susceptibility to powdery mildew caused by

the biotrophic ascomycete Erysiphe cruciferarum. A translational fusion protein of CEP1 with

a three-fold hemaglutinin-tag and the green fluorescent protein under control of the endoge-

nous CEP1 promoter (PCEP1::pre-pro-3xHA-EGFP-AtCEP1-KDEL) rescued the pathogenesis

phenotype demonstrating the function of CEP1 in restriction of powdery mildew disease.

atcep1 knockout plants transformed with the non-functional reporter including EGFP without

the mature CEP1 subunit (PCEP1::pre-pro-3xHA-EGFP-KDEL) retained susceptibility to E.

cruciferarum. The spatiotemporal CEP1-reporter expression during fungal infection together

with microscopic inspection of the interaction phenotype suggested a function of CEP1 in

controlling late stages of the compatible interaction including late epidermal cell death (as

described in detail previously [18]).

Defense responses in Arabidopsis are regulated by multiple signal transduction pathways in

which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) function as key signaling mol-

ecules. Mutants such as cpr5 constitutively activate these defense pathways [19]. The CPR5
gene (CONSTITUTIVEEXPRESSIONOF PR GENES 5, At5g64930) is a regulator of expression

of pathogenesis related genes and participates in signal transduction pathways involved in

AtCEP1 and AtCPR5 in powdery mildew induced cell death
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plant defense and development such as leaf senescence or flowering. It codes for nuclear enve-

lope membrane protein [20]. Loss of CPR5 leads to spontaneous expression of chlorotic lesions

and reduced trichome development [21,22]. The cpr5 plants were found to be constitutively

resistant to virulent pathogens such as the bacterial pathogen Pseudomonas syringae and the

oomycete Hyaloperonospora arabidopsidis [19,21]. We found in public expression data that

CEP1 (At5g50260, Affymetrix ATH1 probe set ID 248545_at; GEO accession GSE5745; this is

unpublished work) is constitutively up-regulated in cpr5mutants [www.genevestigator.com;

23]. We used the cpr5-2mutant allele that has a point mutation in the fourth exon leading to a

premature stop codon (Trp477stop) [24, 25] in order to analyze a possible contribution of the

CEP1 upregulation to chlorotic leaf lesions in cpr5. We measured an increase in CEP1 expres-

sion in cpr5-2mutant, which coincided with the appearance of leaf lesions. The expression of

CEP1was particularly evidenced in leaf cells that surround the chlorotic lesions and presum-

ably underwent cell death. Furthermore, we found a strong resistance of cpr5-2 against infec-

tion with E. cruciferarum and studied the pathogenesis and cell death phenotypes in cep1 cpr5-
2 double mutants as compared to the single mutants. This suggests a contribution of CEP1 to

CPR5-controlled cell death.

Materials and methods

Arabidopsis mutant and reporter plants

We used homozygous knockout mutants for cep1 (SAIL_158_B06; T-DNA insertion within

the third exon) [18]. For imaging the functional proenzyme of CEP1 by confocal laser scan-

ning microscopy (CLSM), we used the functional reporter PCEP1::pre-pro-3xHA-EGFP-At-

CEP1-KDEL that rescued the cep1 knockout phenotype when expressed in cep1 [18].

A homozygous cpr5-2mutant allele (NASC stock code N3770) with a point mutation in

the fourth exon leading to a stop codon (Tpr477stop) [25] was obtained and confirmed by

sequencing: a 653 bp fragment comprising half of the fourth exon including the stop codon

and six bp of the 3’UTR was amplified by PCR using the primers cpr5-2 fw GGCTCCTCGTAAG
TGTCTTCAGC and cpr5-2 rv GGTCTGACTATGCTTGAGACGAG. The resulting PCR product

was sequenced using the primers cpr5-2 seq fw CGATCATCAGGTACGAAGCand cpr5-2 seq rv

GTCACGTTTATAGGACCG. Homozygous cep1 cpr5-2 double mutant plants were obtained by

crossing. In order to monitor CEP1 promotor activity in cells of the cpr5-2mutant back-

ground, we made homozygous double mutants by crossing cpr5mutants and cep1 knockout

mutants harboring the non-functional reporter PCEP1::pre-pro-3xHA-EGFP-KDEL that exhib-

its a translational fusion protein of the necessary CEP1 targeting sequences together with a

three-fold hemaglutinin-tag and the green fluorescent protein EGFP but lacking the mature

CEP1 subunit under control of the endogenous CEP1 promoter [18].

Leaf infection with powders mildew and symptoms rating

Inoculation and assessment of disease progression was carried out as described [18].

Necrotic leaf area measurement using fluorescence microscopy

Callose depositions in Arabidopsis cells were visualized by methyl blue (Sigma Aldrich Chemie

GmbH, München, Germany) staining. For this purpose, leaves of cpr5-2 single mutant plants

and of cep1 cpr5-2 double mutant plants, respectively, were harvested 5 days post inoculation

(dpi) with E. cruciferarum and were discoloured in ethanol-acetic acid glacial (EtOH-HAc;

6:1). The discoloured leaves were rinsed with distilled water and transferred into 67 mM

K2HPO4 buffer for 10 minutes followed by incubation for 2 h in the staining solution (0.05%

AtCEP1 and AtCPR5 in powdery mildew induced cell death
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methyl blue in 67 mM K2HPO4) in the dark and by direct analysis using fluorescence micros-

copy (Olympus BX61TRF, Japan).

Only areas of necrotic leaf lesions associated with powdery mildew colonies were measured

using their fluorescence intensity. Areas as measured by fluorescence intensity under excita-

tion by 340 nm wave length thus represented necrotic cells, but also other callose-enriched

structures such as encasements of established haustoria. Sixty five fluorescing areas detected

on 19 leaves on cpr5-2 single mutant plants and on cep1 cpr5-2 double mutant plants, respec-

tively, were photographed and the fluorescing areas were quantified using ImageJ graphical

analysis software version 1.48v [26]. To this end, the colour threshold was set to hide noise sig-

nals of unspecific adsorbed staining. Regions of specific fluorescence signals were selected and

their areas were measured. Subsequently the data were corrected for the callose depositions

belonging to powdery mildew-induced papillae and encasements of established haustoria. For

this purpose, the average areas of ten powdery mildew colonies that were not associated to

necrotic leaf lesions, on five leaves of cpr5-2 single mutant plants and of cep1 cpr5-2 double

mutant plants, respectively, were measured using their fluorescence intensity. These values

were subtracted from the fluorescent areas of necrotic leaf lesions associated with powdery

mildew colonies on cpr5-2 single mutant plants and on cep1 cpr5-2 double mutant plants,

respectively, thus obtaining the area of a chlorotic leaf lesion associated with a powdery mildew

colony.

qRT-PCR

Primers used for qRT-PCR are: ACT8 qRT fw: TGAGACCTTTAATTCTCCAGCTATG; ACT8

qRT rv: CCAGAGTCCAACACAATACCG;CEP1 qRT fw: TCAGCCTGTTTCTGTTGCTATT;

CEP1 qRT rv: CATCTCCCGGTAAACACTCC; CEP2 qRT fw: GCTGTTGCAAACCAACCTG;

CEP2 qRT rv: TTCCACAAGATCCCGTAAACA; CEP3 qRTfw: GCTCACCAGCCTGTCTCTGT;

CEP3 qRT rv: CGCATTCTCCGATAAACACA. qRT-PCR was carried out as described [18].

Confocal laser scanning microscopy

Staining of callose and imaging of the non-functional (PCEP1::pre-pro-3xHA-EGFP-KDEL) or

functional (PCEP1::pre-pro-3xHA-EGFP-AtCEP1-KDEL) reporter plants was carried out as

described [18].

Results

The proenzyme of CEP1 is associated with the haustorial complex

encased in callose

We previously described that cells attacked by Erysiphe cruciferarum express the proenzyme of

CEP1 from the functional reporter PCEP1::pre-pro-3xHA-EGFP-AtCEP1-KDEL in the endo-

plasmic reticulum (ER) and accumulate it around haustoria. This led to the speculation that

CEP1 could limit haustorium functions, which could explain enhanced growth of E. crucifer-
arum on cep1mutant plants [18]. To get a more detailed impression of whether CEP1 could

indeed closely associate with haustoria, we combined live cell imaging of PCEP1::pre-pro-

3xHA-EGFP-AtCEP1-KDEL reporter plants with imaging of callose after staining with the

aniline dye methyl blue at 11 dpi. Three dimensional reconstructions of fluorescence signals

recorded by CLSM suggested that the proenzyme of CEP1 is closely associated with callose-

encased haustoria and can be even found within encasements of haustorial complexes

(Fig 1A). Closer inspection of fluorescence signals suggested that the CEP1-containing ER is

present on both sides of the callose encasement, the cytoplasmic side and the haustorial side

AtCEP1 and AtCPR5 in powdery mildew induced cell death
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Fig 1. Three-dimensional reconstruction of fluorescence signals from the functional proenzyme of

CEP1 (green) and callose depositions (blue) in epidermal cells of Arabidopsis invaded by haustoria of

E.cruciferarum. (A) Overview about several interaction sites with callose-encased haustorial complexes in

the epidermis of Arabidopsis leaves at 11 dpi. CEP1 proenzyme is visible in epidermal cells and in and around

encased haustoria that are shown in an optical section and reconstructed in 3 dimensions for lower z-

sections. (B-G) Accumulation of the CEP1 proenzyme at the side and within a haustorium that is encased with

callose. The same haustorium is also highlighted with an arrow in A. (B) View from the cell surface. At this site,

little CEP1-loaded ER is visible at the periclinal cell cortex (arrowheads) (C) View from the side of the

haustorium. Arrowheads indicate the rim of the encasement closest to the periclinal cell cortex (D) Bottom up

view. Arrowhead indicates incomplete closure of the callose encasement (E-G) Callose-encased haustorium

cut at the line indicated in panel C viewed from different angels. Arrowhead indicates incomplete closure of

the callose encasement. Black arrows indicate sites where CEP1 signals are visible at both the cytosolic and

the haustorial side of the encasement. Original pictures were recorded by CLSM and reconstructed into a

3-demensional picture by the IMARIS software (Bitplane).

https://doi.org/10.1371/journal.pone.0183870.g001
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(Fig 1B–1G). The ER seemed to either span the encasement or the ER that was associated with

the haustorium was enclosed during development of the encasement. In some haustorial

encasements, GFP signals were strong but we were unable to further resolve the position of the

GFP signal within or around the haustorial complex.

CEP1 is specifically upregulated in cpr5-2 mutants in leaf cells

undergoing cell death that surround the chlorotic lesions

In publicly accessible global gene expression analysis of the Arabidopsis atcpr5 mutant (GEO

accession GSE5745) displayed in Genevestigator [23], we found that CEP1 transcripts are sig-

nificantly more abundant in two-week-old cpr5-2mutants than in wild type. CPR5 is consid-

ered as a negative control element of plant programmed cell death and effector-triggered

immunity through cell cycle control [27]. We used the cpr5-2mutant allele that has a point

mutation in the fourth exon leading to a stop codon (Trp477stop) [24,25]. Quantitative

RT-PCR confirmed up-regulation of CEP1 in the cpr5-2mutant allele correlating to the

appearance of leaf lesions. CEP1was not expressed to higher values in leaves of seven day old

cpr5-2 seedlings before lesions were visible (Fig 2A left). An about ten-fold up-regulation of

CEP1was found in leaf rosettes of 20 day old cpr5-2 plants and correlated in time with the

occurrence of spontaneous leaf lesions (Fig 2A right). On the other hand, CEP2 and CEP3
exhibited no strong expression in 20 day old rosette leaves in connection with the appearance

Fig 2. CEP1 is specifically upregulated in cpr5 mutants in leaf cells undergoing cell death that surround the chlorotic lesions. Relative gene

expression of CEP1, CEP2 and CEP3 was measured in 7 and 20 days old seedlings of wild type Col-0 as well as cpr5-2 single and cep1 cpr5-2

double mutant plants. Four leaves with visible lesions from four different plants of each genotype, respectively, were collected in one tube for isolation

of RNA (A). Eight—twelve leaf pieces with or without lesions from six different plants of each genotype, respectively, were collected in one tube for

isolation of RNA (B). qRT-PCR was performed with CEP1, CEP2 and CEP3 gene-specific primers. Expression levels were relatively set to the

reference gene ACT8. Error bars represent standard deviations due to three technical replicates. The results were similarly reproduced in a second

independent experiment (biological replicate). Furthermore, the data for the cep1 cpr5-2 double mutant plants were similarly reproduced with a

second independent line. cpr5-2 w/lesions, leaf pieces with lesions; cpr5-2 w/o lesions, leaf pieces without lesions.

https://doi.org/10.1371/journal.pone.0183870.g002

AtCEP1 and AtCPR5 in powdery mildew induced cell death
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of leaf lesion formation (Fig 2A). When we separated leaf rosettes of 20 day old cpr5-2mutants

into leaves with and without visible necrotic lesions, only necrotic leaves showed about 50-fold

up-regulation of CEP1 transcripts (Fig 2B). Again, CEP2 and CEP3 did not show comparably

high expression in leaves with necrotic lesions as compared to CEP1.

We made homozygous double mutants by crossing cep1 knockout mutants harboring the

non-functional reporter PCEP1::pre-pro-3xHA-EGFP-KDEL and cpr5-2mutants in order to

visualize leaf cells that would express CEP1 (Fig 3) and to study the impact of cep1 knockout

mutation on the cpr5-mediated resistance or cell death phenotype (see below). Strikingly, pro-

moter activity of CEP1was exclusively confined to cells in direct neighborhood of chlorotic

lesions (Fig 3A, asterix). Leaf cells in areas more distant to the chlorotic lesion exhibited only

autofluorescence but no specific GFP signal as identified by wavelength scanning with the con-

focal laser scanning microscope. The pattern of pre-pro-3xHA-EGFP-KDEL fluorescence

showed partially a reticular pattern typical for the ER and partially a punctate pattern of disin-

tegrated ER in cells that likely underwent PCD during spreading of lesions (Fig 3B and 3C).

cpr5-2 mutants are powdery mildew resistant

We observed a strong resistance of cpr5-2mutant plants against infection with E. cruciferarum
(Figs 4 and 5). Arabidopsis susceptibility to E. cruciferarum was scored by visual examination

of the whole plant 10, 12 and 14 day after inoculation (Fig 4). The wild type Col-0 control

plants developed the usual symptoms within 10 and 14 day after inoculation by exhibiting in

time an increasing leaf area covered by powdery mildew symptoms with approximately 75%

infected leaves in the category of 30–60% symptomatic leaf area and 25% in the category of

>60% symptomatic leaf area14 day after inoculation. The cep1 knockout plants again exhibited

more severe symptoms as compared to wild type with approximately 25% infected leaves in

the category of 30–60% symptomatic leaf area and 75% in the category of>60% symptomatic

leaf area 14 days after inoculation. In marked contrast to these susceptible genotypes, the cpr5-
2mutant plants showed exclusively leaves with powdery mildew symptoms in the category of

<30% symptomatic leaf area throughout the investigation time (Figs 4 and 5).

Fig 3. CEP1 is specifically expressed in leaf cells undergoing cell death that surround the chlorotic lesions. A. The white

area (black asterisk *) indicates a chlorotic lesion in the terminal stage; the blue box indicates the representative tissue, where the

enlarged image in B and C can be found. A and B. The white asterisks (*) indicate cells in spreading chlorotic lesion presumably

undergoing programmed cell death. B. Merge of bright field image and EGFP. B and C. The pattern of fluorescence shows partially

a reticular pattern typical for the endoplasmic reticulum (arrows) and partially a punctate pattern suggesting endoplasmatic reticulum

disintegration in cells that likely underwent PCD (arrow heads). A, B and C. EGFP indicates the expression of the non-functional

reporter construct PCEP1::pre-pro-3xHA-EGFP-KDEL.

https://doi.org/10.1371/journal.pone.0183870.g003

AtCEP1 and AtCPR5 in powdery mildew induced cell death
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Fig 4. cpr5-2 mutants are powdery mildew resistant. Disease symptoms of wild type, cep1 and cpr5-2

single mutants and cep1 cpr5-2 double mutant plants upon leaf infection with E. cruciferarum were scored

after visual inspection of the whole plant 10, 12 and 14 days post inoculation (dpi). Distribution of infected

leaves in the three categories was carried out as described [18]. Infected leafs were distributed in the three

categories <30%, 30–60%, and >60% diseased leaf area [18]. Columns of the same colour marked with

AtCEP1 and AtCPR5 in powdery mildew induced cell death
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CEP1 contributes to powdery mildew induced leaf lesions on cpr5-2

We analyzed the homozygous cep1 cpr5-2 double mutant obtained by crossing the cep1 knock-

out mutants harboring the non-functional reporter PCEP1::pre-pro-3xHA-EGFP-KDEL and

the cpr5-2mutants, in order to study the impact of cep1 knockout mutation on the cpr5-medi-

ated resistance or cell death phenotype as compared to the single mutants. Interestingly, loss of

CEP1 had no obvious influence on the strong resistance of cpr5-2mutant plants against infec-

tion with E. cruciferarum as analyzed by macroscopic symptoms rating (Figs 4 and 5). All

leaves of the cep1 cpr5-2 double mutant fell into the category of<30% symptomatic leaf area

different letters indicate statistically different groups (p < 0.05), and columns marked with identical letters

indicate groups not statistically different (p > 0.05) according to the ANOVA- and Duncan test, and represent

the frequency of plants distributed in the three categories of susceptibility. Data represent the respective

means of eight experiments from independent inoculation events of the mutants with the corresponding

parent background control. Each experiment comprised five plants per line.

https://doi.org/10.1371/journal.pone.0183870.g004

Fig 5. Powdery mildew disease phenotypes caused by the biotrophic ascomycete Erysiphe cruciferarum. (A) cep1 knockout mutants

developed the usual symptoms upon infection with powdery mildew (arrows). (B and C) In contrast, the cep1 cpr5-2 double mutant plants and the cpr5

single mutant plants are resistant to E. cruciferarum; necrotic lesions are indicated by white arrow heads; please note the scaling bar: cpr5 and cep1

cpr5-2 mutants are dwarf. Plants in (A-C) are shown 11 days post low density inoculation. (D-F) Non-infected plants at the time of inoculation.

https://doi.org/10.1371/journal.pone.0183870.g005
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throughout the investigation time. The cpr5-2mutant phenotype appeared thus epistatic over

the cep1mutant phenotype (Figs 4 and 5).

Our results suggested a strong activity of the CEP1 promoter in spatiotemporal association

with lesions developing in cpr5-2mutant plants (Fig 3). We therefore undertook a microscopic

analysis of cpr5-2 single mutant plants in comparison to cep1 cpr5-2 double mutant plants at 5

days post inoculation with E. cruciferarum, when the powdery mildew growth still allows for

the observation of single fungal colonies often associated with necrotic leaf lesions. Callose

depositions were visualized by methyl blue staining in Arabidopsis cells at papillae, encase-

ments of established haustoria as well as whole cells that die in the course of leaf lesion forma-

tion or epidermal hypersensitive response (Fig 6). The area of each necrotic leaf lesion

associated with an E. cruciferarum colony was measured by fluorescence intensity. These aver-

age necrotic leaf areas were significantly larger in cpr5-2 single mutant plants (Fig 6A and 6B)

as compared to cep1 cpr5-2 double mutant plants (Fig 6B and 6C). The presence of CEP1 thus

contributed to the powdery mildew induced PCD and supported necrotic lesion formation.

Discussion

CEP1 is associated with encased haustorial complexes

Callose encasements of haustorial complexes is considered as a basal defense reaction of Arabi-

dopsis against powdery mildew fungi, which cannot fully suppress this response [28]. Simi-

larly, we interpreted spatiotemporal association of CEP1 expression with late pathogenesis of

E. cruciferarum as a contribution to basal resistance that limits fungal colonization success

even in compatible interaction [18]. Plant ER has been observed before in close spatial proxim-

ity of developing and mature haustorial complexes [28–32]. Here, we visualized the presum-

able proenzyme ER-resident CEP1 around and within haustorial encasements at 11 days post

inoculation. We further speculate that CEP1 could be released from a leaky ER or be actively

secreted during late development or senescence of haustoria and come into contact with the

Fig 6. CEP1 contributes to powdery mildew induced leaf lesions on cpr5-2. (A) Representative leaf lesion on cpr5-2 single

mutant plants. (B) Comparison of the necrotic leaf lesion area per colony on cpr5-2 single and on cep1 cpr5-2 double mutant plants.

Columns show the area of a necrotic leaf lesion per E. cruciferarum colony (five spores/mm2) five days post inoculation (dpi)

measured by fluorescence intensity. The areas showing fluorescence above a certain threshold intensity were measured. Data

present the mean of 65 lesions on 19 leaves on cpr5 mutant plants and on cep1 cpr5-2 mutant plants, respectively. Error bars are

standard deviations. Differences between cpr5 single and cep1 cpr5-2 double mutants are highly significant after two sided Student’s

t-test (p < 0.001, ***). (C) Representative leaf lesion on cep1 cpr5-2 double mutant plants.

https://doi.org/10.1371/journal.pone.0183870.g006
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haustorium. Direct activity of the protease on the haustorial complex or function in late epi-

dermal cell death (as described in detail previously [18]) possibly explains the function of

CEP1 in restricting late fungal development.

CEP1 is de-regulated in association with CPR5-controlled PCD

Publicly available gene expression data drew our attention to CPR5 as a possible regulator of

CEP1 expression. Our targeted expression analyses of CEP1 in young asymptomatic and older

leaves showing spontaneous leaf lesion development supported that CEP1 is overexpressed

during de-regulated PCD in cep5mutants. With the findings that CPR5 controls cell cycle and

PCD during development and effector triggered immunity to leaf pathogens of Arabidopsis
[24,27] and the observation that CEP1 contributes to pathogen-induced epidermal cell death,

it appeared possible that CEP1 supports an CPR5-controlled cell death program. Indeed, simi-

lar to CEP1, CPR5 controlled E. cruciferarum-induced leaf cell death albeit in the opposite

direction. This was associated with near-complete powdery mildew resistance of cpr5-2
mutants, which appears, based on previously published and our data, generally resistant to

many hemibiotrophic and biotrophic pathogens [21,27,33,34].

CEP1 contributes to CPR5-controlled PCD at sites of powdery mildew

infection

Double loss of function mutants of CPR5 and CEP1 retained powdery mildew resistance and

spontaneous lesion phenotype observed in the cpr5-2 single mutant. Hence, the cpr5-2mutant

phenotype was largely epistatic over that of the cep1 phenotype in terms of symptom formation

of powdery mildew. However, microscopic inspections of the size of lesions that were associ-

ated with powdery mildew microcolony formation showed that CEP1 indeed contributed to

lesion formation in cpr5-2mutants challenged by E. cruciferarum. Because these lesions have

never been observed to a comparable extent in Col-0 before when challenged by E. crucifer-
arum and extended into the mesophyll tissue of atcpr5 mutants, we conclude that CPR5 nega-

tively controls a powdery mildew triggered form of PCD. This type of PCD is simultaneously

supported by CEP1, such that the cep1 cpr5-2 double mutant showed limited spreading of

pathogen triggered cell death before leaf lesions became visible by naked eye. Together this

supports that CEP1 acts in pathogen-triggered and CPR5-controlled leaf cell death although it

does not represent a central switch in that type of PCD because visible lesions still appeared to

an extent not readily distinguishable from that of the atcpr5 single mutant. This study was car-

ried out in an accession of Arabidopsis susceptible to powdery mildew. Since CPR5 acts in

effector triggered immunity [24,27], it would be interesting to see if CEP1 also contributes to

the hypersensitive response that is mediated by endogenous or ectopically expressed powdery

mildew resistance genes [35,36] in Arabidopsis. Spatial association of CEP1 expression with

powdery mildew infection sites or CPR5 controlled cell death reactions might be interesting in

context of other genes that function in spatial association with cell death. For instance, the sali-

cylic acid receptors NPR3 and NPR4 support or restrict cell death via the abundance of NPR1

in a manner that depends on salicylic acid gradients in spatial distance to the actual site of

lesion formation [37]. It might be thus interesting to study CEP functions in further mutants

that show alteration of spontaneous or pathogen-triggered cell death.

Conclusion

Papain-type CysEPs have diverse functions in plant defense to pathogens [38]. Our data fur-

ther suggest that the papain-type KDEL CysEP CEP1 fulfills its function in plant defense dur-

ing late development of E. cruciferarum in close spatial association with the fungal haustorium
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and haustorial callose encasements. Additionally, CPR5 controls resistance to powdery mildew

and PCD in response to infection by E. cruciferarum. In cpr5mutants, CEP1 is overexpressed

in spatiotemporal association with spontaneous cell death. CEP1 contributes to CPR5-con-

trolled PCD triggered by E. cruciferarum but is not required to express high level powdery mil-

dew resistance of cpr5mutants.
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