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Double-barrelled ion-sensitive microelectrodes were used to record the free intracellular Na*- and
K’ -concentrations ([Na * Ji, (K * Ji) and 10 ‘etermine their relation to changes in membrane potential and
extracellular K* ([K * ]o) in rat sympathetic ganglia. The application of 50 umol/1 carbachol resulted in
an elevation of [K * ] followed by a post-carbachol [K * J-undershoot. The membrane depolarization of
the sympathetic neurones was associated with an increase in [Na * ) and a decrease in [K * }i. A membrane
hyperpolarization and a recovery of (K * )i and [Na’ ; to their baseline levels were observed during the
(K * Je-undershoot. The time course of the [K * J.-undershoot correlated exactly with the duration of the
rise in [Na* J, and decrease of [K * )i. No K * -reuptake occurred in the presence of ouabain. These data
confirm, by direct imeasurements of intracellular ion concentration changes, the contribution of the
Na* K’ -pump to the post-carbachol membrane hyperpolarization and [K * J-undershoot.

Stimulus- and neurotransmiitter-induced activity in the peripheral and central ner-
vous system of mammals is accompanied by an elevation of the free extracellular
K *-concentration ([K*].). After the end of the stimulation, there is a transient
[K * Je-undershoot. Authors reporting [K * ].-undershoots in cat cerebral cortex [10,
13], cat medulla oblongata and spinal cord [11, 12], rat cerebellum [16] and rat sym-
pathetic ganglion and vagus nerve (6], explained this phenomenon as an enhance-
ment of active K * -pumping, which in turn ought to be due to an accumulation of
intracellular Na* . However, direct measurements of the free intracellular Na~ - and
K * -concentrations in conjunction with neuronal membrane potential during the
(K *]e-undersnoot have not yet been described. We have performed such ex-
periments in mammalian sympathetic neurones using double-barrelled ion-sensitive
microelectrodes with very fine tips. Our results confirm previous suggestions about
the kinetics of intracellular Na* and K* during the [K*].-undershoot.

Experiments were performed on neurones of the superior cervical ganglion of
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rats. Ganglia were isolated, desheathed and continuously superfused in a recording
chamber witn Krebs solution (30°C) containing (in mmol/I): NaCl 118; KCl1 4.8;
NaHCOs 25; KH,PO, 1.2; MgSO; 1.2; CaCl; 2.5 and p-glucose 10. Pre- and post-
ganglionic nerve trunks were fixed with two suction electrodes, one for electrical
stimulation and the other for recording the post-ganglionic compound action poten-
tial. Measurements of free intracellular Na*- and K*-concentrations ([Na“*}];,
[K*]) and [K*]. were made with double-barrelled ion-sensitive microelectrodes
with tip-diameters less than £.3 um [1). Reference barrels were filled with 1 mol/l
magnesium acetate (pH adjusted to 7.4; electrode resistance about 100 MQ). Ion-
sensitive barrels were filled with K*-exchanger (Corning 477317), valinomycin-
cocktail or Na * -ligand (ETH 227 [14})). The methods used to construct and calibrate
the ion-sensitive microelectrodes have been described elsewhere (8, 9].

For data analysis, only those measurements were taken into account where both
membrane potential and ion concentrations reached a steady-state after impale-
ment. Early steady-state {K *Ji-baseline level was 121.7 + 9.7 mmol/l (mean +
S.D.; n = 30). The corresponding mean action potential amplitude was 70.7 + 13.9
mV (n = 30) at a membrane resting potential of —45.3 + 5.4 mV (n = 30). The

A B8
Ke ™7

v, wﬂw“w
P -
E i :' : Em
- ] : ,

: o VRTRRS o ‘ .
\‘ J .“ i

- "4 —— -

Carbachol 3men Carbachoi

B0 wmoiil 50 wraiii

Fig. 1. Simulianeous measurements of carbachol-induced changes of intzacellular and extracellular free
K * -concentrations (K ard K.) (A), and free intracellular Na * -concentration (Na;) and membrane poten-
tial (E.) (B). Carbachol was added 10 the superfusion fluid for 1 min. The slow membrane potential
changes were accomparied by transient increases in Na; and K. and 1 decrease in K;. The kinetics of the
recovery of Na; and K; to baseline levels were very similar to each other. Note the delayed onset of
changes of the intracetlular ion-concentrations with respect 10 the membrane depolarization. The in-
crease in K. had its maximum at the same time as K; had its lowest level. The noise on the traces for
Em. Naz; and K, is partly due to spontaneous neuronal activity of the cells. Inset in B shows a typical elec-
trically elicited action potential of 75 mV amplitude (membrane resting potential was 45 mV). Two
different neurones in A and B, respectively.
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[Na* );-baseline level was 11.4 + 3.3 mmol/l) (mean + S.D.; n = 13) at a mean
membrane resting potential of —41.3 + 5.8 mV (n = 13); action potential
amplitude was 64.5 + 7.2mV (n = 13). In the first series of experiments the kinetics
of [Na']; and [K"*}; were compared with changes of [K™ ] (Fig. 1). A typical in-
crease of [K*]. followed by a [K * J.-undershoot was induced by the application of
carbachol (50 umol/1, 1 min) via the superfusion solution (Fig. 1A; see refs. 6 and
7). The intracellular recordings made with the ion-sensitive microelectrodes revealed
a simultaneous membrane depolarization of 23.3 + 4.2 mV (mean + S.D.; n =
9), a rise of [Na* ]; between 4 and 9 mmol/1 (Fig. 1B), and a fall of [K*]; between
8 and 20 mmol/l. Both the {[Na*]; increase and the [K*); decrease lagged behind
the beginning of the membrane depolarization. The ionic changes reached their
maximum values during the early phase of the repolarization of the membrane. Dur-
ing the [K*).-undershoot the membrane hyperpolarized, and [K*]; and [Na™};
recovered to their baseline levels. The intracellular ion concentrations reached their
resting levels at the end of the [K* Je-undershoot.

The observations concerning the kinetics of the ion concentration shifts are in
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Fig. 2. Carbachol-induced changes of free intracellular K * -concentration (K;) in normal Krebs solution
znd in the presence of ouabain. In normal Krebs, carbachol typically induced a transient decrease of K;.
In the pres "ice of 300 umol/l ouabain, however, the initial carbachol-induced K; decrease was followed
by a further decrease of K;. When ouabain was washed out, a rapid reuptake of K* accompanied by
a considerable membrane hyperpolarization was observed. Deflections on both the traces at the end of
the post-carbacho! hyperpolarization are due to spontaneous activity of the neurone.
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general accordance to the measurements of [Na*); and [K*}); made by flame
photometry in rat superior cervical ganglia [2]. They extend these data by a com-
pasison of the behaviour of [K * J; during the [K* J.-undershoot. A [K* Ji-level which
remains below the control value during the [K * J.-undershoot has also been observ-
ed in photoreceptors of the drone retina [4], in Retzius cells in the leech [S], and
during a post-glutamate and post-stimulus membrane hyperpolarization in frog
motoneurones [3, 9). Our data also reveal that [Na* J; remains elevated until the end
of the [K*].-undershoot. This fact supports previous, theoretical assumptions
about the kinetics of intracellular Na* [6, 10-13, 16].

In a second series of experiments the contribution of the Na* K* -pump to the
IK * Ji-recovery phase was investigated. A typical experiment is illustrated in Fig. 2.
After a control application in normal Krebs solution, carbachol was reapplied in the
presence of ouabain (300 umol/1). The K* released by the neurones during the ap-
plica:ion of carbachol, did not appear to be taken up under these circumstances.
However, after the end of the ouabain superfusion an increase of [K * }; and a mem-
brane hyperpolarization were observed. This indicates that the Na* ,K * -pump is the
main factor involved in the homeostasis of carbachol-induced ion concentration
changes. This post-ouabain hyperpolarization also implies an electrogenic coupling
ratio in analogy to the Na* K * -pump of other neurones [15].

In conclusion, our data show, first, that double-barrelled ion-sensitive microelec-
trodes can be used to determine the free intracellular Na * - and K * -concentrations
in mammalian neurones; and secondly, they confirm, by direct measurements of in-
tracellular ion concentration changes, the contribution of an electrogenic
Na* K’ -pump to the [K * J.-undershoot.
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