
 

Quantitative analyses of the 3D nuclear landscape recorded with super-

resolved fluorescence microscopy 

Volker J Schmid a*, Marion Cremer b, Thomas Cremer b 

 

a BioImaging group, Department of Statistics, Ludwig Maximilians-Universität München, Ludwigstrasse 33, 80539 Munich, 

Germany, volker.schmid@lmu.de 
b Biocenter, Department Biology II, Ludwig Maximilians-Universität München, Großhadernerstrasse 2, 82152 Martinsried, 

Germany, Marion.Cremer@lrz.uni-muenchen.de, Thomas.Cremer@lrz.uni-muenchen.de 

 

Preprint. Final version will be published in Methods, available at https://dx.doi.org/10.1016/j.ymeth.2017.03.013. 

 

ABSTRACT 

Recent advancements of super-resolved fluorescence microscopy have revolutionized microscopic 

studies of cells, including the exceedingly complex structural organization of cell nuclei in space and 

time. In this paper we describe and discuss tools for (semi-) automated, quantitative 3D analyses of 

the spatial nuclear organization. These tools allow the quantitative assessment of highly resolved 

different chromatin compaction levels in individual cell nuclei, which reflect functionally different 

regions or sub-compartments of the 3D nuclear landscape, and measurements of absolute distances 

between sites of different chromatin compaction. In addition, these tools allow 3D mapping of specific 

DNA/RNA sequences and nuclear proteins relative to the 3D chromatin compaction maps and 

comparisons of multiple cell nuclei. The tools are available in the free and open source R packages 

 and . We discuss the use of masks for the segmentation of nuclei and the 

use of DNA stains, such as DAPI, as a proxy for local differences in chromatin compaction. We further 

discuss the limitations of 3D maps of the nuclear landscape as well as problems of the biological 

interpretation of such data. 
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1. INTRODUCTION  

This contribution deals with 3D image analyses of nuclei to quantitatively assess 3D nuclear 

landscapes shaped by different chromatin compaction levels and assigning specific nuclear targets on 

chromatin compaction maps. 

Biological background 

Gene regulation, the replication of DNA and epigenetic markers, as well as the maintenance of 

genome integrity depend on an exceedingly complex structural nuclear organization [1]. The space-

time implications of this dynamic nuclear landscape for nuclear functions have become the focus of a 

new research field, called the 4D nucleome [2]. Microscopic investigations have demonstrated a 

structural organization of chromosome territories (CTs) built up from ~1 Mb chromatin domains (CDs) 

[3,4],[5]. CDs are considered as fundamental subunits of chromatin organization with important 

functional implications, including the spatially defined action of regulatory sequences [1]. They are 

composed of smaller subdomains and form higher order structures, called chromatin domain clusters 

(CDCs), which constitute a spongiform chromatin network expanding throughout the nucleus. This 

chromatin network is co-aligned with a channel-like network starting at nuclear pores, called the 

interchromatin compartment (IC). IC-channels expand throughout CTs and extend with fine branches 

also into the CDC interior. More bulky IC-lacunas carry non-chromatin nuclear domains, such as 

splicing speckles, which serve as storage and assembly sites for factors and factor assemblies, 

required for nuclear functions. Recent studies demonstrated that CDCs show a shell-like layered 

organization with a peripheral layer of low chromatin density, called the perichromatin region (PR), 

while additional chromatin layers with increasing compaction are located in the CDC interior. 

Numerous studies have pointed to the PR as the chromatin subcompartment, where transcription, co-

transitional splicing, DNA/chromatin replication and repair preferentially occur, although loops of 

chromatin or DNA may penetrate into the IC as well. Based on these observations, the IC and the PR 

have been considered as the active nuclear compartment (ANC), whereas the inactive nuclear 

compartment (INC) relates to compact chromatin in the interior of CDCs [4]. Biochemical approaches, 

such as Hi-C, provided independent evidence for ~1 Mb chromatin domains, called topologically 

associating domains (TADs) [6]. Similar to CDs and CDCs, TADs are built up from smaller domains 

and form larger arrangements, called metaTADs [7].  

Image acquisition and image analysis 

Essential progress in microscopic studies of the nuclear landscape and their dynamics was strongly 

facilitated by the implementation of super-resolved fluorescence microscopy of fixed and more 

recently also of living cells [8]. Super-resolved images require appropriate and elaborate methods of 

quantitative 3D image analysis. Quantitative imaging of fixed nuclei provides 3D snap-shots from 

individual nuclei and serial snap-shots can provide insights into the space-time dynamics of nuclear 

organization. Quantitative 4D image analysis to study such dynamics directly in living cells requires 

even more sophisticated methods which are beyond the scope of this paper. Quantitative analysis of 

light optical serial sections recorded from a given nucleus include segmentation of regions of interest 

in each optical section or simultaneously in the entire image stack [9]. Several methods for 

segmentation have been proposed, which have to be chosen appropriately for the aim of the 
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segmentation. For example, Gaussian mixture models can be used for unsupervised segmentation 

[10]. The approach described below starts with the identification of a given nucleus and its 3D border 

within an image stack, followed by the identification of regions with distinctly different chromatin 

compaction. For reliable quantitative results, the analysis of a series of nuclei is required. Statistical 

analysis of imaging studies is frequently used in medical imaging [11], where standard protocols exist 

for both imaging and statistical analysis, but is still less prominent in microscopy imaging. Hence, there 

is a need to “pipeline” the quantitative analysis of super-resolved microscopic images of nuclear 

landscapes.  

Software packages for image processing and visualization have been developed by commercial 

providers, such as Volocity, Imaris, Metamorph or Cell Profiler. These packages are usually rather 

expensive and did not fully fit the needs of our own studies. Free open source software has been 

made available by the scientific community as a cheap and reliable alternative. Open source software 

for microscopic imaging is typically based on Java (e.g. ImageJ and Icy), Python (BioimageXD), or R 

(EBImage). Using a command line based programming language allows to automate imaging 

processing and analysis, which is important for the analysis of multiple images. The workflow 

described in this paper is written in R. R is a software for statistical computing and graphics [12]. It is 

available free on Windows, macOS and a variety of Linux and other UNIX systems. R is command line 

based, but graphical front ends like RStudio [13] are available. R can be expanded by using additional 

packages, with over 9300 packages currently available on the official “Comprehensive R Archive 

Network” (CRAN). This allows us to easily use statistical methods for additional analysis after image 

processing. 

Outline 

Below we focus on two related issues of image analyses. Firstly, we describe and discuss tools for a 

semi-automated, quantitative 3D analysis of the spatial organization of a range of chromatin 

compaction levels constituting higher order chromatin landscapes. Firstly, intensity of DAPI staining of 

nuclear DNA is employed as a proxy for chromatin compaction. Based on pragmatic reasons and 

convenience seven DAPI intensity classes are distinguished for this purpose. In addition, we describe 

an approach for measurements of minimal absolute distances between DAPI intensity classes. 

Secondly, we show how markers of interest, such as specific nucleic acid sequences or functionally 

important proteins or protein complexes can be quantitatively assigned on the respective intensity 

classes that have previously been shown to reflect subcompartments of the 3D nuclear landscape with 

different functional assignment [14,15,16].  

2. METHODS and RESULTS 

We exemplify our approach using a 3D image stack comprising a complete DAPI stained nucleus from 

fixed, cultured cells recorded by 3D-structured illumination microscopy (3D-SIM). The workflow of the 

entire approach is shown in Fig. 1. It should be emphasized, that this approach can in principle be 

applied for other DNA super-resolution microscopic approaches as well. 3D-SIM allows optical 

sectioning with a resolution of ~120 nm lateral and 250-300 nm axial (for review see [17]). Depending 

on the thickness of nuclei (~5-10 μm) a 3D-SIM image stack contains about 40-80 sequential SIM 

sections at z-distances of 125 nm. For the recording of appropriate 3D imaging of nuclei and control of  
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Fig. 1: Workflow for chromatin compaction classification and quantitative assignment of segmented nuclear targets on 

3D chromatin compaction maps.  

(A) Representative section from an original 3D-SIM image stack recorded from a fibroblast nucleus (BJ1) as starting point. DNA 

was counterstained with DAPI (grey). Green and red fluorescent signals (arrows) represent several differently stained DNA 

targets each spanning about 40 kb. Green signals delineate DNAse I hypersensitive targets with functionally active regulatory 

sequences. Red signals delineate targets with inactive regulatory sequences lacking DNAse I hypersensitivity in BJ1 fibroblasts. 

(A full presentation of these results will be provided elsewhere: Marion Cremer, Volker J. Schmid, Felix Kraus, Yolanda Markaki, 
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Andreas Maiser, Heinrich Leonhardt, Sam John, John Stamatoyannopoulos, Thomas Cremer. An initial study to demonstrate 

active and inactive regulatory sequences in distinct nuclear compartments by structured illumination microscopy, submitted). (B) 

DAPI mask defining the nuclear voxel space considered for evaluations. (C) Classification of DAPI signals into seven intensity 

classes visualized as color heat map (upper panel) and their relative distribution plotted as graph (lower panel). (D) Segmented 

fluorescent pixels used for quantitative 3D mapping on DAPI classes after defined parameter settings. These data can be used 

for further evaluations such as object counting and volume measurements (not considered here). (E) 3D mapping of segmented 

signals on DAPI intensity defined chromatin compaction classes, with outlined signals in the colored heat maps. (F) Plot of 

quantitative 3D assignment of relative distributions for respective voxels on DAPI intensity classes. 

 

required image quality with currently available approaches of super-resolved 3D microscopy readers 

are referred to [15,18]. 

2.1 Installation of the required software 

The software employed in our studies is implemented in the R package  and the accompanying 

package . Both packages and all packages on which they depend can be installed 

from CRAN by the commands 

install.packages(“nucim”)

in R.1 R will then present a list of CRAN mirrors around the world; choose the mirror depending on the 

location. For our analyses R version 3.3.2,  version 1.0.0 and  version 1.1.0 

was used.2 

 

 2.2 Automatic Segmentation of voxels related to DAPI stained nuclear DNA  

Rationale: In a first step, we automatically segment all individual, visual sections of the DAPI stained 

nucleus. For this purpose, we produce masks, which outline the shape of each section and use only 

voxels located within the mask for further analysis.  

 

We illustrate the analysis using an example image of a DAPI stained human fibroblast nucleus. Fig. 2A 

shows a representative nuclear section of the DAPI-stained intensity image.  

 

Methodology 

The original image stack contains visual sections recorded above and below the nucleus. We begin by 

removing these irrelevant image sections. For this, we compute the mean intensity per optical section 

and remove sections with mean intensity below an automatically computed threshold. This threshold is 

computed as weighted mean of the minimum and maximum of the mean intensity per section. 

In order to find the edges of the nucleus, we apply a three-dimensional variance filter, i.e., for each 

voxel in the image stack the variance of the voxels in a 3D-window surrounding this voxel is computed. 

The variance filter results in high intensities in areas with sharp features, such as the nuclear border, 

see Fig. 2B. An additional Gaussian smoothing filter ensures that holes in the nuclear edge are closed. 
                                                 
1 On some operating systems, package dependencies might need additional libraries installed beforehand. For 
example in Debian and Ubuntu systems, these can be installed in the terminal by 

 
2 Additional information and development versions of both packages can be found on 
https://bioimaginggroup.github.io/nucim and https://bioimaginggroup.github.io/bioimagetools 
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Fig. 2: Automatic masking of the nucleus using DAPI staining. 

(A) Mid section of the original DAPI intensity image stack. (B) DAPI intensity image after 3D variance filtering. (C) Resulting 

mask after Gaussian filtering, binarization and hull fill. 

In order to account for possible parts of additional nuclei recorded within the same image stack, the largest object is 

automatically identified, while other objects are eliminated. A hull filling algorithm [19] is applied in order to close possible holes 

in the mask. In the following, only masked voxels are considered, see Fig. 2C. 

 

Size of the window and standard deviation of the Gaussian filter are determined from the voxel 

resolution. Next, the image is binarised by robust determination of a second threshold by 

simultaneously analyzing the profile in x-direction at the middle of the y-axis and vice versa, using 

different sections. In these profiles, the first and last „step“ along the profile is searched, corresponding 

to the edge of the nucleus.  

 

Implementation 

The automatic masking is implemented in the function in the  package. 

Arguments of the function are the DAPI intensity image and the size of the image in microns. We load 

the relevant packages, 

and load the RGB TIFF file we want to analyse 
img = readTIF(“someimage.tif”)

The image file can also be chosen interactively 

We need the dimensions of the voxels in microns: 

Typically the third channel is blue, i.e., the DAPI intensity: 

Now we can mask the nucleus: 

 

2.3 Quantitative 3D mapping of chromatin compaction levels based on DAPI intensity classes  

Rationale: The algorithm described below allows the quantification of DAPI intensity classes as a 

proxy for chromatin compaction levels and their visualization as 3D nuclear landscapes in single 

cells. DAPI related voxels are identified automatically from the DAPI channel intensities using 
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Gaussian filtering and automatic threshold determination. Data sets can be used for the quantitative 

mapping of functionally relevant nuclear targets in relation to the various classes of chromatin 

compaction within individual nuclei and for comparisons between nuclei (see 2.4). Individual voxels 

from the DAPI channel are weighted by their intensity and segmented into seven intensity classes 

with equal intensity variance resulting in a signal intensity classification at the voxel level. It is 

possible to use more classes, when appropriate (see Discussion). Intensity class 1 comprises voxels 

close to background intensity representing regions that are largely void of DNA (interchromatin 

compartment, IC). Classes 2-7 correspond to chromatin with increasing DAPI intensities reflecting 

increasing levels of chromatin compaction. Class 7 represents the highest DAPI intensities and in 

most mammalian cell nuclei largely delineates constitutive heterochromatin such as chromocenters in 

mouse cell nuclei [4,15].  

 

Methodology 

For chromatin density quantification, we seek to classify the voxels into seven classes based on their 

DAPI channel intensity. Classification is not based on fixed intensity levels or thresholds. Each voxel is 

assigned to a class based on the probability of this voxel of belonging to this class, computed from a 

stochastic model called hidden Markov random field (HMRF) model. The model uses the voxel 

intensity and the location of the voxel, that is, the classification of the neighbors of the voxel.  

We assume that the intensity in voxel i is Gaussian distributed with mean μc and variance σ2, where c 

is the class of the voxel. This leads to a mixture of Gaussians for the distribution of all voxel intensities, 

as can be seen in Fig. 3. The classes are latent, that is, they cannot be observed directly. Therefore, 

we use the so-called Potts model for the classes per voxel as hidden layer in the HMRF. That is, we 

assume that neighboring voxels, i.e., voxels sharing a border, are more likely to belong to the same 

class. This assumption makes the algorithm more robust, although the differences in the results are 

usually rather subtle. The Gibbs energy (or negative log probability density) of the Potts model is 

defined as 

 
where I is the indicator function, which is one if, in this case, ci is equal to cj and zero otherwise, and 

i~j means voxel i is neighbor of voxel j. The parameter β, known as “inverse temperature”, determines 

how much neighboring voxels influence each other. 

Combining the mixture of Gaussians with the Potts model in the HMRF can be done in a Bayesian 

framework. Here, the Potts model serves as prior distribution for the unknown classes. We use 

uninformative prior distributions for the parameters μc (expected values per class) and σ2 
(variance). 

Before classification, the DAPI intensity image is internally transformed into a 16bit integer array. 

Inference is done using a Conditional Expectation Maximization (CEM) algorithm [10]. For the CEM, 

we start with a random classification. Given the classification the expected value μc can easily be 

computed as mean of the intensities of voxels belonging to class c. Then the variance σ2 
is

 
estimated. 

The algorithm sorts the classes by μc and, in case of empty classes, splits up the class with most 

voxels. Voxels are assigned to the class with the highest probability, which depends on their intensity 

and the class of the neighboring voxels. The algorithm iterates and terminates when an iteration does 
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Fig. 3: Histogram and Gaussian mixture distribution 

Histogram of the DAPI intensity of the example image in grey, where only the voxels in the mask where used. In black, 

probability density functions of the seven Gaussians found by the Conditional Expectation Maximization (CEM) algorithm. Using 

the Gaussian mixture, the voxels are assigned by their probability of belonging to one of the Gaussians, which not only depends 

on the Gaussians, but also on the classes of neighboring voxels.  

 

not lead to a change in voxel classification. The CEM algorithm results in the configuration with the 

maximum a posterior (MAP) probability. 

The hidden Markov random field model used here allows classifying the DAPI image without the need 

to specify arbitrary thresholds, but based on the actual intensity distribution of the image. 

Classifications of a very heterogeneous group of images therefore might not be comparable, but the 

results show that the classifications in a homogenous group of images can very well be compared. 

 

Implementation 

Classification of DAPI intensity images is implemented in the  function in the  

package. Arguments of the function are the DAPI intensity image, the mask, the inverse temperature β 

and a scaling parameter for the inverse temperature between optical sections. The DAPI intensity 

should be stored at least in 16bit. Default for the inverse temperature is β=0.1. The scaling parameter 

for the influence of voxels between optical slices is computed as size of voxels in X-/Y-direction 

divided by size of voxels in Z-direction. 

In the resulting object each voxel has assigned the number of the chromatin compaction class it 

belongs to or zero if the voxel is outside the mask. From this, we can count the number of voxels per 

class and plot this, see Fig. 4A, 

barplot(tab, ylab=”percentage”, xlab=”chromatin compaction level”, 

The function  provides an adequate color palette for seven levels. This can also 

be used for plotting a map of the chromatin compaction levels for an optical section, see Fig. 4B: 
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Fig. 4: Mapping of chromatin compaction levels. 

(A) Barplot of the distribution of chromatin compaction levels based on 7 DAPI intensity classes. (B) Color heat map of 

chromatin compaction levels in one optical section (same optical section as in Fig. 2) matches the colors of the chromatin 

compaction levels in the barplot. 

The classified image can also be saved for processing in other software tools, e.g. ImageJ. 
writeTIF(classes, “classes.tif”)

The classified image can be reloaded into R using 
adClassTIF(“classes.tif”) 

 

2.4 Measurements of nearest neighbor voxels and absolute distances between DAPI intensity 

classes 

Rationale: Class assignment of nearest neighbor voxels in 3D for a given DAPI intensity class 

substantiates the visual appearance of nuclear landscapes in the context of a compaction shaped 

pattern formation. For example, chromatin domain clusters (CDCs) are a typical feature of eukaryotic 

cell nuclei with a shell-like organization, resembling an onion skin. A CDC is composed of an interior 

compact chromatin core (intensity classes 5-7) and a peripheral decondensed layer chromatin layer 

(classes 2-3). Such a pattern will correspond to most nearest neighbor voxels belonging to the same 

or next higher or lower intensity class, and only rare voxels to more remote classes. Minimal absolute 

distances between voxels, which belong to a given intensity class, to the nearest voxel of any other 

class can be estimated as a proxy to assess the minimal covered distance of a given nuclear target 

switching between different intensity classes, e.g. regulatory sequences in response to transcriptional 

stimulation. We describe an approach for the measurement of mean minimal distances between 

respective voxels described by their xyz centroid coordinates.  

 

Methodology 

For the measurements of distances between chromatin compaction classes, for each voxel the 

nearest neighbor for each level is searched in 3D. The search is performed iteratively starting in a 

small, than increasing 3D neighborhood. As this is done for each voxel in the mask, the computation is 

rather time consuming, but can easily be performed in parallel, if more than one CPU core is available 

(as in most modern computers). 
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Fig. 5: Boxplots representation of distances between chromatin compaction classes.  

For each chromatin compaction class, a boxplot of the nearest neighbor distances between all voxels attributed to a given class 

and the nearest neighbor voxel attributed to other classes is shown. The boxplots show median, 25 % and 75 % quantile; the 

whiskers show the range of values. Most nearest neighbors belong to the same intensity class, a smaller fraction to the next 

higher or lower class and only rare voxels to remote classes. This result supports a shell-like structure of CDCs composed from 

layers of different chromatin compaction levels.  

 

The distances are summarized and visualized for each class. For example, boxplots can be used, see 

Fig. 5. Alternatively, the minimum or, in order to be robust for outliers, a very small quantile of the 

absolute distance to the next neighbor can be visualized, see Fig. 6. 

Distances are computed as distances between centroids of voxels. Note that these computed 

distances depend on the image resolution, i.e., the real size of voxels, and can be smaller than the 

actual optical resolution of the imaging system.  

 

Implementation 

For the computation of next neighbor distances of compaction levels the 

 function in the  package can be used. Arguments of 

the functions are the image of chromatin compaction classes, the actual size of the voxels, the number 

of classes and the number of cores for parallel computing: 

We highly recommend using parallel computing, which is possible on UNIX/Linux systems and macOS 

computers. The number of cores used in parallel is controlled by the option . The distances can 

be plotted using , e.g. for Fig. 5: 

(distances, method=”quantile”)

and for Fig 6: 
plotNearestClassDistances(distances, method=”boxplot”)
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Fig. 6. Minimum of distances between chromatin compaction classes. 

For each chromatin compaction class (marked red), all distances between voxels belonging to this class and voxels belonging 

to other classes were computed. From all computed distances the minimal nearest neighbor distance between the red marked 

class and other classes was identified and shown here. This visualizes a lower bound of the distances between chromatin 

compaction classes. The minimal distance between classes 1 (largely representing the interchromatin compartment) and class 

7 (the most compacted chromatin compartment) is roughly 200 nm, i.e. at the Abbe limit of conventional light microscopic 

resolution. 

 

2.5. Quantitative 3D mapping of specific DNA sequences and nuclear proteins relative to DAPI 

intensity defined chromatin compaction maps 

Rationale: This section describes the quantitative 3D mapping of specific DNA sequences or nuclear 

proteins in relation to DAPI intensity classes. A functional link between nuclear landscapes with 

distinct differences of chromatin compaction and biologically relevant markers was previously 

established by quantitatively mapping the relative spatial distribution of RNA-polymerase II, nuclear 

bodies and histone modifications representing markers for either transcriptional competent chromatin 

or a silent chromatin state to seven DAPI  intensity classes [4]. The compacted core of CDCs 

(classes 5-7) constitutes the inactive nuclear compartment (INC). The active nuclear compartment 

(ANC) is formed by the interchromatin compartment (IC; class 1) together with the decondensed 

peripheral layer of CDCs (classes 2-3/4), called perichromatin region (PR). The IC starts/ends at 

nuclear pores, pervades the nuclear interior as a channel system, which is co-aligned with the higher 

order chromatin network built up from CDCs. IC-channels expand occasionally into wider lacunas, 

which carry splicing speckles and other nuclear bodies. These structures serve factors or aggregates 

for nuclear functions carried out within the PR. Notably, the displacement of chromatin by such 

structures does not suffice to explain the very low DAPI intensity recorded within IC-channels in 

general.  

In addition to the mapping of functionally relevant proteins on the higher order chromatin landscape, 

specific DNA sequences, such as coding or transcription regulatory sequences (TREs) as well as 

RNA sequences [16] can be assigned to different DAPI intensity classes, representing the ANC or the 

INC. In case of 3D mapping of small single copy nuclear targets we provide an optional additional tool 
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for an unbiased automatic discrimination between small background dots and true signals by 

differential labeling of a contiguous target sequence or protein complex and setting of a maximal 

distance between them.  

 

Methodology 

We recommend a combination of two approaches in order to map additional markers to different 

chromatin compaction levels: First, a manual or semi-automatic threshold can be used in order to 

suppress noise and to identify marked proteins/DNA/RNA targets. Second, marker voxels are 

weighted with their intensity, with clear marker signals having large impact and low intensity noise 

having very small impact.  

In special cases specific segmentation algorithms for markers can be applied, for example a shape 

criterion can be introduced in case that the signal of a marked protein aggregate is known to be 

roughly circular. Such segmentation can also be done using commercial software like Volocity (Perkin 

Elmer, Waltham, MA, USA), Imaris (Imaris scientific 3D/4D image processing & analysis software. 

Bitplane), Cell Profiler [20] or ImageJ plugins like 3D Object Counter and JACoP [21]. However, this 

high additional effort of object segmentation is often not necessary, as small amounts of noise typically 

do not have a high influence on the end results. 

In case of small single copy DNA sequences targeted by respective DNA-probes, the unequivocal 

distinction of a true hybridization signal from a dotted unspecific signal can become a challenge for 

correct signal assignment in 3D FISH experiments. In such cases a few unspecific signals included in 

an evaluation can considerably influence a quantitative analysis. Using two or more contiguous, 

differentially labeled probes for such sites helps to overcome this problem. We therefore implemented 

3D distance measurements between the 3D centroid positions of a given signal to its nearest 

differentially colored signal (Fig. 7A). 

In case of small contiguous differently labeled target sequences, we first use adaptive thresholding to 

find potential signals [19]. In 3D connected voxels above threshold are identified as signal objects and 

total intensity and centroid are computed for these. Signal objects with low total intensity are 

disregarded. Then, distances of the centroids of the potential signals of different labeling are 

computed in order to identify contiguous target sequences and only signals below a defined centroid 

distance (e.g. ≤500 nm) are accepted as true hybridization events.  

After thresholding, we weight each voxel in a chromatin compaction class by its actual signal intensity. 

This way, clear signals will have high weight in our analysis and signals with low intensity, which 

cannot easily be discriminated from noise, will have low impact on the end result. 

The number of voxels per chromatin compaction class can then be visually compared with the 

weighted number of marker signal voxels per chromatin compaction class, for example by plotting the 

relative enrichment (overrepresentation) or depletion (underrepresentation) of marker signals in each 

chromatin compaction class. Please note that enrichment and depletion can either be presented in 

relative percentages, that is, an enrichment of 100 % means a doubling of the proportion of this class 

(as seen in Fig. 9). Or it can be visualized as changes of percentage points, that is, a change from 5% 

to 10% would result in an enrichment of 5 percentage points [16]. Which of the two possibilities may 

be preferred, depends on which aspect of the relative enrichment or depletion should be emphasized. 
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The differences in the distribution of chromatin compaction class voxel in general and of the chromatin 

compaction voxel with a specific signal, but also for the distribution of two different marker signals can 

be statistically tested. A Chi-squared test for contingency tables is appropriate, as it does not depend 

on a distribution assumption. Alternatively, a Wilcoxon rank-sum test, also known as Mann-Whitney U-

test, can be used for testing shifts of the mean of the distribution. 

Implementation 

First, we separate the red and green channel from the RGB image 

The function  provides the methods for computing the chromatin class 

distributions in general and per marker signal. Additionally it provides plots and statistical tests. We 

start with a threshold based approach using the previously derived chromatin compaction class image 

and the nucleus mask. Here, the threshold is fixed to 0.1 for both markers. Plotting is enabled with the 

argument ,  and  give the color of the bars corresponding to the markers.  

defines the limits of the y-axis, this is fixed here for comparison between figures. The Wilcoxon rank-

sum test is computed using the argument test=”Wilcoxon”: 

The result is depicted in Fig. 7B.  We see a clear enrichment of the labeled sequences in chromatin 

compaction level 2. All results are stored in the object  for subsequent analysis. The results of 

the Wilcoxon rank-sum tests are:

Here, the general distribution of chromatin compaction classes and the distribution of both marker 

signals in the chromatin compaction classes is statistically different. The distribution of both marker 

signals is also different. 

The argument type=”intensity” will compute distributions and tests based on the intensity-

weighted method. Again, we use a threshold of 0.1 for background suppression; signal above the 

threshold will be weighted by its intensity: 

 

The resulting graphic can be found in Fig. 7C. The enrichment in level 2 is even more distinct here. 

The results of the Wilcoxon rank-sum tests are similar as above, but the distributions of both markers 

is not statistically on a 5% level - actually these are contiguous differently labeled target sequences: 
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Fig. 7. 3D mapping of two contiguous DNA probes relative to chromatin compaction classes   

(A) Partial section shows adjacent green and red ~6 kbp DNA targets from chromosome 2, which are also adjacent along the 

linear DNA level. The section was taken from a 3D image stack recorded with SIM from a DAPI stained, diploid fibroblast 

nucleus (shown in gray). Targets were detected by 3D FISH with differentially labeled DNA probes. The green target represents 

a DNA hypersensitive site in BJ cell nuclei. Further details will be published elsewhere (A full presentation of these results will 

be provided elsewhere). (A1) Original image. (A2) Same image after DAPI intensity classification. As a criterion for dotted 

background, any small fluorescent dot with a distance >0.5 μm from the nearest signal centroid of a clearly identifiable target 

was attributed to background and eliminated from further consideration after signal segmentation with appropriate parameter 

settings. The additional green fluorescent background dot (indicated by arrow in A1) presents an example. (A3) The same 

image presented as a color heat map of chromatin compaction classes (compare Fig. 4) with schematically outlined targets. (B-

D) Barplots of voxel percentages for chromatin compaction levels (grey), and percentages of red and green markers for each 

chromatin compaction level. The barplots show an enrichment of both signals in class 2. Inlay: Visualization of weighting of 

markers signal intensity for a profile: Signal intensity in green, threshold as dotted line, dashed line as weight used for the 

respective voxel. (B) Result using an arbitrary threshold. Inlay shows that all voxels above the threshold have equal weight. (C) 

Result using thresholding and weighting proportional to voxel signal intensity. Inlay shows that voxel with marker signal intensity 

below threshold are weighted with zero, all voxel above threshold are weighted with their marker signal intensity. (D) Result 

using contiguous differently labeled target sequences. Inlay shows that green spot voxels with larger distances to nearest red 

spot (see A1) are weighted to zero.   
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We make use of the fact that we have contiguous differently labeled target sequences by finding spots 

using the function : 

 

The resulting  object includes masked images of the red and green spots, which we can use in 

The results of the Wilcoxon rank-sum tests are as follows: 

The resulting barplot is pictured in Fig. 7D. The enrichment of the differently labeled target sequences 

is even more pronounced here. The Wilcoxon test shows no difference in the distribution of the 

signals, which should be expected as we only use contiguous signals. The power of the statistical 

tests is a little bit smaller, as we use less signals here. However, the results are still very clear in this 

case. 

2.6 Analysis of multiple cell nuclei 

Rationale: Quantitative image analyses of nuclei from multiple cells are mandatory for the analysis of 

intercellular variations. It should be emphasized, however, that such comparisons must be performed 

with caution to avoid an over-interpretation of apparent cell-to-cell differences. Cell cycle related 

variances between nuclei, an exceptional pattern formation in the nucleus, noise or artifacts in the 

image at hand can lead to misleading conclusions. It is is crucial to acquire several images from 

nuclei on the same slide and to analyze them together. As a consequence of systematic, but 

unrecognized differences in the application of complex protocols, comparisons of nuclei from different 

slides can be more problematic than comparisons of nuclei from cells present on the same slide, in 

particular, when slides stem from independent experiments.   

 

Implementation 

The  package provides function to process all images in a folder sequentially or in parallel and 

store the results in appropriately named folders. For example, let us assume we have a couple of RGB 

tiff stacks in the folder “ ” in the folder “~/my_study”. The code  

folder = "~/my_study”
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will read in all tiff stacks in folder “~/my_study” and for each stack writes out the red, green and blue 

channel respectively in folders “ ”, “ ” and “ ”. The files of the tiff stacks have the same 

name as the original file in the folder “ ”. If   is greater than 1, this is done using parallel 

computation.  

 provides functions to process all steps in section 2.2 to 2.5 for all images in a folder. For 

example,  

computes masks for each tiff stack based on the blue channels in folder “ ” and writes them in a 

folder “ ”. The argument gives the size of a voxel in microns, as above. 

Although the algorithms are quite robust, intermediate results for this and all following steps should 

always be checked for artifacts.  

computes the chromatin compaction levels for each tiff stack. The resulting tiff stacks with the 

classification are in a folder called “ ” (with 7 classes, “class11” for 11 classes and so on) 

and the counts of voxels per class are in a folder “ ”. The counts and percentages are saved 

in text files with the same name as the original tiff stacks, but with the additional ending ” ”. These 

files are used for example to plot the mean percentage of voxels per chromatin compaction level along 

with the range of percentages: 

Fig. 8A shows an example: the mean distribution of voxels belonging to chromatin compaction classes 

over a series of cell nuclei (n = 20) along with error bars which visualize the standard deviation of the 

percentage per class over nuclei. 

3D mapping of marked proteins relative to DAPI intensity classes can be done by 

or in case of contiguous differently labeled target sequences by 

The resulting plots are shown in Fig. 8B.  

The Wilcoxon test can also be done using information from all cells: 
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Fig. 8 Results for the analysis of multiple cell nuclei 

A complete 3D image analysis of 3D SIM image stacks recorded from 20 BJ1 cell nuclei. Same experimental setup as explained 

in Fig. 7. (A) Barplot of mean distribution of voxels in chromatin compaction classes (similar to Fig. 4A) with standard deviation 

error bars. (C) 3D mapping of marked DNA-targets relative to these classes. (C) Minimal distances between chromatin 

compaction classes were computed for the set of 20 nuclear image stacks (compare Fig. 6) and are presented with standard 

deviation error bars. 

 

Here this gives the result: 

Likewise, the computation of the minimal distances of a voxel from a given class to the nearest 

neighbor from another class can be done on all tiff stacks from the entire set of nuclei kept in a folder. 

The results are saved in a folder “distances” and summarizing plots can be generated by 
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Fig. 9: Quantitative assignment of markers reflecting transcriptional activity or repression on 3D chromatin 

compaction maps in a sample of hematopoietic human cell nuclei (modified from [14]). 

(A) RNA Pol II with Serine 5 phosphorylation (Ser5P) is involved in the initiation of transcription, whereas SC35 accumulates in 

splicing speckles, which serve ongoing transcription with factors for co-transcriptional splicing. Left: light optical mid-section from 

a 3D-SIM image stack recorded from a hematopoietic stem cell nucleus and representative inset magnification delineating DAPI 

stained DNA (gray), immuno-stained SC35 (green) and RNA Pol II (Ser5P) (red). Right: Quantitative assessment of signals on 

DNA intensity classes obtained from 12 nuclei confirms a distinct localization: SC35 is found as an integral part of splicing 

speckles almost exclusively in the IC compartment, while RNA Pol II shows a preferential localization at decondensed chromatin 

sites or at the surface of compacted chromatin domain clusters. Scale bars: 2 μm; insets 0.5 μm. Graphs highlighted with yellow 

background: relative signal distribution of SC35 and RNA Pol II within the respective DAPI/ chromatin compaction classes 

(compare Fig. 4). Graphs highlighted with light-blue background: quantified levels of relative enrichment (positive values) or 

depletion (negative values) of SC35 and RNA Pol II signals relative to the DAPI signals confirm the massive enrichment of 

SC35 signals in class 1 reflecting the IC compartment. p<0.001 for DAPI vs. SC35 and RNA Pol II, and for SC35 vs. RNA Pol II. 

(B) H3K4me3, a histone marker for transcriptional competence and H3K9me3, a global histone marker for transcriptionally 

repressed (hetero)chromatin. Left: 3D-SIM light optical mid-section from a 3D SIM image stack recorded from a hematopoietic 

precursor cell nucleus and representative inset magnification delineating DAPI stained DNA (grey), immuno-stained H3K4me3 

(green) and H3K9me3 (red). H3K4me3 marks decondensed chromatin sites. H3K9me3 marks highly compacted chromatin 

clusters but is also found at decondensed sites (arrows). Scale bars: 2 μm; insets 0.5 μm. Right: This observation was 

confirmed by quantitative assessment of signals recorded in 12 nuclei on chromatin compaction classes (compare Fig. 4). 

Graphs highlighted with yellow background: relative signal distribution of H3K4me3 and H3K9me3 within respective DAPI 

defined chromatin compaction classes. p<0.001 for DAPI vs. H3K4me3 and H3K4me3 vs. H3K9me3. Graphs highlighted with 

light-blue background: quantified levels of relative enrichment (positive values) or depletion (negative values) of H3K4me3 and 

H3K9me3 signals relative to DAPI signals reveal an enrichment of H3K4me3 in low intensity classes and depletion of H3K9me3 

signals in classes 1 and 2. n = number of analyzed nuclei; error bars = standard deviation.  
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Fig. 8C depicts the result.

Fig. 9 exemplifies the comparative topology of markers reflecting either transcriptional 

activity/competence or transcriptionally silenced chromatin in samples of hematopoietic cell nuclei.  

 

3. DISCUSSION 

 

DNA and chromatin stains 

In our experiments DAPI staining to saturation was used as a proxy for measurements of 3D 

chromatin compaction at the resolution level of 3D-SIM [16]. This fluorescent dye served our needs 

best because its high photostability, DNA specificity and spectral properties meet the demands of the 

3D-SIM system configuration available at the LMU Biocenter. The binding preference of DAPI to AT-

rich DNA [22] must be taken into account for a proper interpretation. However, a fluorescent dye, 

which fulfills all requirements, has not yet become available. Depending on the microscopic and 

experimental setup other DNA/chromatin stainings such as SYTOX Green, Vybrant or fluorescent 

protein-tagged histones may be chosen as well [16,23].   

 

Masking of nuclei 

The space of nuclei with a fairly even shape and z diameters ≤ 8 μm can appropriately be assessed by 

automatically defining a mask as described above. We found that nucleoli contributed with <5% to the 

total nuclear volume in human fibroblasts, mouse myoblast cell line C2C12 and human retina 

epithelial-derived RPE-1 cells (data not shown) so that they can be included as part of the nucleus 

without special consideration. In case of huge nucleoli they should be excluded by manual cutout. A 

laborious manual setting of nuclear masks may also be necessary for nuclei with marked invaginations 

and infoldings of the nuclear lamina which can get lost by automatic mask generation. In order to 

achieve an optimal resolution with 3D SIM, nuclei with a flat shape and a position as close to the slide 

as possible are most suitable [24]. In case of very thick nuclei (>8 μm in z-direction) [15] or nuclei with 

highly condensed, global chromatin compaction [16] a “glow” or “shadow” especially in the last quarter  

 

 

Table 1: In case of a random assignment of voxels for a functionally relevant marker (null hypothesis), the percentages of 

marker voxels assigned to each chromatin compaction class correspond to the percentage of DAPI intensity voxels 

attributed to the respective class. Table 1 shows, for example, how this null hypothesis was tested for markers 1 (top row) 

and 2 (middle row) attributed to 5, 7, 11 and 32 chromatin compaction classes, respectively (see Fig. 10) using the 

Wilcoxon test for equal distributions of voxels. The null hypothesis must be rejected in all cases on a five percent 

significance level. P-values for marker 1 are slightly larger because the number of signals from marker 1 is lower compared 

to marker 2. Bottom row: p-values for the comparison of the distribution of red and green signals indicate the same 

distribution of marker 1 and marker 2 on chromatin compaction classes.  



 

 20 

of the DAPI image stack may appear. In order to generate reasonable chromatin masks also in these 

sections, chromatin should be marked by hand.  

 

Number of classes for chromatin compaction levels 

Although a classification of chromatin compaction levels based on 7 DAPI intensity classes is a 

simplification of the actual variability of chromatin compaction levels, we chose this classification for 

pragmatic reasons. It yielded robust data for the assessment of compaction differences in the 

chromatin landscape within individual nuclei and for statistical comparisons between different nuclei 

and markers distributed along this landscape. Furthermore, relevant details of nuclear landscapes 

 
Fig. 10. Results for different numbers of chromatin compaction classes 

(A) 5 classes, (B) 11 classes, (C) 32 classes. From left to right: Barplot for distribution of chromatin compaction classes, 

chromatin compaction map of central optical slice, distribution of red and green signal in chromatin compaction classes (using 

differently labeled contiguous signals as described in Fig. 7A). 
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were easily noted by eye in color heat maps with a limited number of DAPI intensity classes (Figures 

1C, 1E and 4). Since an increased number of classes did not affect our conclusions (see Fig. 10, 

Table 1), use of the theoretical limit of 65,536 grey levels in 16-bit images would increase the 

computational load enormously without further benefit. It should be emphasized, however, that our 

classification scheme tends to show borders between adjacent chromatin compaction classes, which 

in reality may be much fuzzier. The preferred number of classes used for statistical comparisons can 

of course easily be increased when such a necessity arrives, for example in case of a further gain in 

3D resolution.  

 

Biological interpretation of DAPI intensity classes as a proxy for chromatin compaction 

Fig. 11 summarizes our current biological interpretation of the seven chromatin compaction classes in 

the light of the ANC-INC model of the functional nuclear organization [4]. 

We refer to compaction class 1 as the interchromatin compartment (IC). This concept was first 

introduced in electron microscopic studies of the nuclear architecture, but does not mean that DNA or 

chromatin loops are strictly absent within IC channels [25]. Such loops may well intrude from the lining 

of chromatin into the IC and the amount of such a penetration may depend on functional states and/or 

the cell type; compare e.g., nuclear landscapes of cultured somatic cell types [16] with blastomeres in 

preimplantation embryos [15] and hematopoietic cells [14]. Some important limitations of our current 

analytical tool should be emphasized here: 1. While classes 1 to 7 clearly indicate increasing 

chromatin compaction levels, structured illumination microscopy of DAPI stained nuclei is not well 

suited to measure absolute differences of chromatin compaction between different classes. 2. Our 

approach seems suitable for comparisons of nuclear landscapes between a relatively homogeneous 

set of nuclei studied in the same experiment. Quantitative comparisons are much more problematic 

between nuclei with drastic differences in size, shape, invaginations of the nuclear envelope, higher 

order chromatin arrangements and absolute chromatin densities. The range of absolute compaction 

differences between classes 1-7 can be wider or narrower depending on seemingly subtle differences 

of DNA staining protocols and on thresholding of recorded image stacks. As a consequence,  

 

 

Fig. 11. Biological relevance of different chromatin compaction classes 

For details see text and reference [4]. 
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comparisons between, e.g., class 3 identified in one cell type with the same class identified in another 

cell type should be made with caution.  

 

Assessment of minimal movements of nuclear targets between regions with different 

chromatin compaction levels.  

A given nuclear target DNA may change its position and switch between compartments defined by 

different chromatin compaction levels. The relocation of a transcription regulatory element, which is 

present in more compact chromatin when inactive, but moves into more decondensed chromatin in 

response to transcriptional stimulation of target genes, may serve as an example. 3D imaging 

snapshots from fixed nuclei recorded at different time points after a proper stimulus applied to an 

entire cell population can be analyzed for a rough estimate of such positional changes, e.g. from the 

most compact (interior) to the most decondensed (peripheral) part of a chromatin domain cluster by 

measuring minimal average distances between defined chromatin compaction classes. It should, 

however, be emphasized that our approach can assess only minimal distances between classes, so 

actually travelled distances may be considerably larger.  

4. CONCLUSIONS 

The Common Fund’s 4D Nucleome program of the National Institutes of Health (NIH) established in 

2015 “aims to understand the principles underlying nuclear organization in space and time, the role 

nuclear organization plays in gene expression and cellular function, and how changes in nuclear 

organization affect normal development as well as various diseases.” Here, we present a tool 

package, which may become a helpful supplement for 4D nucleome research [2]. These tools allow for 

a quantitative analysis of 3D image stacks from sets of fixed cell nuclei recorded with super-resolved 

fluorescence microscopy and are implemented as free packages in the statistical software R. They 

allow the assessment of chromatin compaction levels in individual cell nuclei, the measurement of 

distances between the chromatin compaction classes and the mapping of specific DNA / RNA 

sequences and nuclear proteins with respect to the 3D chromatin landscape. Statistical methods are 

implemented to handle noise and random artifacts in microscopic images. The mapping of specific 

DNA sequences and nuclear proteins on the different chromatin compaction classes allows new 

insights into the relationships between structural and functional processes of the 4D nucleome. 

Whereas the current tool package has been devised for the image analysis of the 3D nuclear 

landscape in fixed cells, the enhancement of these tools for the quantitative 4D image analysis of the 

nuclear landscape remains as a future challenge for studies of dynamic changes in in individual living 

cells. 
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