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Abstract. Lithium sensitive microelectrodes were used to 
investigate the transmenabrane distribution of lithium ions 
(Li +) in motoneurons of the isolated frog spinal cord. After 
addition of 5 mmol-1-1 LiC1 to the bathing solution the 
extracellular diffusion of Li + was measured. At a depth of 
500 gin, about 60m in elapsed before the extracellular Li + 
concentration approached that of the bathing solution. 
Intracellular measurements revealed that Li + started to enter 
the cells soon after reaching the motoneuron pool and after 
up to 120rain superfusion, an intra - to extracellular 
concentration ratio of about 0.7 was obtained. The resting 
membrane potential and height of antidromically evoked 
action potentials were not altered by 5 retool. 1- ~ Li +. 
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Introduction 

The mechanism of the therapeutic action of lithium (Li +) is 
still unclear. One factor involved may be an influence upon 
other ions which are important for neuronal functions. In this 
context several investigations have shown that Li + can 
interfer with the active and electrogenic transport of Na +- 
and K+-ions observable after neuronal stimulation in rabbit 
or rat vagus nerve (Ritchie and Straub 1957; Ploeger 1974; 
Smith 1979), amphibian optic nerve (Tang et al. 1980), rat 
sympathetic ganglion (ten Bruggencate et al. 1981), frog 
spinal cord (Davidoff and Hackman 1980; Grafe et al. 1981) 
and rat cerebellum (Ullrich et al. 1980). The interpretation of 
these experiments, however, remained limited with respect to 
the concentration of  Li + in the nervous tissue as a function of 
the application time and to the unknown extra-/intracellular 
distribution ratio of Li +. The development of a lithium 
sensitive ion exchanger suitable for microelectrodes (Gfiggi et 
al. 1975) now offers the possibility for obtaining these data. 
Thomas et al. (1975) have applied lithium ion sensitive 
microelectrodes (Li +-ISMEs) to determine Li + accumulation 
in snail neurons. We have extended this to vertebrate neurons 
and used Li+-ISMEs to investigate the distribution of Li + 
across the membrane of motoneurons in the isolated frog 
spinal cord. The aims of this project were (a) to observe the 
kinetics of extracellular and intracellular Li + in an isolated 
preparation after application of the ion into the superfusion 
fluid. (b) To determine the time required to reach a steady 
-state concentratiofi o?-L37 inside the cell~--(c) To measure the 
steady state intra-/extracellular concentration ratio. 
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Methods 

Experiments were performed on the frog, Rana esculenta, 
using the approach described in detail by Sonnhof et al. 
(1975). Briefly, after decapitation a ventral laminectomy was 
performed in cooled Ringer solution. The spinal cord, 
including dorsal and ventral roots of the lumbar segments, 
was removed and placed in a recording chamber (volume 
1.5ml), which was continuously superfused with Ringer 
solution by means of a roller pump (2.5 ml/min). The Ringer 
solution contained (retool- 1-1): NaC1 98.0, KC1 3.6, CaCI2 
2.0, NaHCO3 12.0, glucose 10.0. The pH was continuously 
monitored and adjusted to 7.3-7.5 by means of a variable 
mixture of 02 and CO2. The temperature of the perfusion 
fluid was adjusted to 21~ The dorsal roots of the lumbar 
segments of one side were placed on silver wire electrodes for 
stimulation and covered with vaseline; the ventral roots of the 
same side were drawn into glass suction electrodes which 
permitted stimulation or recording from the ventral roots. In 
order to facilitate the insertion of microelectrodes, a large 
area of the meninges including the pia was carefully removed 
between ventral and dorsal roots. Electrode tracks aiming at 
motoneurones were guided by antidromic field potentials; 
motoneurones were identified by antidromic invasion from 
the stimulated ventral roots. 

Ion sensitive microelectrodes (ISMEs) with outer tip 
diameters of approximately 0 .5 -1  lam were drawn from 
borosilicate theta-capillaries. Whilst applying pressure (N2) 
to one channel, a drop of hexamethyl-disilazane (Sigma, 
Miinchen, FRG) was backfilled into the other channel. The 
electrode was then inserted into a horizontal heating coil 
(approximately 400 ~ C) and after baking for 20 min, a drop of 
lithium sensitive ion exchange resin (Gtiggi et al. 1975) was 
injected into the silanized tip under microscopic control. This 
channel was then back-filled with 150 mmol. 1-1 LiC1. The 
reference barrel was filled with 4 mol- l -  1 potassium acetate 
for conventional recording of potentials. After insertion of 
Ag/AgC1 wires, the electrodes ~ere sealed with wax. The 
resistance of the ion sensitive barrel was about 1011 ~2, while 
that of the reference barrel ranged between 107 and 5. 107~2 
(measured with dc-current). High-impedance buffer am- 
plifiers and differential subtraction amplifiers were used to 
obtain the pure ion signal and the potential of the reference 
barrel. Both potentials were recorded on a chart recorder that 
filtered out high frequency components (above 10 Hz). Fast 
field potentials, synaptic and action potentials were recorded 
with the reference barrel and displayed on an oscilloscope. 
The amplitude of the antidromic spike was also monitored by 
the chart recorder using a peak height detector (Courtice 
1977). 
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Usually, the calibrations for intracellular measurements 
were carried out using standard solutions of  different LiC1 
concentrations (1, 3 and 5mmol-1 -~) against a constant 
background of  100 mmol.  1-1 KC1 plus 16 mmol.  1-1 NaC1 
or less (see below). The same standard Li + concentrations in 
Ringer solution were used to obtain values for extracellular 
measurements (see Fig. 2B). This method avoided calcu- 
lations using selectivity coefficients to be determined for each 
electrode (Thomas et al. 1975). The actual concentrations of  
Na  § in the intracellular calibration solutions were chosen by 
adjusting the voltage change between Ringer solution and 
various intracellular calibration solutions to the potential 
jump of  the difference signal (Lii) after withdrawal from the 
intracellular compartment (cf. Fig. 5). 

Li~ was calculated as a concentration, since the Ringer 
solution and the intracellular calibration solution had about 
the same ionic strength, Also the activity coefficient for Li § is 
probably the same inside the cell as outside (for discussion see 
Thomas 1978). Some electrodes were tested for their selec- 
tivity coefficients against Na  § and Ca z +. Using a computer 
program based on the Nikolsky equation and calibration 
solutions containing a constant background concentration of  
Na  § and different concentrations of  Li +, a selectivity coef- 
ficient against Na  + of  0.046 _+ 0.014 (mean _+ SD; n --- 20) 
was obtained. A similar program, using different con- 
centrations of  C a  2 + in solutions with constant amounts of  
Na  + and Li + was used to determine the selectivity coefficient 
against C a  2+ (0 .18  -1- 0 . 0 8 ;  n = 11). The M g  2+  interference 
of  the Li + ion exchanger resin was not tested; according 
to the literature it is unlikely to be important (Li + :Mg z+ 
= 1:0.003; Gfiggi et al-. 1975). 

The pure ion potential of  extracellularly placed Li-ISMEs 
in the absence of  Li + had a certain value because of  the 
presence of  interferring ions in the extracellular space. Upon 
application of  Li +, this potential (Lie) changed according to 
the changing extracellular Li + concentration. Intracellularly, 
a similar ion potential was observed in the absence of  Li + ; 
("apparent" Lii = Ei.i-Em; E~i = voltage of  ion barrel, E~ 
= voltage of  reference barrel). This "apparent"  Lii is set by 
the intracellular activities of  interferring ions, and may 
change even in absence of  Li + (see Fig. 2). In particular, an 
alteration of  the Na  + activity is the most important factor. 

Results 

ExtracelIutar Li  + Distribution 

Experiments were performed with extracellularly placed Li- 
ISMEs in order to quantify the entry of  Li + into the spinal 
cord as a function of  time. Figure 1 illustrates changes of  Lie 
at a depth of  500 I~m below the lateral surface of  the cord 
(location of  the motoneuron pool); the time course of  Li + 
changes in the bathing chamber is shown to the left. Although 
a constant Li + level in the bath was reached within 2rain, it 
took about  60rain until Lie within the motoneuron pool 
approached the applied concentration of  5 mmol.  1- z. Even 
after such a long Li + application, Lie was still about 
0.5 mmol.  1- t less than the bath concentration. Observations 
from 5 different spinal cord preparations have shown that a 
latency of  ! - 2  min passed between the time of  Li + entrance 
at the surface and a measurable Li + signal at a depth of  4 0 0 -  
500gm; Li e then increased to 3.58 +_ 0.34mmol-1-1 (mean 
+_ SD;  n =  5) after 30min and to 4.33 + 0.47 mmol.1-1 
(n = 3) after 60 min of  application. 
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Fig. 1. Extracellular Li + transients in the isolated frog spinal cord. 
Changes in bath and tissue Li + concentration induced by steplike 
addition of 5 retool. 1-1 LiC1 to the snperfusate (time indicated by bars; 
corrected for the delay caused by the tube system). The electrode position 
in the tissue was 500 ~m below the lateral surface of the spinal cord within 
the motoneuron pool 

Li* Distribution across the Motoneuron Membrane 

Before describing intracellular Li + measurements, it is nec- 
essary to report some of  our general observations with the 
Li +-ISME in the intracellular fluid. Due to the sensitivity of  
the ion exchanger to Na  + and Ca 2+, and the existing 
concentration gradients for those ions, a voltage jump of  the 
difference signal ("apparent" Li/) of up to 50 mV could be 
observed upon impalement of  a cell. Additionally, changes in 
the membrane potential (E,,) and the height of  the antidromi- 
cally evoked action potentials (a. AP) were accompanied by 
voltage shifts of  "apparent" Li~. Such effects were frequently 
seen in the period following the impalement; one typical 
example is illustrated in Fig. 2A. At the beginning of  the 
recording (1 rain after impalement) Em was - 63 mV and the 
a. AP was 75mV. E,, then slowly rose to - 7 3 m V  and 
simultaneously the height of  the a. AP increased first to 86 mV 
and was then blocked. In this situation, the antidromic 
stimulation induced a ventral root  EPSP (Sonnhof et al. 
1977). An a. AP of  92mV could only be elicited when 
superimposed on a spontaneous synaptic depolarization. 
Parallel to the increase in resting membrane potential and 
a. AP amplitude, a voltage shift of  the Li+-ISME of 15 mV 
occurred, probably due to the outward pumping of  Na  + 
during the "sealing in" of  the electrode. Opposite, but similar 
changes in the Licvoltage were observed when the membrane 
depolarized as a result of  cell deterioration. Therefore, we 
restricted our analysis of  intracellular Li + concentrations to 
neurons, which had stable E,, and a. AP. Maximally, a change 
of  5mV in the E~ and 10mV in the a. AP was tolerated 
(16motoneurons from 15 spinal cord preparations). 

Figure3 illustrates a typical experiment showing the 
transmembrane Li + movement into a motoneuron. After the 
impalement of  the cell, we measured the intracellular Li + 
accumulation after application of  5 mmol-1 -~ Li + into the 
bathing solution (Fig. 3C). After about 2min (range 2 -  
5 rain) Li + entered the motoneuron, whilst Em (Fig. 3 D) and 
the height of the a. AP (Fig. 3 E) remained unchanged. Thirty 
minutes later the impalement became unstable and the 
electrode was withdrawn from the cell (not illustrated). This 
same electrode was then positioned extracellularly close to the 
recorded neuron and, after a washing period of  about 1 h, Li + 
was reapplied. The kinetics of  the extracellular Li + diffusion 
was then recorded (Fig. 3B). 
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Fig. 2A and B. [ntracellular performance and calibration of Li+-ISME. (A) Changes in the ion signal (Li~), resting membrane potential (E,,), and 
antidromic spike (a. AP) during the period following impalement of a motoneuron. Simultaneous to the increase in E,, and the a. AP amplitude, a 
voltage shift of "apparent" Li~ occurred. (The asterisk after Li~ points to the fact that no Li + is present.) This is probably caused by a decrease in the 
intracellular Na + concentration since recordings with Na+-ISMEs showed the same behaviour (unpublished). The ventral roots were stimulated every 
10s; towards the end of the trace the a, AP did not invade the soma of the motoneuron. Figures above the a. AP record give the actual size of the a. AP 
(mV) as read from the oscilloscope. The upward deflections on the E,,-trace are spontaneously occurring synaptic potentials; a. APs are not visible due to 
the slow frequency response of the pen recorder. (B) Voltage response of a representative Li +-[SME with different concentrations of Li + (0, 1, 3 and 
5 retool, t- 1) added to the normal Ringer solution (a) and to an "intracellular calibration solution" containing ~100mmol-1- t KC1 and 16retool. 1-1 
NaCI (b). Due to the sensitivity of the ion exchanger to Na + and Ca z +, a voltage jump of 35 mV occurred upon changing from solution a to b. Also, the 
electrode was more sensitive to Li ~-ions in the low Na +- and low Ca z +-background solution b 
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Fig. 3A--E. Li + entry into a motoneuron. Traces (A) and (B) illustrate the 
reference signal (ref) and the difference signal (Lie) of a Li+-ISME 
positioned extraceltularly at a depth of 450 rtm below the lateral surface 
of the spinal cord. The following 2 traces (C, D) are the corresponding 
signals obtained with the same electrode inside a motoneuron (depth 
440~tm). The upward deflections on the E,,-trace are spontaneously 
occurring synaptic potentials. A record of the amplitude of antidromic 
action potentials (a. AP), as elicited by stimulation of the ventral roots 
(0.1 Hz) is shown in E. The cell was lost 28rain after the start of Li + 
superfusiou (5 retool. 1-1 exchanged for NaCI and indicated by arrow 
and vertical line) 

In several o ther  exper iments  we have observed Lit after 
changing f rom Li + Ringer  to no rma l  Ringer  solution.  Af te r  a 
short appl ica t ion  ( 1 5 -  20 rain), Lil still increased for several 
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Fig. 4. Extra- and intracellular Li + transients upon brief periods of Li + 
application. LiCl (15 retool, l -  t, exchanged for NaCI) was applied via the 
bathing solution at the time indicated by the bar. In this figm'e, the Li~ 
calibration is given in both retool' I- i and mV, thereby revealing that the 
sensitivity of the Li +-ion exchanger is much greater in a solution with an 
ionic background similar to the intracellular fluid. The registration of the 
membrane potential is superimposed by synaptic potentials induced by 
dorsal root stimulation (0.05 Hz). The extracellular Li + measurement 
was obtained during a second Li + application after withdrawal of the 
electrode from the motoneuron (depth 480 gin) to a place close to the 
neuron (depth 430gin) 

minutes  despite removal  o f  the ion  f rom the superfus ion fluid; 
about  twice the appl ica t ion t ime was requi red  until  Li + was 
complete ly  r emoved  f rom the cell (see Fig. 4). In  2 o ther  
prepara t ions  we impaled m o t o n e u r o n s  after Li + had  been 
appl ied  for up to 5 h. In these cases, after changing  back  to 
normal  Ringer  3 - 5  rain e lapsed before  Li~ s tar ted to fall and 
reached the zero level abou t  120rain later. 
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Fig.5 
Steady state distribution of Li t . After impalement 
of the motoneuron and a control period, LiC1 
(5 mmol. 1- x, exchanged for NaC1) was 
continuously perfused through the bathing 
chamber, resulting in an increase of Li t . At the 
same time, the membrane potential (E~) remained 
stable (the antidromic action potential was 
blocked, not illustrated). After about 120min, the 
recording became unstable and the electrode was 
withdrawn from the cell and placed into the 
bathing solution, which still was a Ringer solution 
with 5 mmol. 1-1 LiC1. At the arrow (w) the LiC1 
solution was exchanged for normal Ringer. Then 
the ISME was calibrated using concentrations of 0, 
i, 3 and 5 retool. 1-1 LiC1 in solutions containing 
100mmol'1-1 KC1 and 16mmol.1 - t  NaC1 (a) and 
100 retool. 1-1 KCI and 8 mmol. 1-1 NaC1 (b). The 
intracellular Li + concentration after 120rain was 
calculated as 3.6 retool. 1-1. For this calculation 
the calibration b was used because the baseline was 
identical to the intracellular level. Potentials in the 
Era-trace during the calibration procedure are 
junction potentials at the bath ground (Ag/AgC1) 
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Fig.6. Intracellular Li + levels after long lasting Li + applications. 
Summary of 5 motoneurons from experiments in which Lit was observed 
for application times of 60-90 min. On the left side the depth of the 
motoneuron, the resting membrane potential (E,,) and height of the 
antidromically evoked action potential (a. AP: bl. = antidromic invasion 
blocked) at the beginning and end of each recording are given. The traces 
illustrate the kinetics of the intracellular Li + levels redrawn from the 
original data. The values at the end of the traces give the intracellular Li + 
levels at the end of the measurement. The continuous application of 
5mmo1.1-1 LiC1, either added to the Ringer solution (3cells) or 
exchanged for NaC1 (2 cells), was started at the vertical line 

Steady State  Measurements  

Our longest intracellular recording is illustrated in Fig. 5 and 
shows that even after an application time of 120min Liz did 
not reach a steady state. The ratio between Li~ and Lie at this 
time was 0.7. Observations on 5different motoneurons,  
recorded for 6 0 - 9 0  min, are summarized in Fig. 6. In 2 of 
these examples a stable intracellular Li + level could be 

observed, whereas in the remaining neurons Liz was still 
increasing after 90min superfusion. However, in all cells 
studied so far, Li~ did not exceed the extracellular Li + 
concentration. Our measurements also showed that Li + 
(5 mmol-  1-1) did not  alter Em and a. AP. Summarizing our 
longest intracellular recordings, Em was - 67.0 + 3.8 mV 
(mean + SD, n = 7) before and - 68.3 _+ 5.8 mV (n = 7) after 
superfusion of 5retool.1-1 Li + for 3 0 - 1 2 0 m i n .  The cor- 
responding data for the a. AP are 84.0 +_ 15.2mV (n = 4) 
before and 85.0 + 20.0mV (n = 4) after Li + superfusion. In  
the remaining 3 motoneurons the a. AP was blocked. 

Discussion 

We have used Li+-ISMEs (Gfiggi et al. 1975; Thomas et al. 
1975)in order to determine the kinetics and the steady state 
intracellular Li + concentration in frog motoneurons. Results 
based on this method are reliable, with respect to the Li + 
kinetics, since the response time of the electrodes is much 
faster than the Li + kinetics. On the other hand, the validity of 
the quantitative analysis is limited due to the partial sensi- 
tivity of the Li + exchanger to other interferring ions. In 
particular, Na + and Ca 2 + (Gtiggi et al. 1975) have to be taken 
into account for (a) the composition of the intracellular 
calibration solution and (b) possible changes of the in- 
tracellular activities of these ions during the action of 
Li +. Our intracellular calibration solutions contained 
100retool-1-1 KC1 and 16 or 8mmol .1 -1  NaC1. The con- 
centration of K +-ions is based on data obtained with K +- 
ISMEs in frog motoneurons (Sonnhof and Biihrle 1981) for 
the membrane potential range of - 60 to - 75 mV, to which 
our analysis was restricted. The concentration of Na+-ions 
has been chosen by comparing the voltage jump of the 
difference signal (Li~) during withdrawal after an impalement 
and the change from the Ringer to the intracellular cali- 
brat ion solutions (see Fig. 5). However, the unknown com- 
position of the intracellular fluid remains a source of error. 

A second problem is a possible change in the activity of 
intracellular Ca 2+- a n d / o r  Na+-ions during the action of 
lithium. Aldenhoff and Lux (1980) reported that application 
of 1 - 4 0 m m o 1 - 1 - 1  LiC1 resulted in a concentration - 
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independent  e levat ion o f  intracel lular  Ca ~ + by 100 nmol -  1-1 
in snail neurons.  Such an increase wou ld  no t  result  in a 
measurable  potent ia l  change with  the L i + - I S M E s  we used. 
On  the o ther  hand,  as described in the results, we frequent ly 
observed vol tage shifts o f  the Li + - ISME dur ing changes in 
the m e m b r a n e p o t e n t i a l  and /o r  the ampl i tude  o f  the anti- 
d romic  act ion potent ial .  This may  result  f rom changes in 
intracel lular  Na+-concen t r a t ion .  Therefore ,  our  analysis was 
restr icted to m o t o n e u r o n s  which had  stable m e m b r a n e  poten-  
tials and cons tan t  act ion potent ia l  ampli tudes.  Li + itself 
(5 m m o l .  1-1) seemed no t  to alter these parameters .  In spite o f  
possible small  errors  due to the factors discussed above,  our  
da ta  ob ta ined  f rom m o t o n e u r o n s  o f  the isolated frog spinal 
cord  are comparab le  with the t r ansmembrane  dis t r ibut ion o f  
Li + in snail neurons  (Thomas  et al. 1975) and  cul tured 
neurons  and glial cells ( Janka  et al. 1980a, b) showing a non-  
passive dis t r ibut ion o f  Li + with  an  intra-  to extracel lular  ra t io  
o f  < 1. I f  Li + is passively distr ibuted,  the rat io  should  be 
much  higher, closer to the K + dis t r ibut ion rat io.  A n  analysis 
o f  Li + levels in m o n k e y  and  h u m a n  bra in  after chronic,  
therapeutic ,  oral  dosage also revealed a ra t io  close to 1 
(Spirtes 1976). In  contrast ,  in cu l tured  g l ioma cells an intra- /  
extracel lular  Li + ra t io  o f  up to 5.6 was observed (Gork in  and 
Richelson  1979). The  non-pass ive  dis t r ibut ion o f  Li + does 
no t  necessarily imply an active ou tward  t ranspor t  o f  Li + by 
the N a + / K + - p u m p  (Ritchie and  Straub 1980), since a 
N a + / L i  + exchange system has been shown to main ta in  a low 
intracel lular  Li § concen t ra t ion  in red  b lood  cells ( D u h m  et al. 
1976; Ehr l ich  and  D i a m o n d  1980; Tos teson  1981) and 
possibly also in cul tured neurons  ( Janka  et al. 1980c). 

The t ime course o f  the Li + m o v e m e n t  in to  the frog spinal 
mo toneu rons  is similar  to the observat ions  in snail neurons  
(Thomas  et al. 1975) and cul tured  neurons  (Richelson 1977; 
J anka  et al. 1980a, b) showing that  considerable  amount s  o f  
Li + are measurable  intracel lularly wi thin  a few minutes.  This 
may  indicate that  the Li + induced impa i rmen t  o f  st imulus 
induced electrogenic N a + / K + - t r a n s p o r t  observed in experi-  
ments  involv ing  appl ica t ion o f  Li + via the superfusion fluid 
might  involve an in terac t ion  o f  Li + at the intracel lular  
b inding site o f  a mechanism,  which is normal ly  engaged  in the 
N a + / K + - t r a n s p o r t .  

Acknowledgements. We are grateful to Prof. Simon, ETH Ziirich, for the 
gift of Li-exchanger and to him and Dr. Ammann, ETH Ziirich, for most 
valuable discussions throughout this project. We like to thank Miss C. 
Koestler for participation in several experiments and Dr. M. Galvan and 
Prof. J. Duhm for reading the manuscript and stimulating discussions. 
Expert technical and secretarial assistance was given by Mrs. C. Mfiller 
and Mrs. S. Syguda, respectively. The work was supported by grants 
Br 242/15 and 17-2 given by the Deutsche Forschungsgemeinschaft. 

References 

A1denhoff JB, Lux HD (1980) Measurement of steady state and transient 
changes of intracellular calcium in snail neurons under Lithium- 
chloride. Pfliigers Arch (Suppl) 384:R19 

Bruggencate G ten, Ullrich A, Galvan M, F6rstl H, Baierl P (1981) 
Effects of Lithium application upon extracellular potassium in 
structures of the peripheral and central nervous system of rats. In: 
Lfibbers DW, Acker H, Buck RP, Eisenman G, Kessler M, Simon W 
(eds) Progress in enzyme and ion-selective electrodes. Springer, Ber- 
lin Heidelberg New York, pp 135-140 

Courtice CJ (1977) A circuit for recording evoked action potential 
amplitudes. J Physiol 268:1P 

Davidoff RA, Hackman JC (1980) Hyperpolarization of frog primary 
afferent fibres caused by activation of a sodium pump. J Physiol 
302: 297-  309 

Duhm J, Eisenried F, Becker BF, Greil W (1976) Studies on the lithium 
transport across the red cell membrane I. Li + uphill transport by the 
Na+-dependent Li + countertransport system of human-eryth- 
rocytes. Pflfigers Arch 364:147-155 

Ehrlich BE, Diamond JM (1980) Lithium, membranes, and manic- 
depressive illness. J Membr Biol 52:187-200 

Gorkin RA, Richelson E (1979) Lithium ion accumulation by cultured 
glioma cells. Brain Res 171:365- 368 

Grafe P, Rimpel J, Koestler C, Brnggencate G ten (1981) Actions of 
li_lhium on motoneurons and extracellular potassium concentration 
in the isolated frog spinal cord. Pfliigers Arch (Suppl) 389:R28 

Giiggl M, Fiedler U, Pretsch E, Simon W (1975) A lithium ion-selective 
electrode based on a neutral carrier. Anal Lett 8:857-866 

Janka Z, Szentistvanyi I, Juhasz A, Rimanoczy A (1980a) Steady-state 
distribution of lithium during cultivation of dissociated brain cells. 
Experientia 36:1071 - 1072 

Janka Z, Szentistvanyi J, Juhasz A, Rimanoczy A (1980b) Difference in 
lithium transport between neurones and glia in primary culture. 
Neuropharmacotogy 19:827- 830 

Janka Z, Szentistvanyi I, Rimanoczy R (1980 c) The influence of external 
sodium and potassium on lithium uptake by primary brain cell 
cultures at "therapeutic" lithium concentration. Psychopharma- 
cology 71 : 159-- 165 

Ploeger EJ (1974) The effects of lithium on excitable cell membranes. On 
the mechanism of inhibition of the sodium pump of non myelinated 
nerve fibres of the rat. Eur J Pharmacol 25:316-321 

Richelson E (1977) Lithium ion entry through the sodium channel of 
cultured mouse neuroblastoma cells: a biochemical study. Science 
196:1001-1002 

Ritchie JM, Straub RW (1957) The hyperpolarization which follows 
activity in mammalian non-medullated fibres. J Physiol 136:80- 97 

Ritchie JM, Straub RW (1980) Observations on the mechanism for the 
active extrusion of lithium in mammalian non myelinated nerve 
fibres. J Physiol 304:123-134 

Smith ICH (1979) The electrogenic potential in rat nerve fibres: some 
effects of lithium and thallium. J Physiol 294:135-144 

Sonnhof U, Grafe P, Krumnikl J, Linder M, Schindler L (1975) 
Inhibitory postsynaptic actions of taurine, GABA and other amino 
acids on motoneurons of the isolated frog spinal cord. Brain Res 
100: 327- 341 

Sonnhof U, Richter DW, Taugner R (1977) Electrotonic coupling 
between frog spinal motuneurons. An electrophysiological and 
morphological study, Brain Res 138:197-215 

Sonnhof U, Biihrle Ch (1981) An analysis of glutamate-induced ion 
fluxes across the membrane of spinal motoneurons of the frog. In: 
DiChiara G, Gessa GL (eds) Glutamate as a neurotransmitter. 
Raven Press, New York, pp 195-204 

Spirtes MA (1976) Lithium levels in monkey and human brain after 
chronic, therapeutic, oral dosage. Pharmacol Biochem Behav 
5 : 143-147 

Tang CM, Cohen MW, Orkand RK (1980) Electrogenic pumps in.axons 
and neuroglia and extracellular potassium homeostasis. Brain Res 
194:283-286 

Thomas RC (1978) Ion-sensitive intracellular microelectrodes. Academic 
Press, London, New York 

Thomas RC, Simon W, Oehme M (1975) Lithium accumulation by snail 
neurones measured by a new Li + sensitive mieroelectrode. Nature 
258 : 754-  756 

Tosteson DC (1981) Cation countertransport and cotransport in human 
red cells. Fed Proc 40:1429--1433 

Ullrich A, Baierl P, Bruggencate G ten (1980) Extracellular potassium in 
rat cerebellar cortex during acute and chronic lithium application. 
Brain Res 192:287-290 

Received July 25, 1981/Accepted March 3, 1982 


